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Abstract: This paper provides an introduction to a quantum search algorithm, 
known as Grover’s Algorithm, for unsorted search purposes. The algorithm is 
implemented in a search space of 4 qubits using the Python-based Qiskit SDK by 
IBM. While providing detailed proof, the computational complexity of the 
algorithm is generalized to n qubits. The implementation results obtained from the 
IBM QASM Simulator and IBMQ Santiago quantum backend are analyzed and 
compared. Finally, the paper discusses the challenges faced in implementation and 
real-life applications of the algorithm hitherto. Overall, the implementation and 
analysis depict the advantages of this quantum search algorithm over its classical 
counterparts. 
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1 Introduction 
Quantum Computing is a new computational machine concept that works on the laws of quantum 

physics and quantum mechanics. Where a classical computer uses bits to store information in the form of 
binary, 0 and 1, quantum computers use quantum bits called qubits. These two-level quantum systems 
display unique physical characteristics of superposition and entanglement. Qubits in superposition can 
represent different states at the same time in the form of a linear combination of all the possible states. The 
possible states of |0⟩ and |1⟩ of a qubit represent the basis vectors in a 2D complex vector space ℂ². Their 
linear combination using Dirac’s Notation [1] is given as 
|𝝍𝝍⟩ = 𝜶𝜶|𝟎𝟎⟩+ 𝜷𝜷|𝟏𝟏⟩ (1) 
where the coefficients α and β are complex numbers satisfying the condition, 
|α|2 + |β|2 = 1 (2)                                                        
with the states |0⟩ and |1⟩ having the probability of |𝛼𝛼|2 and |𝛽𝛽|2, respectively, according to the Born rule [2].  

Therefore, unlike a classical bit existing in a single state at a time, a qubit exists in a linear combination 
of all the possible states and is capable of parallelly calculating the probability of every possible qubit 
configuration. This makes quantum systems probabilistic up until all the qubits are measured. This is 
because measuring a superimposed qubit collapses it into any one of its possible states [2]. Quantum 
computers use this property to algorithmically increase the probability of the desired configuration to a 
seemingly distinguishable level. Hence, providing quantum algorithms an edge over their classical 
counterparts in terms of bit requirements and speed. 

One of the problems where quantum computers have shown significant progress in terms of speed and 
space is database searching. Grover’s algorithm is a quantum search algorithm that provides a quadratic 
speedup in the number of queries required to perform an unsorted search [3]. A classical computer can 
perform a search in an unsorted database of size N, with an average of  𝑁𝑁

2
 brute-force queries, i.e., in O(N) 
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time. Grover’s algorithm, on the other hand, can manage to perform the same task in O (√𝑁𝑁) time [3,4], 
outperforming its classical counterpart. 

In this paper, we implement Grover’s algorithm in a search space of n = 4 qubits, which corresponds 
to a dataset of N = 2𝑛𝑛 = 16 states. This implementation uses single-solution Boolean Oracles [1] to find a 
unique target state (t = x) out of the 16 possible states. In addition to using the 4 qubits, an auxiliary qubit 
is used to aid the construction of the oracle [5]. These Boolean Oracles are equivalent to the state marking 
scheme required to perform a classical brute-force search [5]. 

The algorithm is programmed using the Python-based Qiskit Software Development Kit (SDK) by 
IBM. Results are obtained by running the algorithm on two publicly available IBM quantum backends– 
QASM Simulator, with 32 qubit capacity, and IBMQ Santiago Quantum Device, with 5 qubit capacity. The 
results are compared and analyzed to draw conclusions in the final section. 

2 IBM Quantum Experience (IBM QX) 
IBM is one of the leading companies in the field of quantum computing. Currently, IBM publicly hosts 

9 quantum devices with a qubit count ranging from 1 to 15 and a qubit volume of 8 to 32. The company 
also provides a publicly available 32-qubit quantum simulator that allows users to simulate quantum circuits 
with the least error possible. All these devices are hosted over the IBM Cloud facility through their IBM 
QX platform [6].  

