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Abstract: Acute myeloid leukemia (AML) is regarded as a stem cell disease. However, no one unique marker is expressed

on leukemia stem cells (LSC) but not on leukemic blasts nor normal hematopoietic stem cells (HSC). CD34+CD38- with

or without CD123 or CD44 subpopulations are immunophenotypically defined as putative LSC fractions in AML.

Nevertheless, markers that can be effectively and simply held responsible for the intrinsical heterogeneity of LSC is

still unclear. In the present study, we examined the frequency of three different LSC subtypes (CD34+CD38-,

CD34+CD38-CD123+, CD34+CD38-CD44+) in AML at diagnosis. We then validated their prognostic significance on

the relevance of spectral features for diagnostic stratification, immune status, induction therapy response, treatment

effect maintenance, and long-term survival. In our findings, high proportions of the above three different LSC

subtypes were all significantly characterized with low complete remission (CR) rate, high relapse/refractory rate, poor

overall survival (OS), frequent FLT3-ITD mutation, the high level of regulatory T cells (Treg) and monocytic

myeloid-derived suppressor cells (M-MDSC). However, there was no significant statistical difference in all kinds of

other clinical performance among the three different LSC groups. It was demonstrated that CD34+CD38-

subpopulation without CD123 and CD44 might be held responsible for LSC and correlated with an imbalance of

immune cell subsets in AML.

Introduction

Acute myeloid leukemia (AML) is generally regarded as a
stem cell disease characterized by an accumulation of
undifferentiated and functionally heterogeneous populations
of leukemic blasts (Lapidot et al., 1994; Bonnet and Dick,
1997; Dick, 2005). The study of antigen expression patterns
in leukemic stem cells (LSC) has a great significance for
understanding the mechanisms of leukemogenesis and
developing novel therapeutic strategies in AML (Thomas
and Majeti, 2017; Pollyea and Jordan, 2017). A number of
cell surface markers are expressed on LSC for AML, but
thus far, no one unique marker has been discovered that is
universally expressed on LSC across the patients with AML,

but not on bulk leukemic blasts nor on normal
hematopoietic stem cells (HSC) (Thomas and Majeti, 2017).

CD34 is recognized as one of the most important
immunophenotypic and functional markers of HSC either
in bone marrow or in peripheral blood (Furness and
McNagny, 2006; AbuSamra et al., 2017). Compared with
CD38+ subpopulation in CD34+ HSC, CD38- subpopulation
seems to possess a higher leukemogenic ability, more
therapy-resistant, and less immunogenic characteristics in
vitro and in vivo. These contribute the CD34+CD38- section
not combined with other surface markers is
immunophenotypically defined as the putative LSC fraction
in AML at an early date (Sarry et al., 2011; Eppert et al.,
2011; Ng et al., 2016; Zeijlemaker et al., 2019). Another
reported specific immuno-phenotypic property is the
expression of CD123 or CD44 antigen within the
CD34+CD38- compartment (Jordan et al., 2000; Jin et al.,
2009; Jin et al., 2006). Thus, the panels of
CD34+CD38-CD123+ and CD34+CD38-CD44+ are also
widely used for LSC characterization and even separating
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LSC from HSC in AML (Thomas and Majeti, 2017; Pollyea
and Jordan, 2017; Mastelaro de Rezende et al., 2020).
Nevertheless, which of these subpopulations can be
effectively and simply be held responsible for the intrinsical
LSC leading to the pathogenesis, relapse/ refractory disease
progression, and poor prognosis of AML are delusive.

In this study, we tested the frequency of three different
LSC subtypes (CD34+CD38-, CD34+CD38-CD123+,
CD34+CD38-CD44+) in the patients with AML at diagnosis,
and then validated their prognostic significance on the
relevance of spectral features for diagnostic stratification,
immune status, induction therapy response, treatment effect
maintenance and long-term survival. Finally, we found that
CD34+ CD38- subpopulation without CD123 and CD44 was
held responsible for LSC and correlated with an imbalance
of immune cell subsets in AML.

