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ABSTRACT

Medical image segmentation plays an important role in clinical diagnosis, quantitative analysis, and treatment
process. Since 2015, U-Net-based approaches have been widely used for medical image segmentation. The purpose
of the U-Net expansive path is to map low-resolution encoder feature maps to full input resolution feature maps.
However, the consecutive deconvolution and convolutional operations in the expansive path lead to the loss of
some high-level information.More high-level information canmake the segmentationmore accurate. In this paper,
we propose MU-Net, a novel, multi-path upsampling convolution network to retain more high-level information.
The MU-Net mainly consists of three parts: contracting path, skip connection, and multi-expansive paths. The
proposed MU-Net architecture is evaluated based on three different medical imaging datasets. Our experiments
show that MU-Net improves the segmentation performance of U-Net-based methods on different datasets. At the
same time, the computational efficiency is significantly improved by reducing the number of parameters by more
than half.
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1 Introduction

The purpose of medical image segmentation is to aid radiologists and clinicians in making
the diagnostic and treatment process more efficient. However, manually segmenting large numbers
of medical images is a time-consuming, error-prone task and requires a professional physician. To
deal with this problem, an automated medical image segmentation method is proposed. Automated
medical image segmentation can be applied to lung segmentation [1], brain segmentation in

This work is licensed under a Creative Commons Attribution 4.0 International License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

http://dx.doi.org/10.32604/cmes.2022.018565


74 CMES, 2022, vol.131, no.1

computed tomography (CT) [2], blood vessel detection in retinal images [3], etc. Previous methods
for medical image segmentation are usually based on threshold segmentation, region segmen-
tation, edge detection and segmentation of specific theories. With the development of artificial
intelligence [4], deep learning is widely used in such research domains as image classification,
segmentation and detection. Convolutional neural networks (CNNs) [5–7] have been introduced
into the field of image segmentation and have achieved great success. At present, medical image
segmentation is dominated by deep convolutional neural networks.

Based on fully convolutional networks (FCN) [8] and U-Net [9], CNNs have made significant
improvements in biomedical image segmentation. These encoder-decoder networks have become a
benchmark for medical image segmentation. The encoder-decoder architectures used for medical
image segmentation share a similar critical structure: skip connections. High-level, deep, coarse-
grained feature maps from the expansive path (decoder) can be combined with low-level, shallow,
fine-grained feature maps from the contracting path (encoder) through skip connections. The skip
connections can recover fine-grained details lost in the contracting path. The encoder-decoder
networks have been proved to be well applied to medical image segmentation. The state-of-the-
art models for image segmentation are variants of the encoder-decoder architecture like U-Net.
However, this U-Net structure still has shortcomings.

As we know, both low-level features and high-level features are important in the U-Net, and
only effective use of these features can achieve better segmentation results. Nevertheless, in the
U-Net series network, the feature map size is reduced in the contracting path, leading to the loss
of some low-level spatial information. Similarly, we argue that the consecutive deconvolution and
convolutional operations in the expansive path lead to the loss of some high-level information.
While the low-level, fine-grained information lost in the contracting path can be supplemented by
a skip connection, the high-level semantic information lost in the single expansive path cannot be
remedied. The single expansive path of U-Net-based approaches does not make efficient use of
high-level information. Meanwhile, there is redundancy in the expansive path of the U-Net series
network. The U-shaped symmetric structure leads to a large number of convolution operations in
the expansive path, thus increasing the parameter amount to make the model more complicated.

To overcome the shortcomings in the U-Net series network for medical image segmentation,
we propose the MU-Net, a new segmentation architecture based on multi-path upsampling and
skip connections. The multi-path fusion of shallow and deep features in the up-sampling process
can more effectively use low-level and high-level information. We argue that the skip connections
can make up for the lost fine-grained information in the down-sampling process, multi-path
up-sampling can make up for the lost high-level information in the upsampling process. The
contracting path and multiple expansive paths are connected by skip connections, which will result
in the fusion of different level features. The effective fusion of such different level features is
beneficial to obtain more accurate segmentation. The experimental results show that the proposed
architecture is effective and greatly reduces the number of parameters in the model meanwhile it
can improve the performance of U-Net series networks. The contributions of our work can be
summarized as follows:

1) Based on the U-Net series, we propose a novel convolutional network MU-Net for medical
image segmentation, using multi-expansive paths to implement upsampling.

2) We have solved the defect that high-level information lost in the expansive path. The
features of different layers in the contracting path are fused with the features of multiple
expansion paths to improve the segmentation performance.
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3) We remove the convolution operation in the expansive path, which greatly reduces the
number of parameters while ensuring the performance of the model. Our proposed method
outperforms the state-of-the-art methods in these different medical datasets.

The remainder of the paper is organized as follows. Section 2 introduces the related recent
literature. In Section 3, we describe the MU-Net architecture and its analysis. In Section 4, we
evaluate the performance of MU-Net on three different medical imaging datasets. In Section 5,
we draw some conclusions.

2 Related Works

Long et al. [8] first propose fully convolutional networks (FCN) for semantic segmentation
and it shares a novel idea: skip connections. Then, Ronneberger et al. [9] introduce U-Net which
uses skip connections to combine low-level features from the current layer with high-level feature
maps. U-Net has achieved great success in the segmentation field due to its good performance.
The variations have been proposed on U-Net for different image segmentation tasks. Vladimir
et al. [10] propose the TernausNet model, which introduces the pre-trained encoder. A pre-trained
encoder can be used when the data set is small. Milletari et al. [11] propose V-Net, an approach
to 3D image segmentation based on a volumetric, fully convolutional, neural network. V-Net is
a 3D segmentation implementation based on U-Net. Zhou et al. [12] reduce the semantic gap
between the feature maps of the encoder and decoder sub-networks by a series of nested dense
skip path connections, propose the UNet++.