The publicly available IBM quantum backends can be accessed using their Python-based SDK-Qiskit. 
Qiskit can automatically process and submit quantum circuits to the available quantum devices. 
Furthermore, it can decompose quantum circuits into machine-executable gates and provide functions to 
calculate the total number of gates being implemented and the overall circuit cost. The IBM quantum 
computers run for a maximum of 8192 shots, with the default number of shots being 1024 in a single job. 
The job progress can be monitored at the IBM QX platform which also provides information such as the 
status, ID, queue number, and the execution time of a particular job.  

In this paper, we execute Grover’s algorithm on the latest IBMQ Santiago quantum backend with 5 
qubits capacity [7]. The backend has a linear topology of qubits with a quantum volume of 32. It uses the 
Canary r3 processor and is publicly available on the IBM QX platform circa mid-2020. 

3 Grover’s Algorithm 
As shown in Fig. 1, Grover’s Algorithm for an unsorted search is implemented in four stages: 

Initialization, Oracle, Amplitude Amplification, and Measurement. It also consists of repeated application 
of a subroutine known as the Grover’s Operator (G) which includes the Oracle and Amplitude 
Amplification stages [1]. The algorithm can be procedurally given as: 

1. Initialization of qubits to a superposition state using a Hadamard Transform. 
|ψ⟩ = H(|0⟩⊗n|1⟩) (3) 

2. Application of Grover’s Operator (G) for r(N) times.  
r(N)  ≡  O(√N) (4) 

3. Application of an Oracle operator (Uₒ) to detect the target state among the N possible states of the 
database. 

𝑈𝑈𝑜𝑜|𝑥𝑥⟩ = (−1)𝑓𝑓(𝑥𝑥)|𝑥𝑥⟩ = �|𝑥𝑥⟩     if x = x
−|𝑥𝑥⟩  if x = x' (5) 

Uo |x⟩ = I− 2|x⟩⟨x| (6) 
4. Application of a diffuser (Uₐ) to amplify the amplitude of the target state by performing a phase 

shift. 

Ua|x⟩ = (−1)f(x)|x⟩ = �|x⟩     if x = 0
−|x⟩  if x = x' (7) 
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Ua |x⟩ = 2|x⟩⟨x|− I (8) 
5. Measurement of qubits to obtain the final output. 

 
Figure 1: Stages of Grover’s Algorithm 

4 Implementation of Grover’s Algorithm 
4.1 Initialization 

The initialization stage of the algorithm takes the initial quantum state of |0⟩⊗𝑛𝑛|1⟩ and sets it into a 
state of equal superposition. A Hadamard gate applied to each qubit in the quantum circuit can perform this 
transformation. It changes the basis of a quantum state by transforming qubits from their computational 
basis, |0⟩ and |1⟩, to polar basis, |+⟩ and |−⟩, thus, putting them into a state of equal superposition. This 
transform can be represented by the matrix 

𝐻𝐻 = 1
√2
�1 1

1 −1� (9) 

𝐻𝐻|0⟩ = 1
√2
�1 1

1 −1� �
1
0� = |+⟩ (10) 

𝐻𝐻|1⟩ = 1
√2
�1 1

1 −1� �
0
1� = |−⟩ (11) 

Thus, applying Hadamard transform to the initial quantum state |𝜓𝜓⟩ results in 

|ψ⟩ = ∑ |x⟩
√2nx∈{0,1}n

|0⟩−|1⟩
√2

 (12) 

In the Qiskit implementation of the initialization stage of the algorithm as shown in Fig. 2, the state of 
equal superposition can be achieved by applying a Hadamard gate (H) to each qubit. The auxiliary qubit, 
on the other hand, is first initialized to state |1⟩ by applying a NOT gate (X), and then transformed into a 
superposition. After the application of the Hadamard gate, each probable state configuration has an 
amplitude of 1

√𝑁𝑁
. 

