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Abstract: Myocytes power the movement of all organs in the body. Damage to and degradation of myocytes causes

hypokinesia and muscle-related degenerative diseases. Apigenin, a kind of flavone, is being used to treat many

disorders. It exerts a host of different pharmacological activities, such as anti-inflammatory, anti-mutagenic,

cardioprotective, and antioxidant effects. Accordingly, apigenin is considered a promising candidate for myocyte

protection. In this review, we introduced the characteristics of apigenin. The means of apigenin protection of

myocytes as well as the mechanism were summarized and discussed. The protective effects can be classified into

proliferation-promoting, anti-inflammatory, atrophy-preventing, metabolism-increasing, and antioxidative effects.

Additionally, we provided some outlook on the valuable applications of apigenin in sports medicine, which eagerly

require further fundamental research.

Introduction

Myocytes can contract and relax, allowing them to a crucial
role in body movement. Thus, they are the power source for
movement. However, improper exercise causes exercise
fatigue originally resulting from energy burn-out and
myocyte hypoxia, producing numerous free radicals
(Verhavert et al., 2020; Zhou and jiang, 2019). Oxidative
imbalance leads to some serious consequences, including
decreased pH, inflammatory responses, and hypoimmunity
(Jayakumar et al., 2020; Li et al., 2020; Baldelli et al., 2019;
Mulkey et al., 2003). This imbalance can accelerate necrosis
and the apoptosis of myocytes, reducing exercise
performance (Narasimhan and Rajasekaran, 2016). In
addition, aging and obesity can also induce myocyte atrophy
(Yatsenko et al., 2020; Lee et al., 2016). Therefore,
protecting myocytes against damage and degradation
becomes very important for preventing hypokinesia and
muscle-related degenerative diseases.

It is widely believed that nutrient supplementation is an
effective way to keep muscles healthy (Ganapathy and Nieves,
2020). Among the various sports supplements, herbs and their
extracts have attracted more attention due to their high
efficiency and low toxicity (Zhang et al., 2014). Polyphenols
can reduce oxidative damage and promote myocyte survival
(Carresi et al., 2016). Astragalus polysaccharide can inhibit
the autophagy and apoptosis of C2C12 myoblasts by
regulating apoptosis-related protein (B-cell lymphoma-2
(Bcl-2), cytochrome C (cyto-C), and cysteine protease 3
(caspase-3)) (Yin et al., 2015). Astragalus polysaccharide
also prevents muscle cell atrophy by activating the
ubiquitin-proteasome pathway (Geng et al., 2017).
Gentianella acuta can inhibit the nuclear factor
κB/cyclooxygenase-2 (NF-κB/COX-2) signaling pathway to
down-regulate inflammatory factors, preventing myocardial
ischemia/reperfusion injury (Ding, 2016). Recently, apigenin
(API) has been recognized as a bioactive compound that
possesses a host of different pharmacological activities, such
as anti-inflammatory, anti-mutagenic, cardioprotective, and
antioxidant effects (Kashyap et al., 2018). API was reported
to relieve muscle atrophy by inhibiting oxidative stress
apoptosis in the skeletal muscle of mice (Wang et al., 2020).
API can also reduce eye fatigue by relaxing ciliary muscles
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(Kim et al., 2018). Accordingly, API is considered a promising
candidate for myocytes protection. Several research teams and
our group have focused on this issue. Herein, we summarized
the protective effects and mechanism of API on myocytes. The
information in this review can provide a theoretical basis for
API as a promising myocyte protectant against damage and
degradation.