In addition, some other structures and mechanisms have been introduced to improve the
performance of U-Net. Oktay et al. [13] propose Attention U-Net and introduce attention gate
(AG) which can be easily integrated into standard CNN architecture. Attention gate can suppress
the learning of the part that is not related to the task while aggravating the learning of the related
task. Inspired by the densely connected [14] and inception architecture [15], Dolz et al. [16] pro-
pose Dense Multi-path U-Net for Ischemic Stroke Lesion Segmentation. Guan et al. [17] propose
Fully Dense UNet for 2D Sparse Photoacoustic Tomography Artifact Removal. Zhang et al. [18]
propose a Multi-scale Densely Connected U-Net which directly fuses the neighboring different
scale feature maps from both higher layers and lower layers to strengthen feature propagation
in the current layer. Alom et al. [19] propose the R2U-Net model utilizing the power of U-Net,
Residual Network, as well as RCNN. Gu et al. [20] argue that capturing higher-level features in the
encoder and preserving more spatial information in the decoder improve the performance of image
segmentation. They propose a Context Extractor Module that employs different receptive fields
and a residual [21] multi-kernel pooling to segment targets of different sizes. Ibtehaz et al. [22]
propose MultiResUNet, which uses MultiRes blocks and Res paths to solve the scale diversity in
medical images and the semantic gap between the corresponding layers of the encoder-decoder.

Despite the above models have achieved excellent segmentation, there are some common flaws.
1) To capture more high-level features in the encoder, some spatial information is lost in the
contracting path but can be compensated by skip connections. However, the high-level features
will also be partially missed through the expansive path. The deep abstract features cannot be
utilized more efficiently. 2) There is redundancy in the expansive path of U-Net-based networks,
where convolution operations are not necessarily required.

3 Methodology

In this section, we will introduce the specific structural design of the model. MU-Net has
an encoder sub-network and a corresponding decoder sub-network, followed by a pixel-wise
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classification layer. Fig. 1 shows the overall architecture of our model, which mainly consists
of three major parts: (1) Contracting Path (left): extract deep and high-level features; (2) Skip
Connection (middle): reduce the semantic gap; (3) Multi-Expansive Paths (right): enable precise
localization. There are four upsampling paths marked by purple arrows. The first three expan-
sive paths are upsampled twice, and the last only needs to be upsampled once. Each blue box
corresponds to a multi-channel feature map. The number of channels is denoted on top of the
box.

Figure 1: The illustration of MU-Net architecture: multi-path upsampling network

3.1 Contracting Path
In the contracting path of the U-Net network, each block contains two convolution layers

and one max pooling layer. In our proposed network, we replace the two convolution layers with
a MultiRes block [22], as is shown in Fig. 2. It uses three successive 3× 3 filters and adds a
residual connection (along with a 1× 1 filter for conserving dimensions). The three consecutive
convolutional layers have different numbers of filters, which are 1/6, 1/3, 1/2 of the number of
input feature map channels. The gradual increase in filters prevents the memory requirement of
the earlier layers from extremely spreading to the deeper parts of the network. After a MultiRes
block [22], the number of filters is doubled. Specifically, after 4 times of MultiRes blocks in the
encoder, the number of filters remains from 32 to 512. The max-pooling operation in the encoder
sub-network is 4 times, and each downsampling will halve the size of the feature map. In the
contracting path, the resolution of the feature map is continuously reduced, which will lead to the
loss of some spatial information. Fortunately, the lost spatial information can be made up by skip
connections. The contracting path can automatically extract the high-level features of the image.
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Figure 2: MultiRes block

3.2 Skip Connection
The U-Net architecture connects the encoder to the decoder through skip connection, enabling

the spatial information lost in the max pooling operation of the contracting path to be propagated
to the decoder. Skip connections can combine low-level, fine-grained feature maps from the
contracting path with high-level, coarse-grained feature maps from expansive paths [12]. However,
features from the contracting path should be lower-level features, while features from the expansive
path should be higher-level features. Maybe there is a semantic gap between features of encoder
and decoder when feature merging is done through skip connection. The fusion of incompatible
feature maps may adversely affect the prediction process. Hence, we replace the ordinary skip
connection with the Res path [22], so that the features of the encoder can be processed more,
making the corresponding layer features stitched through the skip connection more semantically
similar.

The structure of the Res path is shown in Fig. 3. There are four Max-pooling between the
top layer and the bottom layer, so there are 4 repeats of 3× 3 and 1× 1 convolution in the Res
path. Connect the feature map of the encoder to the decoder via a chain of convolutional layers
with residual connections. The residual connections [23] make the learning process easier.

Figure 3: The Res path structure of the top-level skip connection

3.3 Multi-Expansive Paths
The expansive path is mainly used to restore the resolution of the image to its original size.

The typical decoder structures in the U-Net-based networks are shown in Fig. 4, containing a
single expansive path only. The deepest abstract feature reduces the number of feature channels
by deconvolution, then merges with the feature map from the skip connection. Next, the feature
maps are reduced by convolution. This process repeats until the original image size is restored.
However, there are two main defects in the decoder structure of a typical U-Net network.
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Figure 4: The decoder of U-Net based networks

Firstly, the high-level information is partially lost in the single expansive path. The high-level
information lost in the expansive path mainly comes from two aspects. The one is that the number
of feature channels is reduced due to the deconvolution operation which results in the loss of
high-level information and the other one is that the convolution of the merged feature map will
reduce feature channels. Secondly, there is a lot of redundancy due to the convolution operation
in the expansive path. Plenty of convolution operations in the expansive path increase the number
of model parameters, but these convolutions are not necessary and may not necessarily improve
the performance of the model.

