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Abstract: A progressive neurodegenerative disease, Alzheimer’s disease (AD). Studies suggest that highly expressed

protein isoaspartate methyltransferase 1 (PCMT1) in brain tissue. In the current study, we explored the effects of

neural stem cell-conditioned medium (NSC-CDM) on the PCMT1/MST1 pathway to alleviate Aβ25-35-induced

damage in SH-SY5Y cells. Our data suggested that Aβ25-35 markedly inhibited cell viability. NSC-CDM or Neural

stem cell-complete medium (NSC-CPM) had a suppression effect on toxicity when treatment with Aβ25-35, with a

greater effect observed with NSC-CDM. Aβ25-35 + NSC-CDM group exhibited an increase in PCMT1 expression.

sh-PCMT1 markedly decreased cell proliferation and suppressed the protective role of NSC-CDM through the

induction of apoptosis and improved p-MST1 expression. Overexpression of PCMT1 reversed the Aβ25-35-induced

decrease in cell proliferation and apoptosis. In summary, our findings suggest that NSC-CDM corrects the Aβ25-35-

induced damage to cells by improving PCMT1 expressions, which in turn reduces phosphorylation of MST1.

Introduction

AD is a multifactorial disease with multiple risk factors. The
pathological mechanisms of AD include the deposition of
amyloid β (Aβ), astroglia degeneration, hyperphosphorylation
and accumulation of the tau protein, neuronal dystrophy,
oxidative stress, mitochondrial dysfunction, biological metal
homeostasis, and decreased levels of acetylcholine (ACh)
(Butterfield et al., 2001; Reddy, 2011). However, the underline
molecular mechanism of AD is still unclear, and a real cure
for the disease has not yet been found.

Previous studies have shown highly expressed protein
isoaspartate methyltransferase 1 (PCMT1) in brain tissue
(Zhu et al., 2001). Many studies have shown that PCMT1
acts a critical effect in the regulation of longevity, different
types of oxidative stress, heat shock response, and apoptosis
(Aleksandra et al., 2014; Jost et al., 2002). Recent research has
shown that short-term brain tissue injury (such as
subarachnoid hemorrhage (SAH) or traumatic brain injury
(TBI)) can up-regulate PCMT1 activity. The up-regulation of

PCMT1 is related to the decrease of neurodegenerative factor
levels and the anti-apoptotic effect of neurons, thereby
inhibiting cerebral edema (Liang et al., 2017; Shi et al., 2017a).

MST1 is a pre-apoptotic protein and the key protein of
the Hippo pathway. Activation of MST1 can induce the Bax
expression, inhibit the Bcl-2 expression, and cause Caspase 3
activation and apoptosis (Qin et al., 2015). Previous studies
reported that, in HEK293 cells, PCMT1 and MST1 co-
localized, which inhibited cell apoptosis, and after
administration of MST1 activator, apoptosis was stronger
than without administration, while PCMT1 expression
remained unchanged (Biterge et al., 2014).

Neural stem cells (NSCs) are progenitor cells or sources
of differentiation of neurons. NSCs have strong self-renewal
ability and an important ultra-clean effect in the process
of differentiation. A previous study demonstrated that
MVs from human NSCs were able to attenuate
neuroinflammation and preserve host neuronal morphology
in the irradiated brain (Baulch et al., 2016). In addition,
transplantation of NSC-CDM into injured mouse brains not
only caused expansion of the NSC population in the
subventricular zone but also enhanced the formation of new
neurons that migrated to the damaged site (Rhee et al.,
2016). NSC-CDM was confirmed to have the capacity of
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inducing mesenchymal stem cells into neural stem cell-like cells
in vitro (Ma et al., 2011), which further suggested that NSC-
CDM might enhance endoneurogenesis. Thus, instead of cell
transplantation, we use a purified medium containing NSCs
paracrine products. Our experiment was to use the protective
role of NSC-CDM in cytotoxicity caused by Aβ25-35, including
the roles of cell viability, cell death, mitochondrial
microstructure destruction, and oxidative stress. PCMT1 is
stored in mammals and may have a critical effect on the self-
healing process of NSCs. Thus, we hypothesize that NCS-CDM
can regulate nerve cell death by regulating the PCMT1/MST1
pathway. These results provide a new target for AD therapy
using a single intervention that has multiple effects.