Materials and Methods

Patients
In this study, 60 patients newly diagnosed with AML with
CD34 positive leukemic blasts from June 2017 to August
2019 at the Second Hospital of Anhui Medical University,
with no congenital/acquired immuno-deficiency, were
enrolled. According to Chinese guidelines for diagnosis and
treatment of adult AML (not acute promyelocytic leukemia,
APL) (2017) (Leukemia Lymphoma Group CSoHCMA,
2017) and Chinese guidelines for diagnosis and treatment of

APL (2014) (Jun, 2014), patients were characterized by their
own diagnostic stratification and received standard
treatment consisting of one to two cycles of induction
chemotherapy followed by either consolidation therapy or
allogeneic hematopoietic stem cell transplantation (allo-
HSCT), based on risk stratification and pretreatment risk
assessment. The detailed clinical characteristics of the
60 patients with AML are shown in Tab. 1. This study was
approved by the Institutional Review Board (IRB)
Institutional of the Second Hospital of Anhui Medical
University (No. LLSC20140009). All patients enrolled in the
study have signed informed consent.

LSC analysis
Heparinized bone marrow (BM) cells and peripheral blood
(PB) cells were analyzed for three kinds of LSC subtypes by
CytExpert 2.0 flow cytometer (Beckman Coulter, Miami, FL,
USA). In Fig. 1, CD34+CD38- LSC were defined by the
phenotype of CD34+CD38-CD45dim using CD45 and CD34
gating strategy, which included all cells with or without
CD123 or CD44. CD34+CD38-CD123+ LSC were defined by
the phenotype of CD34+CD38-CD123+CD45dim using CD45
and CD34 gating strategy and CD38 backgating strategy.
CD34+CD38-CD44+LSC were defined by the phenotype of
CD34+CD38-CD44+CD45dim using CD45 and CD34 gating
strategy and CD38 backgating strategy. Control tubes
stained with an isotype-matched control were included in all
experiments and were used to define the cutoff point of 98%

TABLE 1

Characteristics of the patients with AML

Group Sub-group Number Group Sub-group Number

Gender Male 32 Cross lineage Yes 24

Female 28 No 36

Age <60 y (16–59) 37 Fusion gene RUNX1-RUNX1T1 7

≥60 y (60–85) 23 PML/RARα 6

FAB classification M0 1 Others 47

M1 2 Gene mutation FLT3-ITD 9

M2 31 CEBPA 8

M3 6 NMP1 6

M4 13 ASXL1 7

M5 4 RUNX1 6

M7 1 Others 24

Mu 2 Extramedullar Yes 9

WBC Low 16 No 51

Middle 17 First induction CR 26

High 27 Non-CR 23

Other therapy Supportive care 7

Karyotype Low risk 13 Early death 4

Medium risk 37 Curative effect CCR 26

High risk 7 R 8

No data 3 NR 15
Note: Mu: unclassifiable AML in morphology; WBC: white blood cell; CR: complete remission; Non-CR: not complete remission;
CCR: continued complete remission; R: relapse; NR: non-response after two induction therapy, refers to refractory.
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for positive/negative staining. All commercial monoclonal
antibodies used in the present experiments are shown in Tab. 2.

Immune cell subsets analysis
Peripheral circulated immune cell subsets including Th, CTL,
Treg, Teff, B, NK, and M-MDSC were detected by Cytomics�

FC500 flow cytometer (Beckman Coulter, Miami, FL, USA).
Th subsets were identified by the phenotype of
CD3+CD4+CD8-CD45++. CTL subsets were identified by the
phenotype of CD3+CD4-CD8+CD45++. Treg subsets were
identified by the phenotype of CD4+CD25+ CD127low/-CD45++.
Teff subsets were identified by the phenotype of
CD4+CD25+CD127highCD45++. B subsets were identified by
the phenotype of CD19+CD20+CD45++. NK subsets were
identified by the phenotype of CD3-CD16+CD56+CD45++.
M-MDSC subsets were identified by the phenotype of
CD14+HLA-DRlow/-CD45++. The isotype-matched control
was used to define the cutoff point of 98% for positive/
negative staining. All commercial monoclonal antibodies used
in the present experiments are also shown in Tab. 2.

