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Abstract: The Mimic Defense (MD) is an endogenous security technology with 
the core technique of Dynamic Heterogeneous Redundancy (DHR) architecture. 
It can effectively resist unknown vulnerabilities, backdoors, and other security 
threats by schedule strategy, negative feedback control, and other mechanisms. 
To solve the problem that Cyber Mimic Defense devices difficulty of supporting 
the TCP protocol. This paper proposes a TCP protocol normalization scheme for 
DHR architecture. Theoretical analysis and experimental results show that this 
scheme can realize the support of DHR-based network devices to TCP protocol 
without affecting the security of mimicry defense architecture. 
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1 Introduction 
Currently, the commonly used security defense strategies such as anti-virus and anti-trojan software, 

and vulnerability patches are a kind of “mend the fold after the sheep have been stolen” –like modes, 
which can only provide containment defenses against known security issues. However, unknown 
vulnerabilities and backdoors in networks and devices are ubiquitous and cannot be exhaustive. It is 
difficult to cope with the unknown vulnerabilities and backdoors defense issues by using traditional 
security defense methods. Mimic defense technology is based on dynamic heterogeneous redundancy 
(DHR) [1–3] architecture, which randomly extracts several elements from the pool of equivalent 
heterogeneous redundant executors aperiodically to form the service set. And it can perform defensive or 
repairable initialization and cleaning operations on heterogeneous redundant executors, so that the 
defensive system has the uncertainty of the apparent structural representation, thereby effectively resisting 
security attacks against system vulnerabilities and backdoors. 

With the continuous improvement of Cyber Mimic Defense (CMD) theory, the corresponding 
network devices (hereinafter referred to as CMD devices) have appeared one after another. The 
representatives are the mimic defense Web server designed in [4], the router mimic defense architecture 
based on DHR proposed in [5], the endogenous security architecture of Ethernet switches based on mimic 
defense in [6], and the mimic security processor architecture for the industrial control field [7]. At present, 
the types and applications scenarios of network devices that support mimic defense functions are 
gradually increasing, and the expanded business scenarios also put forward higher requirements for the 
types and quality of communication protocols that CMD devices need to support.  

Transmission Control Protocol (TCP) [8–10] is a connection-oriented, reliable, byte stream-based 
transmission layer communication protocol. In order to ensure the communication reliability, two 
communication devices or applications should establish a TCP connection before adopting the TCP 
protocol, and prepare a corresponding sequence number for each interactive data message to ensure that 
the data can be received in order at the receiving end. To make the CMD device support the TCP protocol, 
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in a complete TCP protocol process (from connection establishment to disconnection), each executor in 
the CMD device needs to execute TCP sessions independently, and only output a unique TCP connection. 
However, TCP protocol involves the generation and use of random parameters. To ensure security, it is 
necessary to avoid information exchange and synchronization between the heterogeneous redundant 
executor. Such operation makes it impossible to synchronize the data messages generated by the TCP 
protocol running independently in each executor and the random parameters cannot be unified, which 
further makes it difficult to judge the TPC messages output by the heterogeneous executors. In order to 
resolve the above problems, Wei et al. [7] proposed a method of generating a uniform random number by 
using an external random number generator to make each redundant executor obtaining uniformed 
procedure parameters. However, although such method can solve the problem of the unification of 
random parameters in the redundant executors, it destroys the criterion that there is no clear 
synchronization information for each redundant executors under the mimic defense architecture, and 
introduces security risks to the mimic defense systems.  

Aiming at the above mentioned TCP communication normalization and synchronization of the 
mimic defense systems, we propose a TCP connection normalization implementation scheme for dynamic 
heterogeneous redundant architecture. The proposed method effectively solves the problem of data 
coordination between redundant executor by matching, synchronizing and normalizing TCP data 
messages of each heterogeneous executor of system, and finally realizes TCP communication based on 
the mimic defense architecture. 