 
Figure 2: Initialization of Qubits 
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4.2 Oracle 
The next stage in Grover’s Algorithm helps in the application of an oracle operator which encodes the 

target state x′ among the N possible states in a database. This oracle is equivalent to a classical brute-force 
search method, satisfying the following condition: 
𝑓𝑓(𝑥𝑥′) = 1 (13) 

In this paper, we use a Boolean Oracle (𝑈𝑈𝑜𝑜) to mark a single target state (t = x′). The Boolean method 
of oracle application uses an auxiliary qubit initialized to state |1⟩, as discussed in the first stage. This oracle 
flips the auxiliary state when it encounters the target state. As a result of this flip, the amplitude of the target 
state is reversed while all the other states retain their original amplitudes. The amplitude of the marked state 
after the application of an oracle becomes −1

√𝑁𝑁
. 

This action of the oracle operator can be given as 
|𝑥𝑥⟩ → (−1)𝑓𝑓(𝑥𝑥)|𝑥𝑥⟩ (14) 

Here, 

𝑓𝑓(𝑥𝑥) =  �0     if x = x
1     if x = x' (15) 

This results in the oracle operator being represented as 

𝑈𝑈𝑜𝑜|𝑥𝑥⟩ = (−1)𝑓𝑓(𝑥𝑥)|𝑥𝑥⟩ = �|𝑥𝑥⟩     if x = x
−|𝑥𝑥⟩  if x = x' (16) 

It can be compactly written as  
𝑈𝑈𝑜𝑜 |𝑥𝑥⟩ = 𝐼𝐼 − 2|𝑥𝑥⟩⟨𝑥𝑥| (17) 

The Qiskit implementation of a Boolean Oracle is achieved by using a controlled-Z (CZ) gate which 
is represented by the matrix, 

𝐶𝐶𝐶𝐶 =  �

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

� (18) 

A CZ gate is composed of a minimum of two qubits, a controlling qubit, and a target qubit. It performs 
a conditional flipping of the target qubit if and only if the control qubit has the state |1⟩.  

In our paper, we use the first n = 4 qubits of the quantum circuit as the control qubits and the auxiliary 
qubit as the target qubit. Thus, when implementing a Boolean Oracle, CZ gate performs a phase flip to the 
target auxiliary qubit when all the control qubits are in a state of |1⟩. This flip of the auxiliary qubit, which 
is initialized to a superposition state of |−⟩, brings an overall negative phase to the quantum state |𝜓𝜓⟩, while 
leaving all the qubits unchanged when encountered with the target state. 

The 4-qubit implementation of the algorithm in this paper requires a quadruple-controlled Z (ccccZ) 
gate to be implemented as shown in Fig. 3. This can be achieved in the following two of the many ways 
using the Qiskit SDK: 

1) A controlled-Z gate can be made using Hadamard gates and controlled-X (CNOT) gates [2]. This 
is achievable noting the fact that 

HXH ≡ Z (19) 
A quadruple-controlled X (cccc-X) gate can be constructed using an in-built Multi-Control Toffoli 
(MCT) operation [5] in Qiskit. Here, the first 4 qubits are used as control gates and the auxiliary 
qubit acts as the target qubit. This construction is shown in Fig. 3. 

2) According to Barenco et al. [8] an arbitrary Unitary gate ∧𝑚𝑚 (𝑈𝑈), such as a controlled-Z gate, for 
m > 2 qubits can be constructed from a series of CNOT gates and controlled-V gates. Here,  

𝑈𝑈 = 𝑉𝑉2𝑛𝑛−2 (20) 
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Total number of qubits used in our paper is 4 and 1 auxiliary qubit, i.e., n = 5. Therefore, 𝑈𝑈 = 𝑉𝑉8.  
This construction of a quadruple-controlled Z gate using a series of controlled-V gates is shown in 
Fig. 8 and Fig. 9 in Appendix A. 