Statistical analysis
Statistical power was calculated using PASS 11.0, and the
significant level (alpha) was 0.05. Statistical analysis was
performed with SPSS 16.0. The chi-squared test, Fisher’s
exact probability tests, and the Student’s t-test were used
when appropriate to evaluate the significance of differences
in data between groups. If variances within groups were not
homogeneous, a non-parametric Mann-Whitney test was

used. The prognostic value was evaluated by Kaplan-Meier
survival curves. Overall survival (OS) was used and
defined as the time from date of diagnosis until the date
of death, and the median follow-up time was 8 months.
We used continued complete remission (CCR) as an
indicator to generate the ROC curve and determined the
optimal cut-off value based on the Yoden index. The cut-
off values of CD34+CD38-LSC, CD34+CD38-CD123+ LSC
and CD34+CD38-CD44+ LSC were 3.83%, 1.68% and
3.19%, respectively. More than or equal to the respective
cut-off value was defined as the high-frequency group,
and less than the respective cut-off value was defined as
the low-frequency group. The p-value less than 0.05 was
considered statistically significant.

Results

LSC status at diagnosis in the patients with AML
Baseline characteristics of the 60 patients with AML at
diagnosis in the present study were shown in Tab. 1. Of
these 60 cases, BM samples of all cases and PB samples of
25 cases with significant peripheral circulation blasts (more
than 10% leukemic blasts, median 33%, range 11–95%)
were used for three kinds of LSC subtype analysis. In
Fig. 2A, CD34+CD38-LSC, CD34+CD38-CD123+LSC and
CD34+CD38-CD44+LSC were respectively 4.04 ± 6.80%,
2.62 ± 5.68% and 3.34 ± 6.29% posed of all mononuclear
cell percentage, and there was no significant statistical
difference in the three different groups of LSC subtype

FIGURE 1. Gating strategy in AML to identify different LSC subtypes.
P4 gate was defined as CD34+CD38-LSC. P5 gate was defined as CD34+CD38-CD123+LSC using P4 gate. P6 gate was defined CD34+CD38-CD44+LSC
using P4 gate. For the gating of CD34+CD38- compartment, the proportion of CD44-CD123- was 21.22%, CD44+CD123- was 26.47%, CD44-CD123+

was 15.18%, CD44+CD123+ was 37.13%.
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(p > 0.05). In Fig. 2B, the data of BM and corresponding PB
samples in the same 25 cases showed that some cases had a
higher LSC frequency, but some cases had a lower LSC
frequency in PB compared with that in BM. There was also
no significant statistical difference in the three kinds of LSC
subtype between BM and PB samples (p > 0.05), hence, we
alternatively used the proportion of LSC in BM samples for
subsequent analysis.

Validation of the prognostic relevance of LSC
Of the above 60 cases in the present study, 49 cases (82%) were
received standard treatment consisting of one to two cycles of
induction chemotherapy followed by either consolidation
therapy or allo-HSCT, 7 cases (12%) were received only
supportive care because of their old age or poor physical

condition, the other 4 cases (6%) died of fatal bleeding or
infection in a short time (within 2 weeks) due to their disease
progression. In Fig. 3A, after the first induction chemotherapy
of 49 cases, 26 cases (53%) obtained complete remission (CR)
and 23 cases (47%) did not attain CR (Non-CR). The
frequency of CD34+CD38-LSC, CD34+CD38-CD123+LSC and
CD34+CD38-CD44+LSC in the CR group (1.93 ± 3.00%, 1.16
± 2.73%, 1.28 ± 2.79%, respectively) were all significantly
lower than the Non-CR group (6.83 ± 9.04%, 4.31 ± 6.20%,
5.84 ± 8.23%, and p = 0.0115, p = 0.0209, p = 0.0118,
respectively). In Fig. 3B, after the re-induction therapy or
consolidation therapy or allo-HSCT of the same 49 cases, 26
cases (53%) preserved continued complete remission (CCR)
and 23 cases (47%) were eventually progressed to non-
respond/refractory or relapsed disease (NR/R). The frequency