Characteristics of API
API is a kind of flavonoid and exists in a wide variety of
vegetables, fruits, beans, and teas. The API content is
relatively high in celery (2154 mg/kg dry weight), guava
(579 mg/kg dry weight), wolfberry leaves (547 mg/kg dry
weight), bilimbi fruit (458 mg/kg dry weight), pepper
(272 mg/kg dry weight), kumquat (219 mg/kg dry weight),
garlic (217 mg/kg dry weight), Chinese cabbage (187 mg/kg
dry weight), bell French peas (176 mg/kg dry weight), snake
gourd (42 mg/kg dry weight), daun turi (39 mg/kg dry
weight), and kadok (34 mg/kg dry weight) (Nabavi et al.,
2018; Yang et al., 2008; Miean and Mohamed, 2001). API is
chemically known as 4’,5,7-trihydroxyflavone with the
molecular formula C15H10O5 and a molecular weight of
270.24. The basic carbon skeleton of API has a flavan
nucleus. Its structure consists of 15 carbons arranged in two
aromatic rings connected by a 3-carbon bridge, forming a
diphenyl propane structure. Three hydroxyl groups are
present at positions 5 and 7 on the chromone and 4’,
respectively. It also has an oxo group on the chromone at
position 4 (Fig. 1) (Hassanpour et al., 2020; Ali et al., 2017).

API has acquired importance over the past few years as a
salutary and health-promoting agent because of its low intrinsic
toxicity. According to in vitro, in vivo, and clinical trial studies,
API has been used to treat autoimmune diseases because of its
anti-inflammatory effect (Kairi et al., 2018), nervous system
diseases by virtue of its antioxidant function (Ginwala et al.,
2016), cancer, from its ability to regulate the cell cycle
(Kashyap et al., 2018), and other diseases due to its
pharmacological properties (Ali et al., 2017).

Protective effect of API on myocytes

Promoting proliferation
The phosphatidylinositol 3-kinase/serine-threonine protein
kinase/mammalian target of the rapamycin (PI3K/AKT/mTOR)
signaling pathway plays an important role in regulating the
cell cycle. AKT is the downstream target protein of PI3K.
When AKT is activated, cells can escape from apoptosis,
and proliferation is promoted (Rychahuo et al., 2005). In
C2C12 cells, AKT can be activated by API, and the

expression of phosphorylated AKT (pAKTSer473) increases.
Then, pAKTSer473 phosphorylates glycogen synthase kinase-
3β (GSK3β), which mediates the degradation of cyclinD1
protein to promote cell proliferation. And the cellular
viability of C2C12 increased about 10% compared to the
control group. (Kulabas et al., 2018). Besides, AKT can
phosphorylate cell cycle inhibitors (p21WAF1 and p27Kip1) to
inhibit cyclinD1/cyclin-dependent kinases 4 (CDK4),
promoting cell cycling from the G1 phase to the S phase
(Cheung and Testa, 2013; Hua et al., 2008).

Mitochondria are organelles in cells that supply energy for
cell proliferation. The mitochondrial biogenesis and
mitochondrial function of skeletal muscle cells were shown to
increase after API treatment. Increased mitochondrial size and
the mtDNA (peroxisome proliferator-activated receptor-γ
coactivator-1α (PGC1α), mitochondrial transcription factor (mt-
TFAM). and cytochrome c (CyCs)) contents have been
observed in API-treated mouse skeletal muscle cells. Therefore,
skeletal muscle fiber size was significantly increased, and there
was a tendency toward an increase in the skeletal muscle mass
(Choi et al., 2017). These results suggest that API can ameliorate
mitochondrial function and promote myocyte proliferation.

Anti-inflammatory effects
It is well known that many flavonoids selectively or non-
selectively inhibit cyclooxygenase (COX), lipoxygenase
(LOX), phospholipase (PLA), and nitric oxide synthase
(NOS), which are the major contributors to inflammation.
API has been found to suppress lipopolysaccharide (LPS)-
induced nitric oxide (NO) production and COX-2
expression (Gutierrez-Venegas and Gonzalez-Rosas, 2017).
In an acute lung injury mouse model, API lowered the
production of some inflammatory cytokines (interleukin-6
(IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α
(TNF-α)) via inhibiting the COX-2 and NF-κB activation
pathways (Wang et al., 2014). Further, studies also reported
that API exerted anti-chronic inflammatory effects. API was
capable of normalizing the expression of many colonic
inflammatory markers in a bowel disease model
(Mascaraque et al., 2015). These studies demonstrate the
anti-acute and chronic inflammatory effects of API.

