

Journal on Internet of Things
DOI: 10.32604/jiot.2021.014921

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Article

Research on the Key Techniques of TCP Protocol Normalization for Mimic
Defense Architecture

Mingxing Zhu, Yansong Wang, Ruyun Zhang, Tianning Zhang, Heyuan Li, Hanguang Luo and
Shunbin Li*

Zhejiang Lab, Hangzhou, 310012, China
*Corresponding Author: Shunbin Li. Email: lishunbin@zhejianglab.com

Received: 25 May 2021; Accepted: 16 July 2021

Abstract: The Mimic Defense (MD) is an endogenous security technology with
the core technique of Dynamic Heterogeneous Redundancy (DHR) architecture.
It can effectively resist unknown vulnerabilities, backdoors, and other security
threats by schedule strategy, negative feedback control, and other mechanisms.
To solve the problem that Cyber Mimic Defense devices difficulty of supporting
the TCP protocol. This paper proposes a TCP protocol normalization scheme for
DHR architecture. Theoretical analysis and experimental results show that this
scheme can realize the support of DHR-based network devices to TCP protocol
without affecting the security of mimicry defense architecture.

Keywords: Mimic defense; TCP protocol; normalization

1 Introduction
Currently, the commonly used security defense strategies such as anti-virus and anti-trojan software,

and vulnerability patches are a kind of “mend the fold after the sheep have been stolen” –like modes,
which can only provide containment defenses against known security issues. However, unknown
vulnerabilities and backdoors in networks and devices are ubiquitous and cannot be exhaustive. It is
difficult to cope with the unknown vulnerabilities and backdoors defense issues by using traditional
security defense methods. Mimic defense technology is based on dynamic heterogeneous redundancy
(DHR) [1–3] architecture, which randomly extracts several elements from the pool of equivalent
heterogeneous redundant executors aperiodically to form the service set. And it can perform defensive or
repairable initialization and cleaning operations on heterogeneous redundant executors, so that the
defensive system has the uncertainty of the apparent structural representation, thereby effectively resisting
security attacks against system vulnerabilities and backdoors.

With the continuous improvement of Cyber Mimic Defense (CMD) theory, the corresponding
network devices (hereinafter referred to as CMD devices) have appeared one after another. The
representatives are the mimic defense Web server designed in [4], the router mimic defense architecture
based on DHR proposed in [5], the endogenous security architecture of Ethernet switches based on mimic
defense in [6], and the mimic security processor architecture for the industrial control field [7]. At present,
the types and applications scenarios of network devices that support mimic defense functions are
gradually increasing, and the expanded business scenarios also put forward higher requirements for the
types and quality of communication protocols that CMD devices need to support.

Transmission Control Protocol (TCP) [8–10] is a connection-oriented, reliable, byte stream-based
transmission layer communication protocol. In order to ensure the communication reliability, two
communication devices or applications should establish a TCP connection before adopting the TCP
protocol, and prepare a corresponding sequence number for each interactive data message to ensure that
the data can be received in order at the receiving end. To make the CMD device support the TCP protocol,

100 JIOT, 2021, vol.3, no.3

in a complete TCP protocol process (from connection establishment to disconnection), each executor in
the CMD device needs to execute TCP sessions independently, and only output a unique TCP connection.
However, TCP protocol involves the generation and use of random parameters. To ensure security, it is
necessary to avoid information exchange and synchronization between the heterogeneous redundant
executor. Such operation makes it impossible to synchronize the data messages generated by the TCP
protocol running independently in each executor and the random parameters cannot be unified, which
further makes it difficult to judge the TPC messages output by the heterogeneous executors. In order to
resolve the above problems, Wei et al. [7] proposed a method of generating a uniform random number by
using an external random number generator to make each redundant executor obtaining uniformed
procedure parameters. However, although such method can solve the problem of the unification of
random parameters in the redundant executors, it destroys the criterion that there is no clear
synchronization information for each redundant executors under the mimic defense architecture, and
introduces security risks to the mimic defense systems.