Materials and Methods

Bioinformatics analysis
Download the gene chip data set GSE5281 from the database
GEO (http://www.ncbi.nlm.nih.gov/geo). Download the
expression matrix from the GEO database for data
processing, and then standardize the data obtained, and
finally use the Limma package for differential expression
analysis. The hippocampus, medial temporal gyrus, and
posterior cingulate tissues of AD patients and normal
elderly were analyzed for differential expression, and then
the differential genes (|log2FC| ≥ 1, Padj < 0.05) that were
up-regulated or down-regulated in the three tissues were
screened. 666 differential protein-coding genes were screened.
The 666-differential protein-coding genes were screened for
GO and KEGG analysis using cluster Profiler. Volcano plots
and histograms are completed with ggplot2.

Cell incubation and treatment
Neural stem cell complete medium (NSC-CPM), including
DMEM/F12, human recombinant epidermal growth factor
(EGF; 20 ng/mL) and basic fibroblast growth factor (bFGF;
20 ng/mL), B27 (serum-free medium supplements formulated
to provide optimal growth condition for NSC expansion,
1:50), heparin (5 μg/mL), 2 mM L-glutamine, and an
antibiotic-antimycotic mixture (1:100, 10,000 U/mL penicillin,
10,000 μg/mL streptomycin, and 25 μg/mL amphotericin B).
Neural stem cell-conditioned medium (NSC-CDM): the
cortex region of the E15–18 SD rats was isolated, and the
meninges were peeled off on the clean bench. The cortexes
were transferred to a 15 mL conical tube containing 3 mL
HBSS (Hanks’ Balanced Salt Solution) for 5 min, then
dissociated into small pieces using a 1 mL-pipette tip. 3 mL
of HBSS containing small pieces of cortexes was filtered by
100 nm-filters and centrifuged at 1000 rpm for 10 min at
room temperature to get single cells. After that, the cells were
resuspended in a completed culture medium. The SH-SY5Y
cells culture and the groups were divided as follows: control
group; Aβ25-35 group; Aβ25-35 + NSC-CPM group; Aβ25-35 +
NSC-CDM group according to our previous study (Jia et al.,
2020). Isolating and culturing NSCs and NSC-CDM
according to a previous study (Yang et al., 2018).

CCK-8 analysis
A CCK8 assay kit (Beyotime Biotechnology Co., Ltd., China)
was used to evaluate cell viability. SH-SY5Y cells (1 × 105

cells/well) were seeded in 24-well plates and incubated
overnight. Next, CCK8 solution (10 µL) was added per well
and cultured for 4 h. Read the absorbance (450 nm) by a
microplate reader (BioTek, VT, USA).

Apoptosis analysis
Using an in-situ cell death detection kit (Roche, Mannheim,
Germany), the cells were grown on coverslips and terminal
deoxynucleotidyl transferase-mediated dUTP nick end labeled
with TUNEL for 15 min at 25°C. After TUNEL labeling,
0.344-mm2 sections were viewed at 400 × magnification
making use of a light microscope (BioTek, VT, USA) to
quantify apoptotic cells.

Transfections sh-RNA and plasmid of PCMT1
shRNA targeting PCMT1 and a PCMT1 overexpression
vector were synthesized by GenePharma Co. (Shanghai,
China). Used the Lipofectamine 2000 reagent (Invitrogen,
Carlsbad, CA, USA) to transfect cells with the vector. The
experiment is divided into eight groups: (1) control group;
(2) NC group; (3) sh-PCMT1; (4) 10% FBS-containing
NSC-CDM + sh-PCMT1 (sh-PCMT1 + NSC-CDM) group;
(5) vector; (6) PCMT1-OE; (7) Aβ25-35 (40 μM); and
(8) Aβ25-35+PCMT1-OE. After 6 h of transfection, add
DMEM/F-12 complete medium from the 1, 2, 3, 7 and
8 group, and for groups 7 and 8 40 μM Aβ25-35 was also
added, NSC-CDM containing 10% FBS for the four groups.

qRT-PCR
The tissues and cell samples RNAs were extracted by RNA
Extraction Kit (Promega, Shanghai, China). TB green qPCR
master mix (TAKARA BIO INC, Tokyo, Japan) was used for
quantitative fluorescence evaluation following with to the
manufacturer’s requirements. The fluorescence values were
expressed by 2−ΔΔCt and quantified (Livak and Schmittgen, 2001).