To solve these two problems, we have re-designed the expansive path. The most impor-
tant modification in our network is to change the single expansive path in the decoder
into multi-expansive paths while removing the convolution operation in the expansive path,
as shown in Fig. 1. The four expansive paths are connected by skip connection with dif-
ferent layers in the contracting path respectively. The first expansive path is restored to the
resolution of the original image only by one deconvolution, and the last three expansive
paths are deconvolved twice. The features of different scales are extracted from different
layers in the contracting path and then fused with the features obtained by deconvolu-
tion of different expansive paths. Formally, let Ei denote the output of expansive path i,
E denotes the output of multi-expansive paths, we formulate the multi-expansive paths as
follows:

Ei =
{
[U(F), F1], i= 1
U([U(F), Fi]), i> 1 (1)

E = [E1, E2, E3, E4] (2)
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where F indicates the lowest level features, Fi indicates the features of the i-th layer after being
processed by MultiResBlock. U( ) denotes a deconvolution layer, and [] is concatenate operation.
The high-level features are sampled back through multiple paths, making better use of deep
features. From the perspective of the feature pyramid [24], the deepest feature is the decision-
maker, while the shallow feature is the observer. The decision-maker makes the judgment on
segmentation according to the information provided by different observers and finally synthesizes
these judgments. This multi-path upsampling convolution network architecture can make more
efficient use of shallow and high-level features to improve segmentation performance. From a
computational perspective, it is necessary to make networks more efficient concerning size and
speed. Our redefined expansive path removes the convolution operation and only contains decon-
volution, which greatly reduces the amounts of parameters. Removing convolution operation from
the expansive path does not reduce the segmentation performance of the network.

Effective use of shallow and high-level features can improve image segmentation performance.
The skip connections take some fine-grained information from encoder to decoder to remedy the
information loss in the extracting path, which allows the shallow features to be fully utilized.
Our proposed multi-expansive paths can remedy the loss of high-level feature information in the
decoder. Our decoder is a novel architecture.

To demonstrate the performance of the MU-Net, we have tested our model on three different
medical imaging datasets. These include cell contour segmentation, blood vessel segmentation from
retina images (DRIVE), skin cancer lesion segmentation. The network structure parameter table
is detailed in the Appendix.

4 Experiments

In this section, we first introduce some implementation details of the model. The task of
semantic segmentation is to predict each pixel to be foreground or background, which is a pixel-
wise classification problem. Our network architecture can be trained end-to-end. The encoder and
decoder weights of the network are initialized using the technique described by He et al. [25]. We
train all parameters through the Keras platform, using stochastic gradient descent with a fixed
learning rate of 0.1 and a momentum of 0.9. Gradient updates are computed using small batch
sizes of 2 samples.

The most common loss function is the cross-entropy loss function [8]. To verify the high per-
formance of our network model, we choose this loss function as the objective function for training
the network. For quantitative analysis of the experimental results, several performance metrics are
considered, including accuracy, recall (sensitivity), Jaccard Index, and Hausdorff Distance. Jaccard
Index and Hausdorff Distance are two of the most commonly used indicators for segmentation.
We compare our network architecture with a state-of-the-art segmented network. A comparative
experiment is conducted with the MultiResUnet [22] architecture. MultiResUnet is based on the
U-Net network modification and has achieved good segmentation results. Table 1 shows a com-
parison between our method and others. The proposed MU-Net model is benchmarked against
the MulitResUNet and U-Net for different training and testing splits. To display the change in
the number of model parameters, we display the original image size and the input size of the
training into the table.
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1) Cell Contour Segmentation

We first evaluate the proposed MU-Net on cell contour segmentation. The dataset is provided
by the EM challenge, which started at ISBI 2012. The training set contains 30 images. The testing
set consists of 30 images and is publicly available as well. The original image size was 512×
512, however, we resized the images to 256× 256 pixels. We trained this data set using the 5-fold
cross-validation to ensure a balance between bias and variance. Data augmentation [9] is essential
to teach the network the desired invariance and robustness properties when only a few training
samples are available. During the training, the properties of elastic deformation including image
horizontal, vertical and diagonal flips [26,27] were used to enhance the data.

Table 1: Segmentation result for cell contour, retinal vessel and skin cancer lesion

Dataset Model Original
size

Input
size

Parameters Accuracy
(%)

Recall
(%)

Jaccard
index
(%)

Hausdorff
distance

ISBI-2012 U-Net 512 × 512 × 1 256 × 256 × 1 7,759,585 91.87 95.46 90.57 165.41
MultiResUNet 512 × 512 × 1 256 × 256 × 1 7,262,504 92.15 95.04 90.94 152.38
MU-Net(proposed) 512 × 512 × 1 256 × 256 × 1 3,445,126 92.33 96.25 91.11 148.56

DRIVE U-Net 584 × 565 × 3 448 × 448 × 3 7,759,585 95.75 75.75 74.34 71.25
MultiResUNet 584 × 565 × 3 448 × 448 × 3 7,262,750 96.70 80.76 75.23 64.89
MU-Net(proposed) 584 × 565 × 3 448 × 448 × 3 3,445,280 96.72 80.99 75.27 57.26

Skin cancer U-Net 192 × 256 × 3 192 × 192 × 1 7,759,585 94.12 84.40 73.64 74.61
Lesion MultiResUNet 192 × 256 × 3 192 × 192 × 1 7,262,504 94.35 78.08 74.17 65.43

MU-Net(proposed) 192 × 256 × 3 192 × 192 × 1 3,445,126 94.39 81.93 77.46 52.19

From the comparison, the MU-Net achieves 0.9233, 0.9625, 0.9111, and 148.56 in Accuracy,
Recall, Jaccard index, and Hausdorff distance respectively, better than U-Net and MultiResUNet.
Meanwhile, the parameter quantity of our model is 3,445,126, which is greatly reduced com-
pared with the parameter quantity of 7,759,585 of U-Net and 7,260,504 of MultiResUnet. From
Table 1, we can conclude that the accuracy of our proposed model can be increased by up to
1% when the parameters are halved, which shows that the training cost of our model has been
reduced. These experimental results show that our redesigned decoder module not only reduces
the number of model parameters but also facilitates cell contour segmentation. We argue that the
multi-path upsampling network can make more effective use of the high-level features, to improve
the performance of the model. We also give examples for visual comparison in Figs. 5 and 6.
In Fig. 5, the first column shows the original image, the second column shows the segmentation
output using U-Net, the third column shows the segmentation output using MultiResUNet [22],
the fourth column shows our architecture MU-Net segmentation result, and the last column is
ground truth. Fig. 6 shows the outline of our segmentation result is more consistent with the
ground truth. The result of U-Net segmentation has more noise, MultiResUNet is easy to mislabel
part of the nucleus, and MU-Net is relatively better. From the comparison, we can conclude that
the segmentation contour of our proposed model fits better with the real label. Also as shown
in Fig. 7, the MU-Net model has the best segmentation effects among the three models when
segmenting the cell neuron structure.
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Figure 5: The segmentation results of the EM challenge dataset