Aiming at the above mentioned TCP communication normalization and synchronization of the
mimic defense systems, we propose a TCP connection normalization implementation scheme for dynamic
heterogeneous redundant architecture. The proposed method effectively solves the problem of data
coordination between redundant executor by matching, synchronizing and normalizing TCP data
messages of each heterogeneous executor of system, and finally realizes TCP communication based on
the mimic defense architecture.

2 Preliminaries
2.1 TCP Protocol

The TCP protocol realizes the establishment of a connection through the interaction of three message
segments. This process is called a three-way handshake, as shown in Fig. 1. First, the client initiates a
connection and sends a SYN message to the server, where seq = x represents a sequence number with a
random value of x. After the server receives the SYN message from the client, it will return an ACK
confirmation message, where seq = y is the random sequence number generated by the server, and ack = x + 1
is the confirmation sequence number calculated according to the client sequence number. Finally, the client
returns confirmation messages seq = x + 1 and ack = y + 1, and the TCP connection is established.

SYN=1,seq=x

receiving
SYN

transmitted

SYN
transmitted

Connection
established

Connection
established

SYN=1,ACK=1,

seq=y,ack=x+1

client server

ACK=1,seq=x+1,ack=y+1

Data transmission

Figure 1: The three-way handshake process in TCP protocol

The data message transmission process of the TCP protocol is shown in Fig. 2. The data message is
composed of TCP header and data. The seq = m represents the sequence number of the first byte of the
data, and length = L represents the total length of the data. The receiving end returns an acknowledgement
message ack = m + L after receiving the data message, indicating that the receiving end has received the
corresponding data, and notifying the transmitting end that the next data is sent from the m + L-th byte.

JIOT, 2021, vol.3, no.3 101

seq=m，length=L
receivingSend data

Wait for
confirmation transmitting

ACK

receiving

client server

ack=m+L

seq=m+L，length=L

ack=m+L+L

Send data

Wait for
confirmation transmitting

ACK

Figure 2: The data transmission process in TCP protocol

After the data transmission is completed, four-way wavehand is required to disconnect the TCP
connection. Fig. 3 shows the four-way wavehand process initiated by the client (also can be initiated by
the server of by both parties). First, the client sends a connection release message FIN, where the
sequence number is seq = u. The server responds with ACK after receiving the FIN message, where the
sequence number is seq = v, and the confirmation sequence number is ack = u + 1, then the server sends a
connection release message FIN, where the sequence number is seq = w, and the confirmation sequence
number is ack = u + 1. Finally, the client returns an acknowledgement message, where seq = u + 1, ack =
w + 1, and the TCP connection ends.

FIN=1,seq=u

Connection
established Connection

established

ACK=1,

seq=v,ack=u+1

client server

ACK=1,seq=u+1,ack=w+1

data stream

End
waiting-1 Close

waiting

End
waiting-2

FIN=1,ACK=1,

seq=w,ack=u+1

Final ack

Time to wait

Connection
closedConnection

closed
Figure 3: The four-way wavehand process in TCP protocol

2.2 Mimic Defense
Mimic defense [11–15] is a new type of active defense technology based on heterogeneous

redundant structure. It uses mechanisms such as heterogeneous redundancy, strategic scheduling and
negative feedback control to make the system possess endogenous features of active defense. The typical
structure of DHR is shown in Fig. 4. In the DHR architecture, an odd number of executors are selected
from the heterogeneous component set (E1 to Em) to form a heterogeneous equivalent executor set (A1 to
An). The heterogeneous equivalent executors independently process the same information distributed by
the input agent, and respectively output the equivalent processing results to the voting module. In the

102 JIOT, 2021, vol.3, no.3

following, the voting module judges the output of the executor set through multi-mode decision algorithm,
and uses the decision result as the final unified output. Finally, the voting module feeds back the decision
result of the executor set to the scheduling module, and the scheduling module dynamically adjusts the
heterogeneous equivalent executor set according to the corresponding strategy, including switching and
cleaning of the executors.

input

input agent

A1 A2 A3 ... An

Voting module

output

Scheduling
module

E1

E2

E3

...