TABLE 2

Specification of monoclonal antibodies

Cell subsets Antibody Clone Conjugate Source

LSC CD34 581 FITC Beckman Coulter

CD38 HB-7 APC BD Biosciences

CD123 7G3 PE-CY7 BD PharmingenTM

CD44 515 PE BD PharmingenTM

CD45 J.33 PB Beckman Coulter

Th/CTL CD4/CD8/CD3 13B8.2/B9.11/VCHT1 FITC/PE/PC5 Beckman Coulter

CD45 J.33 PC7 Beckman Coulter

Treg/Teff CD4 13B8.2 PC5 Beckman Coulter

CD25 B1.49.9 FITC Beckman Coulter

CD127 R34.34 PE Beckman Coulter

B CD19 J3.119 FITC Beckman Coulter

CD20 B9E9 PE Beckman Coulter

CD45 J.33 PC5 Beckman Coulter

NK CD3/CD(16+56) VCHT1/3G8+N901 FITC/PE Beckman Coulter

CD45 J.33 PC5 Beckman Coulter

M-MDSC CD14 RMO52 FITC Beckman Coulter

HLA-DR Immu-357 PE Beckman Coulter

CD45 J.33 PC5 Beckman Coulter

FIGURE 2. LSC status at diagnosis in patients with AML.
(A) The frequency of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+CD38-CD44+LSC at diagnosis in BM samples of 60 patients
with AML. (B) The frequency of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+CD38-CD44+LSC at diagnosis in BM samples and
PB samples of the same 25 patients with AML. The p-value of different groups were all >0.05.
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of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+

CD38-CD44+LSC in the CCR group (2.05 ± 3.02%, 1.18 ±
2.76%, 1.44 ± 2.84%, respectively) were all significantly lower
than the NR/R group (6.84 ± 8.98%, 4.15 ± 6.11%, 5.46 ±
8.19%, and p = 0.0217, p = 0.0302, p = 0.0231, respectively).

Follow-up analyses were performed for all 60 patients,
including those who received standard treatment, supportive
care, and early death. In Fig. 3C, analysis for the above three
kinds of LSC subtype showed that the low LSC frequency
groups all had significant survival advantages compared
with the high LSC frequency groups (p = 0.0056, p = 0.0487,
p = 0.0421, respectively). Together, these findings suggested
that these three different LSC subtypes, including
CD34+CD38- subpopulation with or without CD123 or
CD44, were all specific and could individually serve as
prognostic indicators to predict outcome in AML.

LSC frequency and clinic risk categories
In this study, we analyzed the correlation between the
proportion of LSC and common clinical risk factors in
all 60 AML cases. In Figs. 4A–4C, our data demonstrated
that there were no significant statistical differences
in CD34+CD38-LSC, CD34+CD38-CD123+LSC and
CD34+CD38-CD44+ LSC regarding age, WBC count and
extramedullary infiltration (all p > 0.05). We also analyzed
the correlation between the proportion of LSC and the
cross-linage expression, morphological typing, and leukemic
blasts percentage. The above indicators are very important
factors reflecting the malignancy and tumor burden of
leukemic blasts. In Figs. 4D–4F, we found that there was no
significant statistical difference in the three kinds of LSC
subtypes among cross linage expression, morphological
typing, and leukemic blasts percentage (all p > 0.05).
Together, it was suggested that the prognostic values of
these three different LSC subtypes, including CD34+CD38-

subpopulation with or without CD123 or CD44, all had no
statistical correlation with common clinic risk categories.