Figure 6: Contour comparison chart of segmentation results

Figure 7: Comparison of segmentation performance of neuron structure
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2) Retinal Vessel Segmentation

The second comparative experiment was on retinal vessel segmentation. We use the public
DRIVE dataset [28] for retinal vascular segmentation. In DRIVE, there are 40 colour retinal
images which are divided into 20 images for training and 20 images for testing. The size of each
original image is 565× 584 pixels, which was rescaled to 448× 448 for this implementation. Since
the dataset is small, we also use data augmentation, with the same strategy used in cell contour
segmentation.

The performance comparisons are summarized in Table 1, Compared to U-Net, the parameter
quantity decreases from 7,759,585 to 3,445,280 by 55.6%, the accuracy score increases from 0.9575
to 0.9672, the recall score increases from 0.7575 to 0.8099, the Jaccard index increases from
0.7434 to 0.7527, while the Hausdorff distance index dropped from 71.25 to 57.26, which proves
the validity of our multiple expansive paths. Compared to MultiResUNet, our model has also
improved. We also give examples for visual comparison in Figs. 8 and 9. In Fig. 8, the first col-
umn shows the input image, the second column shows the segmentation output using U-Net, the
third column shows the segmentation output using MultiResUNet [22], the fourth column shows
our architecture MU-Net segmentation result, and the last column is ground truth. Fig. 9 shows
that our segmentation results are more accurate in detail. Although the improvement of evaluation
metrics is not particularly large, it is better visually. In the process of actual segmentation of
retinal vascular cases, the segmentation of the end of the blood vessel is more refined, which is
more accurate for some bleeding, exudation, etc. The images of other lesions are less affected
when segmented, and are closer to the real label Ground Truth.

Figure 8: Experimental outputs of DRIVE dataset
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Figure 9: Comparison of segmentation results on DRIVE dataset

In Fig. 10, it can also be seen that the performance of MU-Net is improved, the index
convergence is relatively stable, and it has good robustness.

Figure 10: Comparison of retinal blood vessel segmentation

3) Skin Cancer Lesion Segmentation

Finally, the comparison is conducted on the segmentation of skin cancer lesions. The dataset
is taken from the Kaggle competition on skin lesion segmentation [29] which contains 2000
samples. The original image size was 192× 256, we resize the images to 192× 192 pixels. The
original images, as well as corresponding target binary images containing cancer or non-cancer
lesions, were included in the samples. We use 80% of the images for training and the rest for
testing. In this experiment, no preprocessing is performed on the data.

The metrics for evaluating the segmentation of skin cancer lesions are shown in Table 1.
From the comparison, the MU-Net achieves 0.9439, 0.8193, 0.7746, and 52.19 in Accuracy, Recall,
Jaccard index, and Hausdorff distance, respectively. Although the recall score is lower than U-
Net’s 0.8440. MU-Net is better in contour segmentation from the perspective of visual effects,
as shown in Fig. 11. In Fig. 11, these five columns are respectively the original image, U-Net
segmentation result, MultiResUNet segmentation result, MU-Net segmentation result, and ground
truth. The visualization results of the accuracy and Jaccard index indices during segmentation are
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shown in Fig. 12. Convergence is more stable on the accuracy indices, but on the Jaccard index
indices, both U-Net and MUltiResUNet fluctuate for a long time, compared with MU-Net, which
is more stable during training.

Figure 11: The segmentation of skin cancer lesion image

Figure 12: Comparison of segmentation performance of dermoscopy lesions
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4) Comparative Experiments

In this work, we also use MU-Net to compare with other more advanced segmentation
algorithms that use the same data set. They are the CE-Net model proposed by Gu et al. [20] in
2019, the UNet++ model proposed by Szegedy et al. [23] in 2018 and the SegNet model proposed
by Badrinarayanan et al. [30] in 2017. Through the current more advanced algorithm model [31,32]
to conduct segmentation comparison experiments on medical data sets, it is proved that the MU-
Net proposed in this paper is of great help in improving the segmentation performance of medical
images. The specific comparison results are shown in Tables 2 and 3.

Table 2: Comparison of the segmentation results of various algorithms on the DRIVE dataset

No. Model Acc Recall Jaccard Hausdorff

1 MU-Net 0.9672 0.8099 0.7527 57.26
2 CE-Net 0.9658 0.8124 0.7423 65.27
3 UNet++ 0.9543 0.7891 0.7475 66.74

Table 3: Comparison of the segmentation results of various algorithms on the skin canner dataset

No. Model Acc Recall Jaccard Hausdorff

1 MU-Net 0.9439 0.8193 0.7746 52.19
2 CE-Net 0.9417 0.7821 0.7464 68.23
3 SegNet 0.9343 0.7765 0.7378 67.98

Tables 2 and 3 show that our proposed multi-path upsampling convolutional neural network
MU-Net has achieved better results in accuracy, Jaccard index, and Hausdorff distance compared
with other algorithms. Although the recall score is lower than that of the CE-Net model when
training in different data sets, the overall performance of our proposed multi-path upsampling
convolutional neural network MU-Net has made progress.

Through comparative experiments on MU-Net on various data sets, the results show that the
multi-path upsampling convolutional network MU-Net, which is based on the improvement of the
codec architecture, significantly reduces the parameters of the model without affecting the segmen-
tation performance. The MU-Net model is better than the other three models in Accuracy, recall,
Jaccard index, and Hausdorff distance, which effectively improves the segmentation performance.
And multi-path up-sampling can make more effective use of high-level abstract semantic features
while fusing features of different scales. The improved skip connection structure in MU-Net can
avoid the problem of the semantic gap to a certain extent.