Em

strategy

heterogeneous component set

E
X
E
X
T
O
R
S
E
T

Figure 4: The diagram of DHR architecture

3 The Proposed Scheme
From the above description of TCP protocol and DHR architecture, it can be seen that the random

parameters introduced in the TCP protocol make the equivalent output of the heterogeneous redundant
executors inconsistent, resulting in the voting module being unable to judge the output of executors. In
turn, the output of CMD devices cannot be unified. Aiming at the problem that the TCP connection of
each executor of the CMD device is difficult to be displayed uniformly, we design a implementation
scheme that normalizes the output of multiple TCP connections of redundant executor. Our proposed
scheme includes matching and synchronization of TCP messages and the normalization of random
parameters. The internal functional block diagram of CMD device is shown in Fig. 5, in which the
matching, synchronization and normalization of TCP messages are all completed by the input/output
agent module.

Heterogeneous equivalent
executor A1

Heterogeneous equivalent
executor A2

Heterogeneous equivalent
executor An

input/output
agent

output

input

CMD device

Data
stream

Data
stream

Data
stream

Figure 5: The internal functional block diagram of CMD device

JIOT, 2021, vol.3, no.3 103

3.1 Message Matching and Synchronization
To achieve the normalization of redundant equivalent executors’ TCP messages, it is necessary to

correctly distinguish the equivalent TCP messages generated by each executor. Due to differences in the
performance and operating mechanism of each executor under the DHR architecture, the equivalent TCP
messages of each executor under the same TCP connection will be out of sync and order when they reach
the input/output agent. In turn, the normalization operation fails.

To achieve the matching and synchronization of TCP messages, all TCP messages entering the
input/output agent need to be buffered before the normalization operation. By comparing the source IP
address, destination IP address, destination port number and other elements of the TCP header of the
buffered message, the matching and synchronization of equivalent TCP messages of different executor
are realized. Fig. 6 describes the schematic diagram of the principle of TCP message matching and
synchronization. As shown in Fig. 6, we allocate k buffer queues in the buffer area of the input/output
agent, and divide the corresponding data storage memory for n executors in each buffer queue. The data
storage of each executor can be further divided into a tuple matching domain and a TCP message domain.
The tuple matching domain stores the hash values of matching elements like source IP address,
destination IP address, and destination port number of the TCP message. The corresponding TCP
message is stored in the message domain. When the input/output agent receives a TCP message of a
certain executor, it first extracts the matching element group in the TCP header (i.e., source IP address,
destination IP address, destination port number, etc.). Then the input/output agent performs a hash
operation, and sequentially compares the hash value with the hash values of matching tuples of other
executors in the non-empty buffer queue. If there is an equal matching tuple in a buffer queue, the agent
stores the hash value and the corresponding TCP message in the corresponding position of the buffer
queue. Otherwise, it saves the hash value and the corresponding TCP message to the corresponding
position of the empty buffer queue, and wait for synchronization and matching with the message of other
executors. If there is an equal matching tuple in a buffer queue, the hash value and the corresponding TCP
message are stored in the buffer queue. When the buffer space corresponding to all the executors in a
certain buffer queue is empty, it indicates that the matching synchronization process for the same TCP
message is completed, and then the normalization phase is entered.

input/output agent

TCP message domain of executor A1Tuple matching domain of
executor A1

…………

TCP message domain of executor AnTuple matching domain of
executor An

buffer
queue

1

Other
processing

module

TCP message domain of executor A1Tuple matching domain of
executor A1

…………

TCP message domain of executor AnTuple matching domain of
executor An

...