Table 3 in Appendix B displays the single-solution oracles for different marked states. 

 
Figure 3: Construction of a ccc-Z gate using HXH gates 

4.3 Amplification 
After the action of the Boolean Oracle (𝑈𝑈𝑜𝑜) in the previous stage, the target state has accumulated a 

phase of −1
√𝑁𝑁

. As a consequence of this negative phase, the overall mean of the amplitudes of the possible N 
states in the database is reduced. This average could now be given as 

Average Amplitude (𝝁𝝁) =  
(𝑵𝑵−𝟏𝟏) 𝟏𝟏

√𝑵𝑵
+−𝟏𝟏
√𝑵𝑵

𝑵𝑵
 (21) 

Keeping in mind a reduction in the mean, the third stage in the Grover’s Algorithm involves 
implementing a diffuser (𝑈𝑈𝑎𝑎). A diffuser performs an inversion of the amplitudes of the N possible states 
around the new reduced mean. This inversion reverses the negative phase of the target state and helps in 
separating the target from the rest of the states. 

By straightforward computation, the amplitude of target state (𝐴𝐴𝑡𝑡) differs from the new average (μ) by 
a factor of 
𝛿𝛿𝑡𝑡 = 𝜇𝜇 − 𝐴𝐴𝑡𝑡 (22) 

After inversion around the new mean (μ), the amplitude of the target state becomes 
𝐴𝐴𝑡𝑡 = 𝜇𝜇 + 𝛿𝛿𝑡𝑡 (23) 

Thus, the state |𝜓𝜓⟩ after the application of a diffuser (𝑈𝑈𝑎𝑎) is given as 
𝑈𝑈𝑎𝑎|𝜓𝜓⟩ = ∑ 2𝜇𝜇 −  𝛿𝛿𝑥𝑥|𝑥𝑥⟩𝑥𝑥  (24) 

From the above equation, the resultant amplitude of the target state (t = x′) comes out to be greater 
than the amplitudes of rest of the possible N − 1 states. 

𝐴𝐴𝑡𝑡 =  3𝑁𝑁−4
𝑁𝑁√𝑁𝑁

     and     𝐴𝐴𝑁𝑁−𝑡𝑡 =  𝑁𝑁−4
𝑁𝑁√𝑁𝑁

  (25) 

That is, 
𝐴𝐴𝑡𝑡 > 𝐴𝐴𝑁𝑁−𝑡𝑡 (26) 

This action of the diffuser can be represented as a unitary operator in Dirac’s notation. 

𝑈𝑈𝑎𝑎|𝑥𝑥⟩ = (−1)𝑓𝑓(𝑥𝑥)|𝑥𝑥⟩ = �|𝑥𝑥⟩     if x = 0
−|𝑥𝑥⟩  if x = x' (27) 

That can be compactly written as,  
𝑈𝑈𝑎𝑎  |𝑥𝑥⟩ = 2|𝑥𝑥⟩⟨𝑥𝑥| − 𝐼𝐼 (28) 

The Qiskit implementation of the diffuser can be done using NOT gates (X) and a controlled-Z gate. 
Similar to the construction of Boolean Oracle, the X gates aid in marking the target state from among the 
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N possible states in the dataset. In the circuit, when encountered with a target state (t = x′), the diffuser flips 
the phase of this state, making it negative. 

In order to flip the phase of the target state, a controlled-Z gate is used. The first 3 qubits of the circuit 
act as the control qubits for the controlled-Z gate, whereas, the fourth qubit of the circuit, depicted in Fig. 4. 
as |𝑞𝑞3⟩, is used as the target qubit. When the diffuser flips the state of the target qubit, the value of |𝑞𝑞3⟩ is 
changed from |1⟩ to −|1⟩, hence, adding a negative phase to the system. 