5 Conclusion and Future Work

In this paper, we propose a novel multi-path upsampling convolutional network for medical
image segmentation termed MU-Net. The MU-Net directly builds in MultiReUNet (based on
U-Net). Of course, our model can also be easily built on other U-Net-based architectures. We
redesign the decoder, using a multi-expansive path and remove the convolution operation in the
expansive path. Our approach solves the defect that the high-level information is lost in the expan-
sive path of U-Net. Meanwhile, the convolution operation of the expansive path is removed, which
greatly reduces the parameter amount of the model, but the segmentation performance is not
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reduced. Our model is evaluated using three different datasets, including cell contour segmentation,
retina blood vessel segmentation, and skin cancer lesion segmentation. The experimental results
demonstrate that the proposed MU-Net model shows better performance in segmentation tasks
with the half number of network parameters when compared to U-Net and MulitiResUNet on
all three datasets. In the future, we would like to explore the same architecture to make more
effective use of shallow and high-level features.
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Appendix

Layer (type) Output shape Param # Connected to

input_1 (InputLayer) (None, 192, 192, 1) 0

conv2d_2 (Conv2D) (None, 192, 192, 5) 45 input_1[0][0]

batch_normalization_2 (BatchNormalization) (None, 192, 192, 5) 15 conv2d_2[0][0]

activation_1 (Activation) (None, 192, 192, 5) 0 batch_normalization_2[0][0]

conv2d_3 (Conv2D) (None, 192, 192, 11) 495 activation_1[0][0]

batch_normalization_3 (BatchNormalization) (None, 192, 192, 11) 33 conv2d_3[0][0]

activation_2 (Activation) (None, 192, 192, 11) 0 batch_normalization_3[0][0]

conv2d_4 (Conv2D) (None, 192, 192, 16) 1584 activation_2[0][0]

batch_normalization_4 (BatchNormalization) (None, 192, 192, 16) 48 conv2d_4[0][0]

activation_3 (Activation) (None, 192, 192, 16) 0 batch_normalization_4[0][0]

conv2d_1 (Conv2D) (None, 192, 192, 32) 32 input_1[0][0]

concatenate_1 (Concatenate) (None, 192, 192, 32) 0 activation_1[0][0]

activation_2[0][0]

activation_3[0][0]

batch_normalization_1 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_1[0][0]

batch_normalization_5 (BatchNormalization) (None, 192, 192, 32) 128 concatenate_1[0][0]

add_1 (Add) (None, 192, 192, 32) 0 batch_normalization_1[0][0]

batch_normalization_5[0][0]

activation_4 (Activation) (None, 192, 192, 32) 0 add_1[0][0]

batch_normalization_6 (BatchNormalization) (None, 192, 192, 32) 128 activation_4[0][0]

max_pooling2d_1 (MaxPooling2D) (None, 96, 96, 32) 0 batch_normalization_6[0][0]

conv2d_14 (Conv2D) (None, 96, 96, 11) 3168 max_pooling2d_1[0][0]

batch_normalization_20 (BatchNormalization) (None, 96, 96, 11) 33 conv2d_14[0][0]

activation_13 (Activation) (None, 96, 96, 11) 0 batch_normalization_20[0][0]

conv2d_15 (Conv2D) (None, 96, 96, 21) 2079 activation_13[0][0]

batch_normalization_21 (BatchNormalization) (None, 96, 96, 21) 63 conv2d_15[0][0]

activation_14 (Activation) (None, 96, 96, 21) 0 batch_normalization_21[0][0]

conv2d_16 (Conv2D) (None, 96, 96, 32) 6048 activation_14[0][0]

batch_normalization_22 (BatchNormalization) (None, 96, 96, 32) 96 conv2d_16[0][0]

activation_15 (Activation) (None, 96, 96, 32) 0 batch_normalization_22[0][0]

conv2d_13 (Conv2D) (None, 96, 96, 64) 2048 max_pooling2d_1[0][0]

activation_15[0][0]

batch_normalization_19 (BatchNormalization) (None, 96, 96, 64) 192 conv2d_13[0][0]

batch_normalization_23 (BatchNormalization) (None, 96, 96, 64) 256 concatenate_2[0][0]
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add_6 (Add) (None, 96, 96, 64) 0 batch_normalization_19[0][0]

batch_normalization_23[0][0]

activation_16 (Activation) (None, 96, 96, 64) 0 add_6[0][0]

batch_normalization_24 (BatchNormalization) (None, 96, 96, 64) 256 activation_16[0][0]

max_pooling2d_2 (MaxPooling2D) (None, 48, 48, 64) 0 batch_normalization_24[0][0]

conv2d_24 (Conv2D) (None, 48, 48, 21) 12096 max_pooling2d_2[0][0]

batch_normalization_35 (BatchNormalization) (None, 48, 48, 21) 63 conv2d_24[0][0]

activation_23 (Activation) (None, 48, 48, 21) 0 batch_normalization_35[0][0]

conv2d_25 (Conv2D) (None, 48, 48, 43) 8127 activation_23[0][0]

concatenate_2 (Concatenate) (None, 96, 96, 64) 0 activation_13[0][0]

activation_14[0][0]

batch_normalization_36 (BatchNormalization) (None, 48, 48, 43) 129 conv2d_25[0][0]

activation_24 (Activation) (None, 48, 48, 43) 0 batch_normalization_36[0][0]

conv2d_26 (Conv2D) (None, 48, 48, 64) 24768 activation_24[0][0]

batch_normalization_37 (BatchNormalization) (None, 48, 48, 64) 192 conv2d_26[0][0]

activation_25 (Activation) (None, 48, 48, 64) 0 batch_normalization_37[0][0]

conv2d_23 (Conv2D) (None, 48, 48, 128) 8192 max_pooling2d_2[0][0]