Western blot analysis
First, centrifuged the cell homogenates for 15 min at 12,000 × g,
and collected the supernatants and stored at −20°C. Proteins
were separated in the supernatants by 12% SDS-
polyacrylamide gels (PAGE) and transferred onto membranes
of PVDF. Nonspecific binding was blocked by Tris-buffered
saline (TBS) with 3% BSA (TBS and 0.1% Tween 20) under
gentle shaking at 25°C for 1 h. Simultaneously incubated the
membranes with the primary antibodies: anti-cleaved
caspase-3 and 9 (1:1000, Applygen, Beijing, China), anti-Bcl-2
and Bax (1:500, Applygen), anti-PCMT1 (1:500, Abcam,
USA), total MST1 (1:1000, CST), and p-MST1 (1:1000,
Abcam) and anti-β-actin (1:1000, Abcam) at 4°C overnight.
Proteins were visualized by a LAS-4000 mini system
(Fujifilm, Japan). Protein intensity was quantified using
Quantity One software.

Statistical analysis
Data were analyzed by GraphPad 8.0 and presented as mean ±
standard deviation (SD). Variance (ANOVA) was used to
analyze differences among the different groups, PCMT1
expression in three brain regions between patients with AD
and normal elderly were analyzed using the Wilcoxon test.
P < 0.05 was regarded as obvious.
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Results

The differentially expressed genes of AD patients
Differences in expression were analyzed using the limma editing
package in three brain regions (hippocampus, medial temporal
gyrus, and posterior cingulate) between patients with AD and
normal elderly. Volcano map of difference analysis results

showed that the PCMT1 gene is downregulated in all three brain
regions (Fig. 1A). In addition, compared with normal elderly, in
AD patients, the expression of PCMT1 was obviously reduced in
the hippocampus, medial temporal gyrus, and posterior cingulate
(Fig. 1B, P < 0.001). This suggests that the low function of
PCMT1 is a key factor in the poor prognosis of AD.
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FIGURE 1. Differentially expressed
genes of AD patients and protective
role of different media on Aβ25-35
damage.
(A) Differential gene distribution
map of up-regulated or down-
regulated genes in three brain
regions between patients with AD
and normal elderly. (B) Difference
of PCMT1 expression in three brain
regions between patients with AD
and normal elderly. (C) CCK-8
detection of cell viability in SH-
SY5Y cells treatment of Aβ25-35
(40 μM, 24 h). (D) The cell viability
was detected by CCK-8 assays in
four groups for 24 h. (E) TUNEL
assay was detected the apoptotic
rates of cells in four groups for 24 h.
Scale bars: 100 μm. *P < 0.05, **P <
0.01, ***P < 0.001.
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Protective role of different media on Aβ25-35-associated
damage
Our previous studies confirmed that the modeling
condition of the AD cell model was that SH-SY5Y cells
treatment of Aβ25-35 (40 μM) for 24 h (Jia et al., 2020).
Fig. 1C exhibited that compared with the control group,
Aβ25-35 obviously inhibited cell viability (P < 0.001).
NSC-CPM and NSC-CDM exhibited an inhibitory role
on the damage Aβ25-35-induced (Fig. 1D) (P < 0.01 and
P < 0.01, respectively), with the NSC-CDM group
demonstrating higher cell viability than the NSC-CPM
group (P < 0.05). Aβ25-35-induces apoptosis of SH-SY5Y
cells and appears in these cells with the abundance of
TUNEL-positive nuclei. The nuclear division of dead
cells with concentrated nuclei was also markedly found.
The TUNEL-positive nucleus was markedly decreased in
the NSC-CDM or NSC-CPM + Aβ25-35-treated cells,
with the NSC-CDM group demonstrating a lower
number of TUNEL-positive nuclei than the NSC-CPM
group (Fig. 1E).

Role of NSC-CPM or NSC-CDM on PCMT1 expression
To investigate the role of NSC-CPM or NSC-CDM on
PCMT1 levels, the PCMT1 in control, Aβ25-35 (40 μM),
Aβ25-35 (40 μM) + NSC-CPM and Aβ25-35 (40 μM) + NSC-
CDM group was evaluated by western blotting and qRT-
PCR. Compared with the control group, western blotting
exhibited a reduction in PCMT1 expressions in the Aβ25-35
group (P < 0.01). The above effects were ameliorated by
NSC-CPM or NSC-CDM, with the NSC-CDM group
demonstrating a higher PCMT1 expression than the NSC-
CPM group (Fig. 2A). Furthermore, mRNA expression of
PCMT1 was like the protein expressions of PCMT1 was
found (Fig. 2B).