2 Preliminaries 
2.1 TCP Protocol 

The TCP protocol realizes the establishment of a connection through the interaction of three message 
segments. This process is called a three-way handshake, as shown in Fig. 1. First, the client initiates a 
connection and sends a SYN message to the server, where seq = x represents a sequence number with a 
random value of x. After the server receives the SYN message from the client, it will return an ACK 
confirmation message, where seq = y is the random sequence number generated by the server, and ack = x + 1 
is the confirmation sequence number calculated according to the client sequence number. Finally, the client 
returns confirmation messages seq = x + 1 and ack = y + 1, and the TCP connection is established. 
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Figure 1: The three-way handshake process in TCP protocol 

The data message transmission process of the TCP protocol is shown in Fig. 2. The data message is 
composed of TCP header and data. The seq = m represents the sequence number of the first byte of the 
data, and length = L represents the total length of the data. The receiving end returns an acknowledgement 
message ack = m + L after receiving the data message, indicating that the receiving end has received the 
corresponding data, and notifying the transmitting end that the next data is sent from the m + L-th byte. 
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Figure 2: The data transmission process in TCP protocol 

After the data transmission is completed, four-way wavehand is required to disconnect the TCP 
connection. Fig. 3 shows the four-way wavehand process initiated by the client (also can be initiated by 
the server of by both parties). First, the client sends a connection release message FIN, where the 
sequence number is seq = u. The server responds with ACK after receiving the FIN message, where the 
sequence number is seq = v, and the confirmation sequence number is ack = u + 1, then the server sends a 
connection release message FIN, where the sequence number is seq = w, and the confirmation sequence 
number is ack = u + 1. Finally, the client returns an acknowledgement message, where seq = u + 1, ack = 
w + 1, and the TCP connection ends. 
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Figure 3: The four-way wavehand process in TCP protocol 

2.2 Mimic Defense 
Mimic defense [11–15] is a new type of active defense technology based on heterogeneous 

redundant structure. It uses mechanisms such as heterogeneous redundancy, strategic scheduling and 
negative feedback control to make the system possess endogenous features of active defense. The typical 
structure of DHR is shown in Fig. 4. In the DHR architecture, an odd number of executors are selected 
from the heterogeneous component set (E1 to Em) to form a heterogeneous equivalent executor set (A1 to 
An). The heterogeneous equivalent executors independently process the same information distributed by 
the input agent, and respectively output the equivalent processing results to the voting module. In the 
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following, the voting module judges the output of the executor set through multi-mode decision algorithm, 
and uses the decision result as the final unified output. Finally, the voting module feeds back the decision 
result of the executor set to the scheduling module, and the scheduling module dynamically adjusts the 
heterogeneous equivalent executor set according to the corresponding strategy, including switching and 
cleaning of the executors.  
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Figure 4: The diagram of DHR architecture 

3 The Proposed Scheme 
From the above description of TCP protocol and DHR architecture, it can be seen that the random 

parameters introduced in the TCP protocol make the equivalent output of the heterogeneous redundant 
executors inconsistent, resulting in the voting module being unable to judge the output of executors. In 
turn, the output of CMD devices cannot be unified. Aiming at the problem that the TCP connection of 
each executor of the CMD device is difficult to be displayed uniformly, we design a implementation 
scheme that normalizes the output of multiple TCP connections of redundant executor. Our proposed 
scheme includes matching and synchronization of TCP messages and the normalization of random 
parameters. The internal functional block diagram of CMD device is shown in Fig. 5, in which the 
matching, synchronization and normalization of TCP messages are all completed by the input/output 
agent module.  
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Figure 5: The internal functional block diagram of CMD device 
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3.1 Message Matching and Synchronization 
To achieve the normalization of redundant equivalent executors’ TCP messages, it is necessary to 

correctly distinguish the equivalent TCP messages generated by each executor. Due to differences in the 
performance and operating mechanism of each executor under the DHR architecture, the equivalent TCP 
messages of each executor under the same TCP connection will be out of sync and order when they reach 
the input/output agent. In turn, the normalization operation fails.  