 
Figure 4: Diffuser for amplitude amplification 

4.4 Measurement 
The measurement stage of the algorithm measures the final output of the circuit. After measurement, 

the qubits are no longer in superposition as they tend to lose all their quantum physical properties and 
collapse to give an outcome of one of their possible states [2]. As a result, qubits cannot be used furthermore 
after their measurement is done. 

 
Figure 5: Measuring the first 4 qubits 

In Qiskit, qubit measurement is done using the measurement gates, as shown in Fig. 5. 

5 Performance 
5.1 Iterations of Grover’s Operator (G) 

The Grover’s Operator (G) consisting of the Boolean Oracle (𝑈𝑈𝑜𝑜) and the diffuser (𝑈𝑈𝑎𝑎), increases the 
probability of success of detecting the target state from the N possible states in a dataset. As shown in Table 
1, a repeated application of this operator can lead to an increase in the amplitude of the target state by a 
factor of O( 1

√𝑁𝑁
) after each iteration [3]. As a result, an approximate O(√N) number of iterations of G can 

result in the desired probability of the target state to reach O (1).  

Table 1: Circuit cost of 4-qubit Grover’s Algorithm 

Number of qubits Iterations Number of gates  Circuit cost 

4 
1 163 739 
2 320 1472 
3 477 2205 
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However, increasing the number of iterations does not monotonically increase this probability of 
success [4]. Thus, it becomes significant to know the maximum number of optimal iterations (m) that G 
can have to have the desired amplitude of the target state. This value of m can be precisely calculated by 
having a geometrical visualization of the G operator [9].  

Grover’s iteration can be visualized as a rotation of the |𝜓𝜓⟩ vector in a 2-dimensional Hilbert space. 
By knowing that the state |𝜓𝜓⟩ is a uniform superposition or a linear combination of N possible states, we 
can decompose |𝜓𝜓⟩ into its target and non-target state components. This can be then written as 

|𝜓𝜓⟩ = ∑ |𝑥𝑥⟩
√2𝑛𝑛𝑥𝑥≠𝑥𝑥′ + |𝑥𝑥′⟩

√2𝑛𝑛
  (29) 

where, |𝑥𝑥′⟩ is the target state and |𝑥𝑥⟩ is the non-target state. A normalized collection of non-target 
states can thus be written as 
|𝛼𝛼⟩ = 1

√𝑁𝑁−1
 ∑ |𝑥𝑥⟩𝑥𝑥≠𝑥𝑥′  (30) 

Rewriting the decomposition of state |𝜓𝜓⟩ with a normalized collection non-target states, |𝛼𝛼⟩, we get 

|𝜓𝜓⟩ = √𝑁𝑁−1
√𝑁𝑁

|𝛼𝛼⟩ + 1
√𝑁𝑁

 |𝑥𝑥′⟩ (31) 

Given the operator G = 𝑈𝑈𝑜𝑜𝑈𝑈𝑎𝑎, the Boolean oracle 𝑈𝑈𝑜𝑜 performs a reflection of the vector |𝜓𝜓⟩ about the 
vector |αi in a plane defined by |𝛼𝛼⟩ and |𝑥𝑥′⟩. By this action of the oracle 

𝑈𝑈𝑜𝑜|𝜓𝜓⟩ = √𝑁𝑁−1
√𝑁𝑁

 |𝛼𝛼⟩ − 1 
√𝑁𝑁

 |𝑥𝑥′⟩ (32) 

The next operator, 𝑈𝑈𝑎𝑎 , performs a reflection of the vector 𝑈𝑈𝑜𝑜|𝜓𝜓⟩ about the vector |𝜓𝜓⟩ in a plane 
defined by |𝛼𝛼⟩ and |𝑥𝑥′⟩. This results in a final state of 

𝐺𝐺|𝜓𝜓⟩ =  √𝑁𝑁−1
√𝑁𝑁

|𝛼𝛼⟩ +  1 
√𝑁𝑁

 |𝑥𝑥′⟩ (33) 

This shows that the overall action of the Grover’s Operator G is a rotation of vector |𝜓𝜓⟩ in a space 
spanned by vectors |𝛼𝛼⟩ and |𝑥𝑥′⟩. Moreover, with m iterations of the G operator, the state 𝐺𝐺𝑚𝑚|𝜓𝜓⟩ still 
remains in the same space. 