TCP message domain of executor A1Tuple matching domain of
executor A1

…………

TCP message domain of executor AnTuple matching domain of
executor An

buffer
queue

k

Figure 6: The schematic diagram of TCP message matching

3.2 Random Parameter Normalization
After matching and synchronizing the equivalent TCP message of each executor, it is necessary to

normalize the random parameters in the TCP header. Because the proposed method has similar

104 JIOT, 2021, vol.3, no.3

normalization processing principles for each phase of the TCP protocol, only the normalization process of
the TCP three-way handshake (as shown in Fig. 1) is described in detail, and the description of
normalization process of data transmission and four-way wavehand will not be repeated.

The TCP protocol normalization process involves many random parameters. In the following, we
will take the sequence number and confirmation sequence number as examples to introduce the
normalization process in detail. The normalization principle of other random parameters is similar. In
addition, for the convenience of description, we use subscripts to distinguish the message sent or received
by each executor. For example, seq1 represents the sequence number of the TCP message sent by the
executor A1.

Referring the TCP three-way handshake process in Fig. 1 and the internal functional block diagram
in Fig. 5, taking the client as a CMD device as an example, the detailed normalization steps for TCP
three-way handshake are as follows.

Step 1: The heterogeneous equivalent executors (A1 to An) respectively send TCP connection
request messages to the input and output agents, and the corresponding random parameters in TCP
message header connected to the requests are from [SYN1 = 1, seq1 = x1] to [SYNn = 1, seqn = xn].

Step 2: The input/output agent extracts the corresponding sequence number seq1 = x1 to seqn = xn
after receiving the message from each heterogeneous executor, and calculates the unified message
sequence number seq = x based on x1 to xn. x can be obtained by simple logical operations such as AND,
OR, XOR, etc. For example, x = x1⊕x2⊕...⊕xn (⊕ stands for XOR operation). In the following, seq =
x is used as the unified sequence number of TCP message to generate a normalized TCP session request
(i.e., [SYN = 1, seq = x]) which is sent to the remote server.

Step 3: Based on the TCP session request, the remote server returns an acknowledgement message,
i.e., [seq = y, ack = x + 1].

Step 4: After the input/output agent receives the confirmation message returned from the remote
server, it extracts the confirmation sequence number ack = x + 1. Then through the inverse logical
operation of Step 2, the input/output agent restores the confirmation sequence number of the
corresponding heterogeneous equivalent executor. For example, if the logical operation used in Step 2 is
XOR, the confirmation sequence number of executor A1 is ack1 = ack⊕seq2⊕seq3⊕…⊕seqn. Finally,
the input/output agent reorganizes all confirmation messages [seq1 = y, ack1] to [seqn = y, ackn]
according to calculated confirmation sequence numbers, and send them to the corresponding
heterogeneous equivalent executors.

Step 5: After the heterogeneous equivalent executors receive the confirmation messages, they generate
the corresponding confirmation messages [seq1 = ack1, ack1 = y + 1] to [seqn = ackn, ackn = y + 1], and then
send them to the input/output agent.

Step 6: After the input/output agent receives the confirmation message returned by each
heterogeneous equivalent executor, it generates an external normalized message [seq = x + 1, ack = y + 1],
and then sends it to the remote server. The TCP three-way handshake normalization process ends.

It is noted that all reassembled TCP messages in the normalization process need to recalculate the
checksum of the TCP message header. Through the above normalization processing steps, it can be
ensured that each heterogeneous equivalent executor of the CMD device independently completes the
three-way handshake process, and only outputs a unified TCP session connection. The data transmission
phase and the four-way wavehand phase of TCP session can be normalized in a similar way. In the data
transmission phase, TCP supports sliding window mechanism. Due to the differences in the sending and
receiving performance between different heterogeneous equivalent executors, the normalized window
size is set to the minimal size among all executors.