To achieve the matching and synchronization of TCP messages, all TCP messages entering the 
input/output agent need to be buffered before the normalization operation. By comparing the source IP 
address, destination IP address, destination port number and other elements of the TCP header of the 
buffered message, the matching and synchronization of equivalent TCP messages of different executor 
are realized. Fig. 6 describes the schematic diagram of the principle of TCP message matching and 
synchronization. As shown in Fig. 6, we allocate k buffer queues in the buffer area of the input/output 
agent, and divide the corresponding data storage memory for n executors in each buffer queue. The data 
storage of each executor can be further divided into a tuple matching domain and a TCP message domain. 
The tuple matching domain stores the hash values of matching elements like source IP address, 
destination IP address, and destination port number of the TCP message. The corresponding TCP 
message is stored in the message domain. When the input/output agent receives a TCP message of a 
certain executor, it first extracts the matching element group in the TCP header (i.e., source IP address, 
destination IP address, destination port number, etc.). Then the input/output agent performs a hash 
operation, and sequentially compares the hash value with the hash values of matching tuples of other 
executors in the non-empty buffer queue. If there is an equal matching tuple in a buffer queue, the agent 
stores the hash value and the corresponding TCP message in the corresponding position of the buffer 
queue. Otherwise, it saves the hash value and the corresponding TCP message to the corresponding 
position of the empty buffer queue, and wait for synchronization and matching with the message of other 
executors. If there is an equal matching tuple in a buffer queue, the hash value and the corresponding TCP 
message are stored in the buffer queue. When the buffer space corresponding to all the executors in a 
certain buffer queue is empty, it indicates that the matching synchronization process for the same TCP 
message is completed, and then the normalization phase is entered. 
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Figure 6: The schematic diagram of TCP message matching 

3.2 Random Parameter Normalization 
After matching and synchronizing the equivalent TCP message of each executor, it is necessary to 

normalize the random parameters in the TCP header. Because the proposed method has similar 
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normalization processing principles for each phase of the TCP protocol, only the normalization process of 
the TCP three-way handshake (as shown in Fig. 1) is described in detail, and the description of 
normalization process of data transmission and four-way wavehand will not be repeated.  

The TCP protocol normalization process involves many random parameters. In the following, we 
will take the sequence number and confirmation sequence number as examples to introduce the 
normalization process in detail. The normalization principle of other random parameters is similar. In 
addition, for the convenience of description, we use subscripts to distinguish the message sent or received 
by each executor. For example, seq1 represents the sequence number of the TCP message sent by the 
executor A1.  

Referring the TCP three-way handshake process in Fig. 1 and the internal functional block diagram 
in Fig. 5, taking the client as a CMD device as an example, the detailed normalization steps for TCP 
three-way handshake are as follows. 

Step 1: The heterogeneous equivalent executors (A1 to An) respectively send TCP connection 
request messages to the input and output agents, and the corresponding random parameters in TCP 
message header connected to the requests are from [SYN1 = 1, seq1 = x1] to [SYNn = 1, seqn = xn]. 

Step 2: The input/output agent extracts the corresponding sequence number seq1 = x1 to seqn = xn 
after receiving the message from each heterogeneous executor, and calculates the unified message 
sequence number seq = x based on x1 to xn. x can be obtained by simple logical operations such as AND, 
OR, XOR, etc. For example, x = x1⊕x2⊕...⊕xn (⊕ stands for XOR operation). In the following, seq = 
x is used as the unified sequence number of TCP message to generate a normalized TCP session request 
(i.e., [SYN = 1, seq = x]) which is sent to the remote server. 

Step 3: Based on the TCP session request, the remote server returns an acknowledgement message, 
i.e., [seq = y, ack = x + 1]. 

Step 4: After the input/output agent receives the confirmation message returned from the remote 
server, it extracts the confirmation sequence number ack = x + 1. Then through the inverse logical 
operation of Step 2, the input/output agent restores the confirmation sequence number of the 
corresponding heterogeneous equivalent executor. For example, if the logical operation used in Step 2 is 
XOR, the confirmation sequence number of executor A1 is ack1 = ack⊕seq2⊕seq3⊕…⊕seqn. Finally, 
the input/output agent reorganizes all confirmation messages [seq1 = y, ack1] to [seqn = y, ackn] 
according to calculated confirmation sequence numbers, and send them to the corresponding 
heterogeneous equivalent executors.  

Step 5: After the heterogeneous equivalent executors receive the confirmation messages, they generate 
the corresponding confirmation messages [seq1 = ack1, ack1 = y + 1] to [seqn = ackn, ackn = y + 1], and then 
send them to the input/output agent. 

Step 6: After the input/output agent receives the confirmation message returned by each 
heterogeneous equivalent executor, it generates an external normalized message [seq = x + 1, ack = y + 1], 
and then sends it to the remote server. The TCP three-way handshake normalization process ends. 