PCMT1 silencing and overexpression
Compared with the NC group, in the sh-PCMT1 group, the
levels of PCMT1 protein and mRNA were markedly reduced
(Figs. 2C and 2D). In the sh-PCMT1-2 (48 h) group, the
levels of PCMT1 protein and mRNA were minimal.
Furthermore, compared with the vector group, the expression
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FIGURE 2. Role of NSC-CDM or NSC-CPM on PCMT1 expression.
(A) Western blot was detected the PCMT1 protein expressions in four groups. (B) qRT-PCR detection of the expression of PCMT1 mRNA in
four groups. (C) qRT-PCR detection of the expression of PCMT1 mRNA expression in sh-PCMT1 (24 h, 48 h). (D) Western blot detection of
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overexpression PCMT1 for 48 h. *P < 0.05, **P < 0.01, ***P < 0.001.
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of PCMT1 mRNA and protein were both obviously improved
in the PCMT1-OE group (Figs. 2E and 2F).

Role of PCMT1 on cell proliferation and apoptosis
CCK-8 results exhibited that cell proliferation was markedly
decreased, and the protective role was suppressed after
knockdown of PCMT1 compared with the NC group,
between the sh-PCMT1 + NSC-CDM group and sh-
PCMT1l group exhibited no statistical difference (Fig. 3A)
(P < 0.01 and P > 0.05, respectively). Compared with the
vector group, in the PCMT1-OE group, greater cell
proliferation was found (P < 0.05), and the inhibition role of
Aβ25-35 (40 μM) on cell proliferation was reversed by
PCMT1-OE (Fig. 3B) (P < 0.01). Furthermore, in the sh-
PCMT1 group, the TUNEL result exhibited that the

apoptotic cell numbers were obviously increased compared
with the NC group; there was no statistical difference
between the sh-PCMT1 + NSC-CDM group and sh-PCMT1
group; PCMT1 overexpressed reversed the effect of Aβ25-35-
induced apoptosis (Figs. 3C and 3D).

Effect of PCMT1 on phosphorylation of MST1
As shown in the Fig. 4A, compared with NC, Bcl2/Bax
decreased in sh-PCMT1 group (P < 0.01), cleaved caspase3/
caspase3 was up-regulated (P < 0.05); the protection of
NSC-CDM was inhibited after PCMT1 silenced (sh-PCMT1
vs. sh-PCMT1 + NSC-CDM, Bcl2/Bax, cleaved caspase3/
caspase3 had no statistical difference, P > 0.05). Sh-PCMT1
treatment significantly enhanced the p-MST1/T-MST1 (P < 0.01)
as compared to the NC group; p-MST1/T-MST1 was
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FIGURE 3. PCMT1 increased cell
proliferation and inhibited apoptosis.
(A) CCK-8 assay was detected the cell
viability in control, NC, sh-PCMT1,
sh-PCMT1 + NCS-CDM group for
24 h. (B) CCK-8 assay detection of
the cell viability in vector, PCMT1-
OE, Aβ25-35 (40 μM) and PCMT1-
OE + Aβ25-35 (40 μM) group for
24 h. (C) TUNEL assay was detected
the apoptotic rates of cells in control,
NC, sh-PCMT1, sh-PCMT1 + NCS-
CDM group for 24 h. (D) TUNEL
assay was detected the apoptotic
rates of cells in vector, PCMT1-OE,
Aβ25-35 (40 μM) and PCMT1-OE +
Aβ25-35 (40 μM) group for 24 h.
Scale bar: 100 μm. *P < 0.05, **P <
0.01, ***P < 0.001 statistical significance.
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markedly increased; NSC-CDM could not reverse the
changes after PCMT1 silenced (sh-PCMT1 vs. sh-PCMT1
+ NSC-CDM p-MST1/T-MST1 had no statistical
difference, P > 0.05). Fig. 4B exhibited the level of PCMT1
and Bcl2/Bax expression in the Aβ25-35 (40 μM) +vector
group was significantly reduced (all P < 0.01), cleaved
caspase3/caspase3 was increased (P < 0.01) compared with
the vector group; the expression of above proteins
expressions was reversed as compared to the Aβ25-35
(40 μM) + PCMT1-OE group. The p-MST1/T-MST1 in the
Aβ25-35 (40 μM) +vector group was markedly increased
compared with the vector group (P < 0.01); after
overexpression of PCMT1, the expression of p-MST1/T-
MST1 was decreased by Aβ-induced (P < 0.05).