In order to reach the target state by iterating |𝜓𝜓⟩ in the space, the angle of rotation available between 
|𝜓𝜓⟩ and |𝑥𝑥′⟩ must be traversed. Let this angle be given as 𝜃𝜃

2
 , where 

cos �𝜋𝜋 − 𝜃𝜃
2
� = ⟨𝑥𝑥′|𝜓𝜓⟩ = 1

√𝑁𝑁
 (34) 

Number of rotations m to traverse an angle of 𝜃𝜃
2

 between |𝜓𝜓⟩ and |𝑥𝑥′⟩ can therefore be given as 

𝑟𝑟(𝑁𝑁) = 𝑚𝑚 = 𝐶𝐶𝐶𝐶 �
arccos 1

√𝑁𝑁
𝜃𝜃

� (35) 

Here, CL(a) function gives the integer closest to the argument a [1]. We know, for a small value of θ, 

𝜃𝜃 ≈ sin 𝜃𝜃
2

= 1
√𝑁𝑁

 (36) 

Therefore,  
𝑟𝑟(𝑁𝑁) ≤ 𝜋𝜋

4 √𝑁𝑁 (37) 

Hence, 𝑟𝑟(𝑁𝑁) ≡ 𝑂𝑂(√𝑁𝑁). 

5.2 Probability of Success 
A closed-form formula for determining the probability of success of Grover’s Algorithm is provided 

by Boyer et al. [4]. According to their paper, the algorithmic probability (ASP) of measuring a single target 
state (t = k) from the state |𝜓𝜓𝑚𝑚⟩ after any given number of iterations (m) is given by 
|𝜓𝜓𝑚𝑚⟩  = |𝜓𝜓(𝑘𝑘𝑚𝑚, 𝑙𝑙𝑚𝑚)⟩ (38) 
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Here,  

 𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘𝑚𝑚+1) =  �𝑁𝑁−2
𝑁𝑁
𝑘𝑘𝑚𝑚  + 2(𝑁𝑁−1)

𝑁𝑁
𝑙𝑙𝑚𝑚�

2
 (39) 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑙𝑙𝑚𝑚+1) =  �𝑁𝑁−2
𝑁𝑁
𝑙𝑙𝑚𝑚  − 2

𝑁𝑁
𝑘𝑘𝑚𝑚�

2
 (40) 

It is important to note that the above formula is only for finding a unique target state from a dataset of 
N = 2𝑛𝑛 probable states. 

6 Result 
6.1 Theoretical Result Probability  

From the equation by Boyer et al. [4], the algorithmic success probability (ASP) of measuring the 
target state (k) after m = 1, 2, and 3 iterations is 

for m = 1, 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘1) = �14
16
𝑘𝑘0  + 30

16
𝑙𝑙0�

2
 =  47.27% (41) 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑙𝑙1) = �14
16
𝑙𝑙0 −

2
16
𝑘𝑘0�

2
 =  3.52% (42) 

as 𝑘𝑘0 = 𝑙𝑙0 = 1
√𝑁𝑁

. 

for m = 2, 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘2) = �14
16
𝑘𝑘1  + 30

16
𝑙𝑙1�

2
 =  90.84% (43) 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑙𝑙2) = �14
16
𝑙𝑙1 −

2
16
𝑘𝑘1�

2
 =  0.61% (44) 

as 𝑘𝑘1 = 3𝑁𝑁−4
𝑁𝑁√𝑁𝑁

 and 𝑙𝑙1 = 𝑁𝑁−4
𝑁𝑁√𝑁𝑁

.  