It is noted that all reassembled TCP messages in the normalization process need to recalculate the 
checksum of the TCP message header. Through the above normalization processing steps, it can be 
ensured that each heterogeneous equivalent executor of the CMD device independently completes the 
three-way handshake process, and only outputs a unified TCP session connection. The data transmission 
phase and the four-way wavehand phase of TCP session can be normalized in a similar way. In the data 
transmission phase, TCP supports sliding window mechanism. Due to the differences in the sending and 
receiving performance between different heterogeneous equivalent executors, the normalized window 
size is set to the minimal size among all executors.  

4 Experimental Results 
In order to verify the TCP normalization function of CMD device, we use virtualization technology 
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to build a set of simulation environment on the server. The server CPU adopts Intel Xeon processor. The 
operating system is CentOS 7.6 with the necessary components such as qemu-kvm-3.0.90, libvirt-4.5.0 
and dpdk-stable-18.11.2. On the server, four virtual machines are built based on qemu-kvm+libvirt, of 
which three virtual machines simulate three heterogeneous equivalent executors in the CMD device, and 
the other virtual machine simulates a remote PC. All virtual machines are installed with CentOS 7.6 
minimum system. Each virtual machine is allocated 2 vCPU, 2 GB memory and 64 GB virtual hard disk, 
and 1 virtual network card is allocated to connect to the TCP normalization module. All virtual network 
cards of the executors are configured with the same IP address (10.1.1.2/24) and MAC address, and the IP 
address of the remote PC virtual network card is 10.1.1.1/24. The TCP normalization module is based on 
DPDK (dpdk-18.11.2) design, and each virtual machine (including the executor’s virtual machine and the 
remote PC's virtual machine) uses a vhost-user interface as the network connection interface, which 
corresponds to the network card in the virtual machine.  

The simulation elaborately shows the normalization process of the TCP three-way handshake. Fig. 7(a) 
shows a part of the cache content in the first handshake message sent by the CMD device as a client, and 
some random parameters to be normalized are stored in the public field. Among them, the normalized 
sequence number, source port number, time stamp and other random parameters are equal to the 
corresponding value of the 3rd executor. The key parameters of the first handshake TCP message header sent 
by the CMD device after normalization are shown in Fig. 7(b), where the window size rx_win is set to the 
smallest window size among the three executors. 

 
(a)                                              (b)   

Figure 7: The cache data in the first handshake message of CMD device 

The confirmation package returned by the remote server is restored by the input/output agent and 
distributed to each executor. The key parameters of the restored message of each executor are shown in 
Fig. 8. The timestamp and destination port number corresponding to each executor are obtained from the 
cache and restored. The method for restoring the corresponding confirmation sequence number of each 
executor is that the confirmation sequence number returned by the remote server + the normalized 
sequence number – the sequence number of each executor. Fig. 9 shows the partial data of the 
confirmation message returned by the CMD device. Herein, Fig. 9(a) shows the relevant parameters 
before normalization, and Fig. 9(b) shows the relevant parameters after normalization.  
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Figure 8: The key cache data of the remote confirmation package restored by the executors  

 
                 (a)                                                                           (b)   

Figure 9: The key data of the confirmation message returned by the CMD device 

Fig. 10 shows the TCP protocol process recorded by the remote server. In this process, the CMD 
device (3 executors) actively initiates a TCP handshake connection to the remote PC. After the 
connection is successful, the executor sends a data message (set the sending character as “a”), and finally 
three executors disconnect the connection.  

 

Figure 10:  TCP protocol process recorded by remote server 

Extensive simulation results show that the normalization method designed in this paper realizes TCP 
communication based on mimic defense, ensures that each executor in the DHR architecture runs the TCP 
protocol independently, and provides effective technical support for the CMD device to support 
connection-oriented network services. 
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5 Conclusion 
In this paper, we propose a TCP protocol normalization method for mimic defense architecture. 

Through operations including matching synchronization and random parameter normalization, the 
proposed method can achieve that each heterogeneous equivalent executor under the DHR architecture 
runs the TCP protocol independently and output the unified results. The experimental results show that 
the proposed method can effectively implement TCP communication based on the mimic defense 
architecture, and cannot perceive the existence of the internal executor of the CMD device through the 
analysis of communication data packets, which provides attractive support for connection-oriented 
services based on the mimic defense network architecture solution.– 
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