LSC frequency and cytogenetic/molecular risk categories
Total 59 of the 60 cases with AML were detected by G-banded
chromosome recognition (2 cases without chromosome division),
gene panels of 44 kinds of fusion genes, gene panels of FLT3-
ITD, CEBPA, NPM1, C-kit mutation. We further conducted
next-generation sequencing (NGS) testing on 21 of the 60 cases.
Then, we analyzed the correlation between the proportion of LSC
and karyotype stratification, fusion gene, and gene mutation. In
Fig. 5, we found there was no significant statistical difference
in CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+

CD38-CD44+LSC subtypes among the groups of karyotype
stratification, fusion gene and gene mutation (Figs. 5A–5G, all
p > 0.05), except for the FLT3-ITD mutation group (Fig. 5H, p <
0.05). Together, it was suggested that the prognostic values of
CD34+CD38- LSC with or without CD123 or CD44 all had no
statistical correlation with common cytogenetic/molecular risk
categories. But LSC might interact with the FLT3-ITD mutation
contributing to the pathogenesis in AML.

LSC frequency and immune cell subsets
Firstly, 27 cases were detected of peripheral circulated
immune cell subsets. Then, we analyzed the correlation
between the proportion of LSC and the above immune
cell subsets. We found there was no significant statistical
difference in CD34+CD38-LSC, CD34+CD38-CD123+ LSC and
CD34+CD38-CD44+LSC subtypes among the groups of B, NK,
Th, CTL, Th/CTL ratio, Teff (Figs. 6A, 6B, 6D–6F, and 6H, all
p > 0.05). However, Treg percentage in the high-frequency
groups of CD34+CD38-LSC, CD34+CD38-CD123+LSC and
CD34+CD38-CD44+LSC (6.68 ± 3.01%, 6.51 ± 2.79%,
6.68 ± 3.37%, respectively) were all significantly higher
than the low-frequency groups of CD34+CD38-LSC,

FIGURE 3. The significance of LSC on the features of prognostic relevance.
(A) The significance of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+CD38-CD44+LSC in the first induction chemotherapy. (B) The
significance of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+CD38-CD44+LSC in the treatment effect maintenance. (C) The
significance of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+CD38-CD44+ LSC in the long-term survival. The p-value of
different groups were all shown in the figure.
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CD34+CD38-CD123+LSC and CD34+CD38-CD44+LSC (5.38
± 1.30%, 5.38 ± 1.33%, 5.44 ± 1.30%, and p = 0.0053,
p = 0.0120, p = 0.0023, respectively, Fig. 6G). Moreover,
Treg/Teff ratio were also increased with the increase of Treg
percentage (Fig. 6I). M-MDSC percentage in the high-frequency
groups of CD34+CD38-LSC, CD34+CD38-CD123+LSC and
CD34+CD38-CD44+LSC (9.33 ± 2.88%, 8.56 ± 2.64%, 9.37 ±
2.86%, respectively) were all significantly higher than the low-
frequency groups of CD34+CD38-LSC, CD34+CD38-CD123+

LSC and CD34+CD38-CD44+LSC (2.16 ± 0.90%, 2.14 ±
0.96%, 2.15 ± 0.90%, and p = 0.0045, p = 0.0091, p = 0.0041,
respectively, Fig. 6C). Together, it was suggested that LSC
subtypes were correlated with the imbalance of peripheral
circulated immune cell subsets, especially for significantly
increased Treg and M-MDSC.

Discussion

LSC is defined as cells that are capable of initiating the disease
when transplanted into immunodeficient animals and can

self-renew by giving rise to leukemia in serial
transplantations and also partially differentiate into non-
LSC bulk blasts that resemble the original disease (Lapidot
et al., 1994; Bonnet and Dick, 1997; Dick, 2005). In AML,
the concept of LSC has been widely accepted and developed
with the idea to explain the clonal hierarchies and
architectures (Thomas and Majeti, 2017; Valent et al., 2019).
Interestingly, LSC are theoretically distinct from the bulk of
leukemic blast populations and normal HSC but are actually
responsible for managing all the hierarchies (Thomas and
Majeti, 2017; Valent et al., 2019). Therefore, the study of the
different phenotypes of LSC, leukemic blasts, and normal
HSC in AML with the aid of up-to-date flow cytometric
techniques is important for the deep insight into the
mechanisms of leukemogenesis and disease progression
(Ivanivska et al., 2019).