concatenate_3 (Concatenate) (None, 48, 48, 128) 0 activation_23[0][0]

activation_24[0][0]

activation_25[0][0]

batch_normalization_34 (BatchNormalization) (None, 48, 48, 128) 384 conv2d_23[0][0]

batch_normalization_38 (BatchNormalization) (None, 48, 48, 128) 512 concatenate_3[0][0]

add_10 (Add) (None, 48, 48, 128) 0 batch_normalization_34[0][0]

batch_normalization_38[0][0]

activation_26 (Activation) (None, 48, 48, 128) 0 add_10[0][0]

batch_normalization_39 (BatchNormalization) (None, 48, 48, 128) 512 activation_26[0][0]

max_pooling2d_3 (MaxPooling2D) (None, 24, 24, 128) 0 batch_normalization_39[0][0]

conv2d_32 (Conv2D) (None, 24, 24, 43) 49536 max_pooling2d_3[0][0]

batch_normalization_47 (BatchNormalization) (None, 24, 24, 43) 129 conv2d_32[0][0]

activation_31 (Activation) (None, 24, 24, 43) 0 batch_normalization_47[0][0]

conv2d_33 (Conv2D) (None, 24, 24, 85) 32895 activation_31[0][0]

batch_normalization_48 (BatchNormalization) (None, 24, 24, 85) 255 conv2d_33[0][0]

activation_32 (Activation) (None, 24, 24, 85) 0 batch_normalization_48[0][0]
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conv2d_34 (Conv2D) (None, 24, 24, 128) 97920 activation_32[0][0]

batch_normalization_49 (BatchNormalization) (None, 24, 24, 128) 384 conv2d_34[0][0]

activation_33 (Activation) (None, 24, 24, 128) 0 batch_normalization_49[0][0]

conv2d_6 (Conv2D) (None, 192, 192, 32) 9216 batch_normalization_6[0][0]

conv2d_31 (Conv2D) (None, 24, 24, 256) 32768 max_pooling2d_3[0][0]

concatenate_4 (Concatenate) (None, 24, 24, 256) 0 activation_31[0][0]

activation_32[0][0]

activation_33[0][0]

conv2d_5 (Conv2D) (None, 192, 192, 32) 1024 batch_normalization_6[0][0]

batch_normalization_8 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_6[0][0]

batch_normalization_46 (BatchNormalization) (None, 24, 24, 256) 768 conv2d_31[0][0]

batch_normalization_50 (BatchNormalization) (None, 24, 24, 256) 1024 concatenate_4[0][0]

batch_normalization_7 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_5[0][0]

activation_5 (Activation) (None, 192, 192, 32) 0 batch_normalization_8[0][0]

add_13 (Add) (None, 24, 24, 256) 0 batch_normalization_46[0][0]

batch_normalization_50[0][0]

add_2 (Add) (None, 192, 192, 32) 0 batch_normalization_7[0][0]

activation_5[0][0]

activation_34 (Activation) (None, 24, 24, 256) 0 add_13[0][0]

conv2d_18 (Conv2D) (None, 96, 96, 64) 36864 batch_normalization_24[0][0]

activation_6 (Activation) (None, 192, 192, 32) 0 add_2[0][0]

batch_normalization_51 (BatchNormalization) (None, 24, 24, 256) 1024 activation_34[0][0]

conv2d_17 (Conv2D) (None, 96, 96, 64) 4096 batch_normalization_24[0][0]

batch_normalization_26 (BatchNormalization) (None, 96, 96, 64) 192 conv2d_18[0][0]

batch_normalization_9 (BatchNormalization) (None, 192, 192, 32) 128 activation_6[0][0]

max_pooling2d_4 (MaxPooling2D) (None, 12, 12, 256) 0 batch_normalization_51[0][0]

batch_normalization_25 (BatchNormalization) (None, 96, 96, 64) 192 conv2d_17[0][0]

activation_17 (Activation) (None, 96, 96, 64) 0 batch_normalization_26[0][0]

conv2d_8 (Conv2D) (None, 192, 192, 32) 9216 batch_normalization_9[0][0]

conv2d_38 (Conv2D) (None, 12, 12, 86) 198144 max_pooling2d_4[0][0]

add_7 (Add) (None, 96, 96, 64) 0 batch_normalization_25[0][0]

activation_17[0][0]
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conv2d_7 (Conv2D) (None, 192, 192, 32) 1024 batch_normalization_9[0][0]

batch_normalization_11 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_8[0][0]

batch_normalization_56 (BatchNormalization) (None, 12, 12, 86) 258 conv2d_38[0][0]

activation_18 (Activation) (None, 96, 96, 64) 0 add_7[0][0]

batch_normalization_10 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_7[0][0]

activation_7 (Activation) (None, 192, 192, 32) 0 batch_normalization_11[0][0]

activation_37 (Activation) (None, 12, 12, 86) 0 batch_normalization_56[0][0]

batch_normalization_27 (BatchNormalization) (None, 96, 96, 64) 256 activation_18[0][0]

add_3 (Add) (None, 192, 192, 32) 0 batch_normalization_10[0][0]

activation_7[0][0]

conv2d_39 (Conv2D) (None, 12, 12, 170) 131580 activation_37[0][0]

conv2d_28 (Conv2D) (None, 48, 48, 128) 147456 batch_normalization_39[0][0]

conv2d_20 (Conv2D) (None, 96, 96, 64) 36864 batch_normalization_27[0][0]

activation_8 (Activation) (None, 192, 192, 32) 0 add_3[0][0]

batch_normalization_57 (BatchNormalization) (None, 12, 12, 170) 510 conv2d_39[0][0]

conv2d_27 (Conv2D) (None, 48, 48, 128) 16384 batch_normalization_39[0][0]

batch_normalization_41 (BatchNormalization) (None, 48, 48, 128) 384 conv2d_28[0][0]

conv2d_19 (Conv2D) (None, 96, 96, 64) 4096 batch_normalization_27[0][0]

batch_normalization_29 (BatchNormalization) (None, 96, 96, 64) 192 conv2d_20[0][0]

batch_normalization_12 (BatchNormalization) (None, 192, 192, 32) 128 activation_8[0][0]

activation_38 (Activation) (None, 12, 12, 170) 0 batch_normalization_57[0][0]

batch_normalization_40 (BatchNormalization) (None, 48, 48, 128) 384 conv2d_27[0][0]

activation_27 (Activation) (None, 48, 48, 128) 0 batch_normalization_41[0][0]

batch_normalization_28 (BatchNormalization) (None, 96, 96, 64) 192 conv2d_19[0][0]

activation_19 (Activation) (None, 96, 96, 64) 0 batch_normalization_29[0][0]

conv2d_10 (Conv2D) (None, 192, 192, 32) 9216 batch_normalization_12[0][0]

conv2d_40 (Conv2D) (None, 12, 12, 256) 391680 activation_38[0][0]

add_11 (Add)