for m = 3, 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑘𝑘3) = �14
16
𝑘𝑘2  + 30

16
𝑙𝑙2�

2
 =  151.41% (45) 

𝐴𝐴𝐴𝐴𝐴𝐴(𝑙𝑙3) = �14
16
𝑙𝑙2 −

2
16
𝑘𝑘2�

2
 =  0.26% (46) 

as 𝑘𝑘2 = 5𝑁𝑁2−20𝑁𝑁+16
𝑁𝑁2√𝑁𝑁

 and 𝑙𝑙2 = 𝑁𝑁2−12𝑁𝑁+16
𝑁𝑁2√𝑁𝑁

.  

6.2 Quantum Simulator (IBM QASM Simulator) Results  
Grover’s algorithm is first performed on IBM QASM Simulator with a 32-qubit capacity. The 

performance of the algorithm is tested with varying number of shots (n) and iterations (m). 
For m = 1 iterations and n = 1024 shots, the probability of correctly finding the target state (t = x′) is 

P(x′) = No. of times t is marked
Total no. of shots (n)

   (47) 

P(x′) = 7689
16∗1024

= 46.92%       (48) 

Similarly for m = 1 iterations and n = 8192 shots, 

P(x′) = 61890
16∗8192

= 47.28%     (49) 

Results with subsequent number of shots (n) and iterations (m) performed on the QASM Simulator 
are given in Table 2. Fig. 6 shows the data from the execution of Grover’s Algorithm in a 4-qubit search 
space, performed on a simulator m = 1 and n = 1024. The x-axis of the map displays the state actually 
measured by the simulator during the execution and the y-axis displays the target state as marked by the 
Boolean oracle. 
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Table 2: Results 
Quantum 
backend 

Number of 
qubits 

Number of 
shots Iterations ASP (%) Average 

runtime 

IBM QASM 
Simulator 

  1 46.92 1.30 
 1024 2 49.48 1.38 
4  3 85.40 1.41 
  1 47.28 1.32 
 8192 2 48.66 1.44 
  3 85.03 1.41 

IBMQ 
Santiago 

  1 6.02 14.58 
 1024 2 4.96 14.47 
4  3 5.58 14.62 
  1 5.93 16.48 
 8192 2 4.97 17.38 
  3 5.73 18.43 

 
Figure 6: IBM QASM Simulator results for Grover’s algorithm 

6.3 Quantum Backend (IBMQ Santiago) Results 
Next, the algorithm is run on a 5-qubit IBM Quantum Backend-IBMQ Santiago. The performance of 

the algorithm is tested with varying number of shots (n) and iterations (m). 
For m = 1 iterations and n = 1024 shots, the probability of correctly finding the target state (t = x′) is  

P(x′) = 874
16∗1024

= 6.02%  (50) 

Similarly for m = 1 iterations and n = 8192 shots 

P(x′) = 6973
16∗8192

= 5.93%  (51) 
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Results with subsequent number of shots (n) and iterations (m) performed on the IBMQ Santiago 
quantum backend are given in Table 2. 

Fig. 7 shows the data from the execution of Grover’s Algorithm in a 4-qubit search space, performed on 
IBMQ Santiago backend with m = 1 and n = 1024. The x-axis of the map displays the state measured by the 
quantum backend during the execution and the y-axis displays the target state as marked by the Boolean oracle. 

 
Figure 7: IBMQ Santiago results for Grover’s algorithm 

7 Conclusion 
This paper implements Grover’s Algorithm for unsorted search purposes in a search space of 4 qubits. 

The algorithm is run on two publicly available quantum backends-IBM QASM Simulator and IBMQ 
Santiago. The backends have a capacity of 32 qubits and 5 qubits, respectively. 