It is currently known that the CD34+CD38-

subpopulation exhibits higher LSC characteristics compared
with CD34+CD38+ subpopulation and CD34- subpopulation
(Sarry et al., 2011; Eppert et al., 2011), and is usually

FIGURE 4. The correlation between LSC frequency and clinic risk categories.
(A–F) The frequency of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+CD38-CD44+LSC in different groups of age, WBC count,
extramedullary infiltration, cross linage expression, morphological typing, and leukemic blasts percentage, respectively. The p-value of
different groups were all >0.05.
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immunophenotypically defined as LSC fraction in AML
(Thomas and Majeti, 2017; Zeijlemaker et al., 2019;
Karantanos and Jones, 2019). Gene expression profiling
from CD34+CD38-LSC is also used to define an LSC score
and is an independent predictive value of poor prognosis in
patient cohorts (Eppert et al., 2011; Jung et al., 2015;
Lechman et al., 2016). Moreover, many other surface
markers have also been identified that are up-regulated on
CD34+CD38-LSC (Thomas and Majeti, 2017; Gentles et al.,
2010). As an anti-IL-3 receptor alpha chain, CD123 is
considered as a novel specific marker expressed on
traditional LSC and even an important therapeutic target for
the treatment of AML (Jin et al., 2009; van Rhenen et al.,
2007; Abdollahpour-Alitappeh et al., 2018). As a cell
adhesion molecule, CD44 plays an important role in the
interaction with a variety of extracellular matrix
components, cytokines, and growth factors secreted by cells
present in the tumor environment. It is therefore not
surprising that many studies have reported CD44 is also

been identified as a putative marker for LSC in AML (Jin et
al., 2006; Morath et al., 2016).

However, few studies have evaluated the prognostic
effect of traditional CD34+CD38-LSC with or without
CD123 or CD44 in patients with AML. It is also not
clear that which of these different subpopulations can be
effectively and simply held responsible for the intrinsical
LSC in AML. Herein, we examined the above LSC
subtypes (CD34+CD38-LSC, CD34+CD38-CD123+ LSC and
CD34+CD38-CD44+LSC) and the combined effect of their
expression on clinical outcome. Our data elucidated that
CD34+CD38-LSC, with or without CD123 or CD44, were all
present in a significant proportion of the patients with AML
at diagnosis and they all could be responsible for resistance
to traditional treatments, and the high percentage of
minimal residual disease (MRD) that was translated into the
significantly high number of Non-CR, relapse/refractory and
poor OS. Together, it was suggested that CD34+CD38-

subpopulation without CD123 or CD44 might be held

FIGURE 5. The correlation between LSC frequency and cytogenetic/molecular risk categories.
(A–H) The frequency of CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+CD38-CD44+LSC in different groups of karyotype,
PML/RARa fusion gene, RUNX1-RUNX1T1 fusion gene, CEBPA gene mutation, NPM1 gene mutation, ASXL1 gene mutation, RUNX1
gene mutation and FLT3-ITD gene mutation, respectively. The p-value of different groups were all >0.05, except for the FLT3-ITD group.
The p-values of the FLT3-ITD group were all shown in the figure.
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responsible for the most feasible LSC in AML considering
from a clinical prognostic significance perspective.

As we all know that AML is a heterogeneous disease with
different clinical manifestations and different disease
prognosis. It is generally believed that patients with a poor
prognosis are usually characterized by some high clinical
risk factors at the time of diagnosis. These high clinical risk
factors include old age, high WBC count, AML secondary to
myelodysplastic syndromes (MDS) or myeloproliferative
neoplasms (MPN), therapy-related AML, and AML with
extramedullary infiltration (Leukemia Lymphoma Group
CSoHCMA, 2017). Additionally, except for cytomorphology,
cytochemistry and immunophenotyping, state-of-the-art

AML diagnostics also relies on cytogenetics and molecular
genetics. Especially, most prognostic models like NCCN and
ELN have stratified AML patients using cytogenetic and
molecular features into different prognostic groups based
upon predicted response to standard therapy and survival.
However, it is unknown that which of these clinical factors,
cytogenetic and molecular factors are related to the
prognostic significance of CD34+CD38- subpopulation with
or without CD123 or CD44.