Choi et al. (2017) investigated the effects of API on
inflammatory cytokines such as monocyte chemoattractant
protein 1 (MCP-1), IL-1β, TNF-α, and IL-6 in the skeletal
muscle of obese mice. After API treatment, the mRNA
expression of those inflammatory cytokines decreased
significantly. TNF-α and IL-6 levels were also lower in the
serum of the API-treated mice. API probably inhibited the
NF-κB activation pathways in the myocytes of the obese
mice. In view of the anti-acute and chronic inflammatory
effects of API, it can be inferred that both acute inflammation
induced by exhaustive exercise and chronic inflammation
induced by chronic diseases can be normalized by API. In
this way, myocytes can be protected from inflammatory injury.

Preventing atrophy
The pathological characteristics of muscle atrophy show the
progressive loss of muscle mass and strength. It is a
complex process, and its exact causes have not been
identified. Some studies reported that skeletal muscle wasFIGURE 1. Chemical structure of API.
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atrophied as a result of inflammatory conditions such as sepsis
(Liu et al., 2019). Recent research has suggested that skeletal
muscle atrophy is potentially induced by some atrophic
stimuli (Rosa-Caldwell and Greene, 2019; Rienzo et al.,
2019; Li et al., 2017), which disturb the balance between the
synthesis and breakdown of myofibrillar proteins. Acting on
specific targets can regulate signal transduction pathways to
promote the synthesis or degradation of muscle proteins to
control muscle hypertrophy or atrophy (Pipis et al., 2019).

The results of studies by Shiota et al. (2015) showed that
API could significantly inhibit LPS-induced c-Jun N-terminal
kinase (JNK) phosphorylation in C2C12 myotubes. In this
manner, LPS-mediated muscle atrophy can be prevented by
API via the downregulation of muscle atrophy F-box
(MAFbx/atrogin-1) expression. API also regulated the
expression of other atrophic genes, such as myosin heavy
chain (MyHC) IIa and muscle-specific ring finger protein 1
(MuRF1), to prevent muscle atrophy. Moreover, API can
increase the nuclei ratio of C2C12 cell nucleus compared to
the palmitic acid-treated cells, which is a similar
environment to the obese state, by downregulating the
expression of MuRF1 (Choi et al., 2017). Therefore, API has
great potential use for preventing muscle atrophy.

Increasing metabolism
Skeletal muscle is the most important peripheral tissue
contributing to the uptake of glucose into cells, a process
underlying insulin control. The glucose uptake of myocytes,
as well as glucose utilization, is reduced in people with
insulin resistance. Consequently, myocytes suffer from
functional degeneration, and type 2 diabetes mellitus is more
likely to develop (Meng et al., 2020). Insulin-induced glucose
uptake initially takes place through translocation of glucose
transport-4 (GLUT4) on the cell membrane. And in insulin
resistance, GLUT-4 is down-regulated, resulting in decreased
insulin-stimulated glucose uptake and metabolism. API, as
the effective constituent, significantly increased GLUT4
expression in muscle cells both in vitro and in vivo (Kulabas
et al., 2018; Li et al., 2007). This is because API activated the
upstream protein AKT (Tan et al., 2020).

Additionally, API also increased enzyme lipoprotein lipase
(LPL) and peroxisome proliferator-activated receptor γ (PPARγ)
levels in an insulin-resistant C2C12 cell model (Kulabas et al.,
2018). LPL is a key enzyme in lipid metabolism. Low LPL
activity may induce abnormal lipid metabolism (Hao et al.,
2016). And PPARγ plays an important role in lipid-mediated
insulin resistance in muscle and hepatic cells (Kim et al., 2020).
Those results indicated that API could participate in
normalizing lipid metabolism. Another metabolism-related key
protein, adenosine 5’-monophosphate (AMP)-activated protein
kinase (AMPK), was also activated in obese mice by API (Choi
et al., 2017). AMPK is effective in balancing glucose metabolism
(Trinchese et al., 2020) and enhancing mitochondrial function
(Sun et al., 2020).