4 Experimental Results
In order to verify the TCP normalization function of CMD device, we use virtualization technology

JIOT, 2021, vol.3, no.3 105

to build a set of simulation environment on the server. The server CPU adopts Intel Xeon processor. The
operating system is CentOS 7.6 with the necessary components such as qemu-kvm-3.0.90, libvirt-4.5.0
and dpdk-stable-18.11.2. On the server, four virtual machines are built based on qemu-kvm+libvirt, of
which three virtual machines simulate three heterogeneous equivalent executors in the CMD device, and
the other virtual machine simulates a remote PC. All virtual machines are installed with CentOS 7.6
minimum system. Each virtual machine is allocated 2 vCPU, 2 GB memory and 64 GB virtual hard disk,
and 1 virtual network card is allocated to connect to the TCP normalization module. All virtual network
cards of the executors are configured with the same IP address (10.1.1.2/24) and MAC address, and the IP
address of the remote PC virtual network card is 10.1.1.1/24. The TCP normalization module is based on
DPDK (dpdk-18.11.2) design, and each virtual machine (including the executor’s virtual machine and the
remote PC's virtual machine) uses a vhost-user interface as the network connection interface, which
corresponds to the network card in the virtual machine.

The simulation elaborately shows the normalization process of the TCP three-way handshake. Fig. 7(a)
shows a part of the cache content in the first handshake message sent by the CMD device as a client, and
some random parameters to be normalized are stored in the public field. Among them, the normalized
sequence number, source port number, time stamp and other random parameters are equal to the
corresponding value of the 3rd executor. The key parameters of the first handshake TCP message header sent
by the CMD device after normalization are shown in Fig. 7(b), where the window size rx_win is set to the
smallest window size among the three executors.

(a) (b)

Figure 7: The cache data in the first handshake message of CMD device

The confirmation package returned by the remote server is restored by the input/output agent and
distributed to each executor. The key parameters of the restored message of each executor are shown in
Fig. 8. The timestamp and destination port number corresponding to each executor are obtained from the
cache and restored. The method for restoring the corresponding confirmation sequence number of each
executor is that the confirmation sequence number returned by the remote server + the normalized
sequence number – the sequence number of each executor. Fig. 9 shows the partial data of the
confirmation message returned by the CMD device. Herein, Fig. 9(a) shows the relevant parameters
before normalization, and Fig. 9(b) shows the relevant parameters after normalization.

106 JIOT, 2021, vol.3, no.3

Figure 8: The key cache data of the remote confirmation package restored by the executors

 (a) (b)

Figure 9: The key data of the confirmation message returned by the CMD device

Fig. 10 shows the TCP protocol process recorded by the remote server. In this process, the CMD
device (3 executors) actively initiates a TCP handshake connection to the remote PC. After the
connection is successful, the executor sends a data message (set the sending character as “a”), and finally
three executors disconnect the connection.

Figure 10: TCP protocol process recorded by remote server

Extensive simulation results show that the normalization method designed in this paper realizes TCP
communication based on mimic defense, ensures that each executor in the DHR architecture runs the TCP
protocol independently, and provides effective technical support for the CMD device to support
connection-oriented network services.

JIOT, 2021, vol.3, no.3 107

5 Conclusion
In this paper, we propose a TCP protocol normalization method for mimic defense architecture.

Through operations including matching synchronization and random parameter normalization, the
proposed method can achieve that each heterogeneous equivalent executor under the DHR architecture
runs the TCP protocol independently and output the unified results. The experimental results show that
the proposed method can effectively implement TCP communication based on the mimic defense
architecture, and cannot perceive the existence of the internal executor of the CMD device through the
analysis of communication data packets, which provides attractive support for connection-oriented
services based on the mimic defense network architecture solution.–

Funding Statement: This work was supported by the National Key Research and Development Project
of China (Grant No. 2020YFB1804600), the Major Scientific Project of Zhejiang Lab (2018FD0ZX01).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] H. Hu, F. Chen and Z. Wang, “Performance evaluation on DHR for cyberspace mimic defense,” Journal of