In the present study, our data showed that
CD34+CD38-LSC, CD34+CD38-CD123+LSC and CD34+

CD38-CD44+LSC frequencies were all significantly increased
in the FLT3-ITD mutation-positive group compared with

FIGURE 6. The correlation of LSC frequency and immune cell subsets.
(A–I) The frequency of B, NK, M-MDSC, Th, CTL, Th/CTL ratio, Treg, Teff and Treg/Teff ratio in different groups of CD34+CD38-LSC,
CD34+CD38-CD123+LSC and CD34+ CD38-CD44+LSC, respectively. The p value of Treg, Treg/Teff ratio and M-MDSC groups were all
shown in the figure, the p-values of other groups were all >0.05.
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the FLT3-ITD mutation-negative group. This phenomenon
fitted the previous study perspectives of FLT3-ITD
mutations represent and express within LSC (Levis et al.,
2005; Levis, 2017). Moreover, the signaling of LSC
represents a combined signaling node of the FLT3-ITD
driven leukemogenesis, and the FLT3-ITD signaling
network also promotes the survival of LSC (Yoshimoto et
al., 2009; Tam et al., 2013; Al-Mawali et al., 2016; Zhang et
al., 2019). So, LSC is potentially an important parameter to
be evaluated in the FLT3-ITD mutation-positive AML
patients undergoing treatment with FLT3 inhibitors. In our
previous study, we have discovered a highly potent FLT3
kinase inhibitor, CHMFL-FLT3-165, which exhibits strong
biochemical inhibition against FLT3-ITD mutation-positive
leukemic blasts and significant in vivo tumor suppression
(Wu et al., 2016). So, it provides a rationale for the
treatment of our novel FLT3-ITD inhibitor and might
directly against LSC in our future experiments on LSC.
However, there was no significant statistical difference for
the above three LSC frequencies among the groups of
morphological typing, leukemic blasts percentage, cross
linage expression, karyotype stratification, fusion gene, and
other gene mutation. Together, it was suggested that the
prognostic value of CD34+CD38- subpopulation with or
without CD123 or CD44 all had no statistical correlation
with common clinic risk categories and cytogenetic/
molecular risk categories (except for FLT3-ITD mutation),
and CD34+CD38- subpopulation without CD123 and CD44
might be held responsible for the most feasible LSC in
AML. From an objective point of view, CD123 was not
essential for the diagnostic evaluation of LSC but was still
important because offered the opportunity to target these
cells therapeutically.

Population dynamics of Treg are crucial for the
underlying interplay between leukemic and immune cells in
the progression of AML, as shown by a model incorporating
promotion of Treg expansion by leukemic blast cells, LSC,
and progenitor cells (Nishiyama et al., 2018). Meanwhile,
M-MDSC has attracted a lot of attention in the field of
tumor immunology in recent years (Lv et al., 2019), but
little is known about its roles in AML especially for LSC as
opposed to its multiple roles in solid tumors. In our
previous study, we have reported that tumor immune escape
mechanism mediated by Treg and Treg-related cytokines is
an important pro-tumorigenic factor for in AML (Tao et al.,
2015; Wang et al., 2015). We herein further found that the
CD34+CD38-LSC with or without CD123 or CD44 were
significantly correlated with peripheral circulated Treg and
M-MDSC proportion, although our data demonstrated there
were no statistical differences in all kinds of LSC subtype
among the groups of peripheral circulated B, NK, Th, and
CTL cells. It was suggested that the immune tolerance status
of peripheral circulation might interact with LSC for the
pathogenesis and progression of AML.

Conclusion

In the present study, we have illustrated that CD34+CD38-

subpopulation without CD123 and CD44 is held responsible
for the most feasible LSC in AML considering from a clinic

prognostic perspective and is also correlated with the
imbalance of peripheral circulated immune cell subsets,
especially for Treg and M-MDSC. We believed that our
study has an important application value in the clinical
prognosis evaluation of patients with AML.
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