Antioxidant function
The three hydroxyl groups at positions 5, 7, and 4’, and the
C-C double bond between Positions 2 and 3 in the chemical
structure of API can react with free radicals. The two hydroxyl
groups at positions 5 and 7 can chelate metal ions to inhibit

the production of free radicals. Those characteristics confer
API with antioxidant activity. API not only scavenges free
radicals directly but also enhances the antioxidant ability of
cells by regulating heme oxygenase (HO-1), glutamate-cysteine
ligase, catalytic subunit (GCLC) and glutamate-cysteine ligase,
modifier subunit (GCLM) gene transcription via the
extracellular regulated protein kinases 2 (ERK2)/nuclear factor
E2-related factor 2 (Nrf2)/antioxidant response element (ARE)
signaling pathways (Hassanpour and Niknam, 2020; Huang
et al., 2013). Many studies have found that API helps in
preventing oxidative stress injury by increasing the expression
of antioxidant enzymes both at the mRNA and protein levels
in several cells (Ogura et al., 2020; Zhang et al., 2019; Xu et al.,
2016). However, to the best of our knowledge, there is no
published study focusing on the direct antioxidant effects of
API on myocytes. Our group found that API significantly
increased the viability of skeletal muscle cells under oxidative
stress induced by tert-butyl hydroperoxide. It is probable that
API activates the Nrf2 and mitogen-activated protein kinase
(MAPK) signaling pathways (data not published). Therefore, it
can be inferred that API has effective antioxidant effects,
protecting myocytes against oxidative stress injury.

Conclusion and outlook
Myocytes are the power source for the movement of all organs of
the body. Myocyte damage and degradation cause hypokinesia
and muscle-related degenerative diseases. API, a kind of
flavone, has been used as a salutary and health-promoting
agent because of its low intrinsic toxicity. The evidence
gathered in this review indicates that API possesses hopeful
pharmacological activity as an agent protecting myocytes
against damage and degradation. API protects myocytes by
promoting proliferation, exerting anti-inflammatory and
antioxidant effects, preventing atrophy, increasing metabolism,
and activating the respective signaling pathways (Fig. 2).

FIGURE 2. Protective effect on myocytes and its mechanism
(promoting proliferation: up-regulate PI3K/AKT/mTOR pathway
(Kulabas et al., 2018) and enhance mitochondrial function (Choi
et al., 2017); anti-inflammation: down-regulate NF-κB pathway
(Choi et al., 2017); preventing atrophy: down-regulate
MAFbx/atrogin-1 (Shitota et al., 2015) and MuRF1 (Choi et al.,
2017) expression; increasing metabolism: increase GLUT4
express (Tan et al., 2020; Kulabas et al., 2018; Li et al., 2007),
PPARγ level (Kulabas et al., 2018) and activate AMPK (Trinchese
et al., 2020; Sun et al., 2020) and antioxidation: probably up-regulate
ERK2/Nrf2/ARE and MAPK pathways) of API.
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However, studies on the protective effect of API on
myocytes are still scarce. And all of the research has focused
on the obesity model. In fact, API also performs effectively
in acute conditions. Therefore, its protective effect on
myocytes in exercise models needs to be investigated. The
results of such studies would make valuable contributions to
sports medicine.

The remarkable effect of API on cardioprotection also
needs to be noted (Zhang et al., 2015). API can reduce
myocardial ischemia/reperfusion injury and attenuate
anoxia/reoxygenation-induced myocardium injury (Quan
et al., 2020; Feng et al., 2018; Chen et al., 2016; Hu et al., 2015;
Yang et al., 2015). API can depress contractions in arterial
smooth muscle cells induced by various vasoconstrictors (Jing
et al., 2019). These vascular pharmacological activities of API
would play an equally important role in whole-body exercise in
the field of sports medicine.

Overall, API holds great potential in protecting myocytes
against damage and degradation to prevent hypokinesia and
muscle-related degenerative diseases. Therefore, fundamental
research into API is warranted.
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