The results obtained from the experiment are analyzed and it is found that there is a huge difference 
between the accuracy of finding the target state among simulators and actual quantum devices. Where the 
simulator shows an average algorithmic success probability (ASP) of about 47%, the actual quantum device 
falls short at just 6% ASP. 

As discussed in the paper, increasing the number of iterations (m) of the Grover’s Operator (G) 
displays an increase in the ASP of the algorithm. By calculating the maximum number of optimal iterations, 
𝑟𝑟(𝑁𝑁) ≤ 𝑂𝑂(𝜋𝜋

4 √𝑁𝑁) ,we run the algorithm for m = 1, 2 and 3 iterations. For the first two iterations, the 
simulator shows results that are consistent with those obtained by a single application of the G operator. In 
the third iteration, howsoever, the ASP shots up to near 85% for IBM QASM Simulator. This might lead 
us to conclude that increasing the count of m up to the optimal limit improves the performance of the 
algorithm. However, it is surprising and erratic that the IBMQ Santiago quantum backend gives a better 
ASP when run for a single iteration in n = 1024 and 8192 shots. For m = 1 iteration, the quantum backend 
gives an ASP of around 6%, whereas, for the rest of the vales of m, ASP decreases for around 1%. This 
result is irregular considering that number of iterations when increased up to the limit of 𝑂𝑂(𝜋𝜋

4 √𝑁𝑁) should 
increase the ASP monotonically. 

It should also be noted that the algorithm shows no variation to the different number of shots (n) it has 
been repeated for. The results for n = 1024, the default for IBM quantum devices, and for n = 8192, the 
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maximum shots IBM devices can execute, are uniform. The average runtime of the program also remains 
the same for corresponding values of n. 

According to the theoretical results, Grover’s algorithm is expected to have an ASP of 47.27% for at 
least m = 1 iteration. Hence, it is evident that where IBM QASM Simulator runs to achieve this value, the 
IBMQ Santiago quantum device reaches nowhere near the limit. 

The possible reasons for the discrepancies which arose in expected and actual measurements could be 
attributed to the noise produced by an actual quantum device. The current quantum hardware in the NISQ 
[10] era is highly susceptible to environmental noise and the disturbances created by the quantum gates. 
The irregularity of the ASP of the quantum device for different values of m can also be well explained by 
knowing that the number of gates in a quantum circuit increase proportionally to the number of iterations. 
Moreover, the current quantum hardware differs in terms of topology and qubit quality which also produces 
some erroneous results. Thus, in order to obtain optimal results, one might need to develop hardware-
tailored quantum algorithms which produce the least amount of noise. 

Overall, it can be concluded that the current quantum hardware, such as the ones publicly available, 
are not yet suitable for the implementation of Grover’s algorithm with an increased qubit count. In a search 
space of 4 qubits, this algorithm provides no useful results when run on the actual IBMQ Santiago quantum 
backend. The simulators on the other hand do not consider the environmental noise and other factors, and 
therefore provide results which are consistent with the expected theoretical calculations. Moreover, 
quantum devices need to be optimized to provide results in a shorter time frame as the simulators.  
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Appendix 
A. Construction of Controlled-Z Gate (cccc-Z) 

Figs. 8 and 9 show the construction of ccc-Z and cccc-Z gates [8] used in the diffuser (𝑈𝑈𝑎𝑎) and 
Oracle (𝑈𝑈𝑜𝑜), respectively. 

 
Figure 8: Construction of a ccc-Z gate using controlled-V gates  

Figure 9: Construction of a cccc-Z gate using controlled-V gates 

B. Single-Solution Boolean Oracles 
Table 3 displays the single-solution Boolean Oracles for the N possible states. 

Table 3: Single solution Boolean Oracles 
Marked 
state Boolean Oracle Marked 

state Boolean Oracle 

0000  1000  

0001  1001  
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0010  1010  

0011  1011  

0100  1100  

0101  1101  

0110  1110  
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0111  1111  
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