Discussion

NSCs have the common characteristics of self-renewing stem
cells and the characteristics of directed neural differentiation
(Hwang et al., 2014; Lewis, 2017). NSC-CDM has been
shown to exert antiapoptotic effects in vitro and in vivo
(Liang et al., 2014). PCMT1 is highly expressed in brain
tissue, including the substantia nigra, blue plaque, and
paraventricular nucleus (Zhu et al., 2001). PCMT1 is highly
active and pleiotropic, so even small differences in overall
PCMT1 activity may have a profound impact on the long-
term function of the central nervous system (CNS) (Zhu
et al., 2006). Bioinformatics analysis found that PCMT1
activity in the brain tissue of AD patients was significantly

FIGURE 4. Role of PCMT1 on phosphorylation of MST1.
(A) Western blot was detected the PCMT1, Cleaved caspase 3, Caspase 3, Bax, Bcl 2, p-MST1, and T-MST1 protein levels in control, NC, sh-
PCMT1, sh-PCMT1 + NCS-CDM group for 24 h. (B) Western blot was detected the PCMT1, Cleaved caspase 3, Caspase 3, Bax, Bcl 2, p-MST1
and T-MST1 protein levels in vector, PCMT1-OE, Aβ25-35 (40 μM) and PCMT1-OE + Aβ25-35 (40 μM) group for 24 h. *P < 0.05, **P < 0.01
statistical significance.
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decreased (Johnson et al., 1991). Therefore, we speculate that
PCMT1, a conservative gene with aging protein repair, has a
key effect in the self-renewal process of NSCs, and the
paracrine effect of NSCs can up-regulate PCMT1 expression.
In this study, we cultured SH-SY5Y cells induced by Aβ25-35
with NSC-CPM and NSC-CDM. The results exhibited that
the expression of PCMT1 protein and mRNA increased
markedly in NSC-CPM and NSC-CDM, and NSC-CDM had
a stronger effect than NSC-CPM (P < 0.05).

PCMT1 has been associated with apoptosis. Sambri et al.
(2011) found that microRNA 15a/16-1 regulates apoptosis in
hepatocellular tumor cells through PCMT1, and Liang et al.
(2017) showed that CGP3466B plays a neuroprotective role
by regulating apoptosis through the PCMT1/Mst1 pathway
in rats with traumatic brain injury. MST1 is also involved in
tumor occurrence and overgrowth of cells (Perumal et al.,
2017), as MST1 deficiency can cause tumor formation that
is associated with apoptosis of multiple cell types (Shi et al.,
2017b). Overexpression of PCMT1 has been shown to
prevent apoptosis induced by Bax in neurons and COS-1
cells. Overexpression of PCMT1 has also been shown to
block H2O2-induced apoptosis through regulation of the
methylation of various anti-apoptotic proteins, including
Hsp90, Hsp70, and Bcl-xL, in vascular endothelial cells
(Bidinosti et al., 2010; Huebscher et al., 1999; Loforese et al.,
2017; Maroto and Perez-Polo, 2002). Increased PCMT1
activity is also associated with neuroprotection due to the
prevention of neuronal apoptosis and cerebral edema (Liang
et al., 2017; Shi et al., 2017a).

The present study demonstrates that Aβ25-35 inhibits cell
viability and induces apoptosis in SH-SY5Y cells, which was
reversed by treatment with NSC-CDM. In the present study,
a decrease in PCMT1 expression levels was observed in
the Aβ25-35-treated group. However, these effects were
ameliorated by treatment with NSC-CDM. CCK-8 analysis
showed that after knockdown of PCMT1 using sh-PCMT1,
there was significantly reduced cell viability. Overexpression
of PCMT1 resulted in increased cell viability and reversal of
the effects of Aβ25-35 treatment. In addition, using a TUNEL
assay, we found that the number of apoptotic cells was
markedly higher in SH-SY5Y cells with sh-PCMT1
treatment, whereas overexpression of PCMT1 reversed the
effect of Aβ25-35 induced apoptosis. Western blotting
showed that sh-PCMT1 and Aβ25-35 treatment significantly
reduced PCMT1 expression, reduced the ratio of Bcl 2/Bax,
increased the ratio of cleaved caspase 3/caspase 3, and
increased the ratio of p-MST1/T-MST1. sh-PCMT1
inhibited the protective effects of NSC-CDM, while
overexpression of PCMT1 reversed these effects.

Conclusion

Taken together, the NSC-CDM up-regulates the PCMT1
expression, acts on the classic Hippo apoptosis pathway by
inhibiting the activation of MST1, and reduces the apoptosis
of Aβ25-35-induced SH-SY5Y cells.
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