Cyber Security, vol. 1, pp. 40–51, 2016.
[2] W. Zhu, Y. Guo and B. Huang, “A mimic defense automaton model of dynamic heterogeneous redundancy

structures,” Acta Electronica Sinica, vol. 47, pp. 2025–2031, 2019.
[3] Y. Fan, W. Zhu and S. Ban, “Dynamic heterogeneous and redundancy data protection architecture,” Journal of

Chinese Computer Systems, vol. 40, pp. 1956–1961, 2019.
[4] Q. Tong, Z. Zhang, W. Zhang and J. Wu, “Design and implementation of mimic defense web server,” Journal

of Software, vol. 28, pp. 883–897, 2017.
[5] H. Ma, P. Yi, Y. Jiang and L. He, “Dynamic heterogeneous redundancy based router architecture with mimic

defense,” Journal of Cyber Security, vol. 2, pp. 29–42, 2017.
[6] K. Song, Q. Liu, S. Wei, W. Zhang and L. Tan, “Endogenous security architecture of Ethernet switch based on

mimic defense,” Journal on Communications, vol. 41, pp. 18–26, 2020.
[7] S. Wei, H. Yu, Z. Gu and X. Zhang, “Architecture of mimic security processor for industry control system,”

Journal of Cyber Security, vol. 2, pp. 54–73, 2017.
[8] J. Zhu, “TCP protocol outlined and three-way handshake principle of analytic,” Computer Knowledge and

Technology, vol. 5, pp. 1079–1080, 2009.
[9] K. Poduri and K. Nichols, “Simulation studies of increased initial TCP window size,” CiteSeerx, 1998.
[10] B. A. Forouzan and S. C. Fegan, TCP/IP Protocol Suite. McGraw-Hill Higher Education, 2002, pp. 1–64.
[11] H. Yu, X. Zhang and K. Song, “A device and method for ensuring consistent encryption behavior of redundant

executables,” CN 110176988, 2019.
[12] J. X. Wu, “Meaning and vision of mimic computing and mimic security defense,” Telecommunications Science,

vol. 30, no. 7, pp. 1–7, 2014.
[13] J. X. Wu, “Research on cyber mimic defense,” Journal of Cyber Security, vol. 1, no. 4, pp. 1–10, 2016.
[14] J. X. Wu, Cyberspace Mimic Defense. Springer, 2019, pp. 1–25.
[15] J. X. Wu, Cyberspace Mimic Defense (2nd). Springer, 2019, pp. 113–135.

https://kns.cnki.net/KNS8/Detail?sdb=CJFD&sfield=%e4%bd%9c%e8%80%85&skey=%e6%9c%b1%e7%bb%b4%e5%86%9b&scode=09493630&acode=09493630
https://kns.cnki.net/KNS8/Detail?sfield=fn&QueryID=5&CurRec=10&recid=&FileName=DZXU201910002&DbName=CJFDLAST2019&DbCode=CJFD&yx=&pr=&URLID=
https://kns.cnki.net/KNS8/Detail?sfield=fn&QueryID=5&CurRec=13&recid=&FileName=XXWX201909027&DbName=CJFDLAST2019&DbCode=CJFD&yx=&pr=&URLID=
https://kns.cnki.net/KNS8/Detail?sfield=fn&QueryID=5&CurRec=13&recid=&FileName=XXWX201909027&DbName=CJFDLAST2019&DbCode=CJFD&yx=&pr=&URLID=

	Research on the Key Techniques of TCP Protocol Normalization for Mimic Defense Architecture
	Mingxing Zhu, Yansong Wang, Ruyun Zhang, Tianning Zhang, Heyuan Li, Hanguang Luo and Shunbin Li*
	Zhejiang Lab, Hangzhou, 310012, China

	5 Conclusion
	References