(None, 48, 48, 128) 0 batch_normalization_40[0][0]

activation_27[0][0]

add_8 (Add) (None, 96, 96, 64) 0 batch_normalization_28[0][0]

activation_19[0][0]

conv2d_9 (Conv2D) (None, 192, 192, 32) 1024 batch_normalization_12[0][0]
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batch_normalization_14 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_10[0][0]

batch_normalization_58 (BatchNormalization) (None, 12, 12, 256) 768 conv2d_40[0][0]

activation_28 (Activation) (None, 48, 48, 128) 0 add_11[0][0]

activation_20 (Activation) (None, 96, 96, 64) 0 add_8[0][0]

batch_normalization_13 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_9[0][0]

activation_9 (Activation) (None, 192, 192, 32) 0 batch_normalization_14[0][0]

activation_39 (Activation) (None, 12, 12, 256) 0 batch_normalization_58[0][0]

batch_normalization_42 (BatchNormalization) (None, 48, 48, 128) 512 activation_28[0][0]

batch_normalization_30 (BatchNormalization) (None, 96, 96, 64) 256 activation_20[0][0]

add_4 (Add) (None, 192, 192, 32) 0 batch_normalization_13[0][0]

activation_9[0][0]

conv2d_37 (Conv2D) (None, 12, 12, 512) 131072 max_pooling2d_4[0][0]

concatenate_5 (Concatenate) (None, 12, 12, 512) 0 activation_37[0][0]

activation_38[0][0]

activation_39[0][0]

conv2d_36 (Conv2D) (None, 24, 24, 256) 589824 batch_normalization_51[0][0]

conv2d_30 (Conv2D) (None, 48, 48, 128) 147456 batch_normalization_42[0][0]

conv2d_22 (Conv2D) (None, 96, 96, 64) 36864 batch_normalization_30[0][0]

activation_10 (Activation) (None, 192, 192, 32) 0 add_4[0][0]

batch_normalization_55 (BatchNormalization) (None, 12, 12, 512) 1536 conv2d_37[0][0]

batch_normalization_59 (BatchNormalization) (None, 12, 12, 512) 2048 concatenate_5[0][0]

conv2d_35 (Conv2D) (None, 24, 24, 256) 65536 batch_normalization_51[0][0]

batch_normalization_53 (BatchNormalization) (None, 24, 24, 256) 768 conv2d_36[0][0]

conv2d_29 (Conv2D) (None, 48, 48, 128) 16384 batch_normalization_42[0][0]

batch_normalization_44 (BatchNormalization) (None, 48, 48, 128) 384 conv2d_30[0][0]

conv2d_21 (Conv2D) (None, 96, 96, 64) 4096 batch_normalization_30[0][0]

batch_normalization_32 (BatchNormalization) (None, 96, 96, 64) 192 conv2d_22[0][0]

batch_normalization_15 (BatchNormalization) (None, 192, 192, 32) 128 activation_10[0][0]

add_15 (Add) (None, 12, 12, 512) 0 batch_normalization_55[0][0]

batch_normalization_59[0][0]

batch_normalization_52 (BatchNormalization) (None, 24, 24, 256) 768 conv2d_35[0][0]

activation_35 (Activation) (None, 24, 24, 256) 0 batch_normalization_53[0][0]

batch_normalization_43 (BatchNormalization) (None, 48, 48, 128) 384 conv2d_29[0][0]
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activation_29 (Activation) (None, 48, 48, 128) 0 batch_normalization_44[0][0]

batch_normalization_31 (BatchNormalization) (None, 96, 96, 64) 192 conv2d_21[0][0]

activation_21 (Activation) (None, 96, 96, 64) 0 batch_normalization_32[0][0]

conv2d_12 (Conv2D) (None, 192, 192, 32) 9216 batch_normalization_15[0][0]

activation_40 (Activation) (None, 12, 12, 512) 0 add_15[0][0]

add_14 (Add) (None, 24, 24, 256) 0 batch_normalization_52[0][0]

activation_35[0][0]

add_12 (Add) (None, 48, 48, 128) 0 batch_normalization_43[0][0]

activation_29[0][0]

add_9 (Add) (None, 96, 96, 64) 0 batch_normalization_31[0][0]

activation_21[0][0]

conv2d_11 (Conv2D) (None, 192, 192, 32) 1024 batch_normalization_15[0][0]

batch_normalization_17 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_12[0][0]

batch_normalization_60 (BatchNormalization) (None, 12, 12, 512) 2048 activation_40[0][0]

activation_36 (Activation) (None, 24, 24, 256) 0 add_14[0][0]

activation_30 (Activation) (None, 48, 48, 128) 0 add_12[0][0]

activation_22 (Activation) (None, 96, 96, 64) 0 add_9[0][0]

batch_normalization_16 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_11[0][0]

activation_11 (Activation) (None, 192, 192, 32) 0 batch_normalization_17[0][0]

conv2d_transpose_1 (Conv2DTrans (None, 24, 24, 256) 524544 batch_normalization_60[0][0]

batch_normalization_54 (BatchNormalization) (None, 24, 24, 256) 1024 activation_36[0][0]

conv2d_transpose_3 (Conv2DTrans (None, 48, 48, 128) 262272 batch_normalization_60[0][0]

batch_normalization_45 (BatchNormalization) (None, 48, 48, 128) 512 activation_30[0][0]

conv2d_transpose_5 (Conv2DTrans (None, 96, 96, 64) 131136 batch_normalization_60[0][0]

batch_normalization_33 (BatchNormalization) (None, 96, 96, 64) 256 activation_22[0][0]

add_5 (Add) (None, 192, 192, 32) 0 batch_normalization_16[0][0]

activation_11[0][0]

concatenate_6 (Concatenate) (None, 24, 24, 512) 0 conv2d_transpose_1[0][0]

batch_normalization_54[0][0]

concatenate_7 (Concatenate) (None, 48, 48, 256) 0 conv2d_transpose_3[0][0]

batch_normalization_45[0][0]

concatenate_8 (Concatenate) (None, 96, 96, 128) 0 conv2d_transpose_5[0][0]
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batch_normalization_33[0][0]

activation_12 (Activation) (None, 192, 192, 32) 0 add_5[0][0]

conv2d_transpose_2 (Conv2DTrans (None, 192, 192, 32) 65568 concatenate_6[0][0]

conv2d_transpose_4 (Conv2DTrans (None, 192, 192, 32) 32800 concatenate_7[0][0]

conv2d_transpose_6 (Conv2DTrans (None, 192, 192, 32) 16416 concatenate_8[0][0]

conv2d_transpose_7 (Conv2DTrans (None, 192, 192, 32) 65568 batch_normalization_60[0][0]

batch_normalization_18 (BatchNormalization) (None, 192, 192, 32) 128 activation_12[0][0]

batch_normalization_61 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_transpose_2[0][0]

batch_normalization_62 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_transpose_4[0][0]

batch_normalization_63 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_transpose_6[0][0]

batch_normalization_64 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_transpose_7[0][0]

concatenate_9 (Concatenate) (None, 192, 192, 160 0 batch_normalization_18[0][0]

batch_normalization_61[0][0]

batch_normalization_62[0][0]

batch_normalization_63[0][0]

batch_normalization_64[0][0]

batch_normalization_65 (BatchNormalization) (None, 192, 192, 160 480 concatenate_9[0][0]

conv2d_42 (Conv2D) (None, 192, 192, 11) 15840 batch_normalization_65[0][0]

batch_normalization_67 (BatchNormalization) (None, 192, 192, 11) 33 conv2d_42[0][0]

activation_41 (Activation) (None, 192, 192, 11) 0 batch_normalization_67[0][0]

conv2d_43 (Conv2D) (None, 192, 192, 21) 2079 activation_41[0][0]

batch_normalization_68 (BatchNormalization) (None, 192, 192, 21) 63 conv2d_43[0][0]

activation_42 (Activation) (None, 192, 192, 21) 0 batch_normalization_68[0][0]

conv2d_44 (Conv2D) (None, 192, 192, 32) 6048 activation_42[0][0]

batch_normalization_69 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_44[0][0]

activation_43 (Activation) (None, 192, 192, 32) 0 batch_normalization_69[0][0]

conv2d_41 (Conv2D) (None, 192, 192, 64) 10240 batch_normalization_65[0][0]

concatenate_10 (Concatenate) (None, 192, 192, 64) 0 activation_41[0][0]

activation_42[0][0]

activation_43[0][0]

batch_normalization_66 (BatchNormalization) (None, 192, 192, 64) 192 conv2d_41[0][0]

batch_normalization_70 (BatchNormalization) (None, 192, 192, 64) 256 concatenate_10[0][0]

add_16 (Add) (None, 192, 192, 64) 0 batch_normalization_66[0][0]
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batch_normalization_70[0][0]

activation_44 (Activation) (None, 192, 192, 64) 0 add_16[0][0]

batch_normalization_71 (BatchNormalization) (None, 192, 192, 64) 256 activation_44[0][0]

conv2d_46 (Conv2D) (None, 192, 192, 5) 2880 batch_normalization_71[0][0]

batch_normalization_73 (BatchNormalization) (None, 192, 192, 5) 15 conv2d_46[0][0]

activation_45 (Activation) (None, 192, 192, 5) 0 batch_normalization_73[0][0]

conv2d_47 (Conv2D) (None, 192, 192, 11) 495 activation_45[0][0]

batch_normalization_74 (BatchNormalization) (None, 192, 192, 11) 33 conv2d_47[0][0]

activation_46 (Activation) (None, 192, 192, 11) 0 batch_normalization_74[0][0]

conv2d_48 (Conv2D) (None, 192, 192, 16) 1584 activation_46[0][0]

batch_normalization_75 (BatchNormalization) (None, 192, 192, 16) 48 conv2d_48[0][0]

activation_47 (Activation) (None, 192, 192, 16) 0 batch_normalization_75[0][0]

conv2d_45 (Conv2D) (None, 192, 192, 32) 2048 batch_normalization_71[0][0]

concatenate_11 (Concatenate) (None, 192, 192, 32) 0 activation_45[0][0]

activation_46[0][0]

activation_47[0][0]

batch_normalization_72 (BatchNormalization) (None, 192, 192, 32) 96 conv2d_45[0][0]

batch_normalization_76 (BatchNormalization) (None, 192, 192, 32) 128 concatenate_11[0][0]

add_17 (Add) (None, 192, 192, 32) 0 batch_normalization_72[0][0]

batch_normalization_76[0][0]

activation_48 (Activation) (None, 192, 192, 32) 0 add_17[0][0]

batch_normalization_77 (BatchNormalization) (None, 192, 192, 32) 128 activation_48[0][0]

conv2d_49 (Conv2D) (None, 192, 192, 1) 32 batch_normalization_77[0][0]

batch_normalization_78 (BatchNormalization) (None, 192, 192, 1) 3 conv2d_49[0][0]

activation_49 (Activation) (None, 192, 192, 1) 0 batch_normalization_78[0][0]


