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ABSTRACT

The Advanced Encryption Standard (AES) is the most widely used symmetric cipher today. AES has an important
place in cryptology. Finite field, also known as Galois Fields, are cornerstones for understanding any cryptography.
This encryption method on AES is a method that uses polynomials on Galois fields. In this paper, we generalize
the AES-like cryptology on 2× 2 matrices. We redefine the elements of k-order Fibonacci polynomials sequences
using a certain irreducible polynomial in our cryptology algorithm. So, this cryptology algorithm is called AES-like
cryptology on the k-order Fibonacci polynomial matrix.
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1 Introduction

AES (Advanced Encryption Standard) is a standard offered for encryption of electronic data.
AES, adopted by the American government, is also used as a defacto encryption standard in
the international arena. It replaces DES (Data Encryption Standard). The encryption algorithm
defined by AES is a symmetric-key algorithm in which the keys used in both encryption and
decryption of encrypted text are related to each other. The encryption and decryption keys are
the same for AES.

The algorithm standardized with AES was created by making some changes to the Rijndael
algorithm, which was mainly developed by Vincent Rijmen and Joan Daeman. Rijndael is a name
obtain using the developers’ names: RIJmen and DAEmen.

AES is based on the design known as substitution-permutation. Its predecessor, DES, is an
algorithm designed in Feistel structure. AES’ software and hardware performance is high. The
128-bit input block has a key length of 128, 192 and 256 bits. Rijndael, on which AES is based,
supports input block lengths that are multiples of 32 between 128 and 256 bits and key lengths
longer than 128 bits. Therefore, in the standardization process, key and input block lengths were
restricted. AES works on a 4×4 column-priority byte matrix called state. Operations in the matrix
are also performed on a special finite field.
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The algorithm consists of identical rounds that transform a certain number of repeating input
open text into output ciphertext. Each cycle consists of four steps, except for the last cycle. These
cycles are applied in reserve order to decode the encrypted text. The number of repetitions of
cycles is a function of the key length according to Table 1.

Table 1: Key lengths and number of rounds for AES

Key lengths Cycles

128 bits 10
192 bits 12
256 bits 14

These cycles include key addition, byte substitution, ShiftRow and MixColumn. We can see
these cycles in Fig. 1. One can see detailed information about AES in Fig. 2 [1].

x

128

128/192/256

k

128

Y

AES

Figure 1: AES input/output parameters

A finite field, sometimes also called Galois field, is a set with a finite number of elements.
Roughly speaking, a Galois field is a finite set of elements in which we can add, subtract, multiply
and invert. Before we introduce the definition of a field, we first need the concept of a simple
algebraic structure, a field.

1.1 Definition Field
A field F is a set of elements with the following properties:

• All elements of F form an additive group with the group operation “+” and the neutral
element 0.

• All elements of F except 0 form a multiplicative group with the group operation “×” and
the neutral element 1.

• When the two group operations are mixed, the distributivity law holds, i.e., for all a, b, c ∈
F : a (b+ c)= (ab)+ (ac).

Galois field arithmetic is the most widely used field involving matrix operations. One can see
detailed information about the Galois field and the operations performed on it in [2]. Also, you
can find information on the classical cryptology benefit in [3].

In extension fields GF (2m) elements are not represented as integers but as polynomials with
coefficients in GF (2). The polynomials have a maximum degree of m − 1, so that there are m
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coefficients in total for every element. In the field GF
(
28

)
, which is used in AES, each element

A ∈ GF
(
28

)
is thus represented as

A (x)= a7x7 + . . .+ a1x+ a0, ai ∈ GF (2)= {0, 1} .

Note that there are exactly 256 = 28 such polynomials. The set of these 256 polynomials is
the finite field GF

(
28

)
. It is also important to observe that every polynomial can simply be stored

in digital form as an 8-bit vector

A = (a7, a6, a5, a4, a3, a2, a1, a0) .

Figure 2:
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Figure 2: AES encryption block diagram
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In particular, we do not have to store the factors x7, x6, etc. It is clear from the bit positions
to which power xi each coefficient belongs.

Fibonacci numbers are defined by the recurrence relation of Fn = Fn−1 +Fn−2 for n ≥ 2 with
the initial conditions F0 = 0 and F1 = 1. There are a lot of generalizations of Fibonacci numbers
satisfied and studied by some authors. For more information one can see in [4–8]. The Fibonacci
Q-matrix is defined in [9,10] as follows:

Q =
[

1 1
1 0

]

and nth power of the Fibonacci Q−matrix is shown in [11–13] by

Qn =
[

Fn+1 Fn
Fn Fn−1

]
.

Fibonacci polynomials that belong to the large polynomial classes are defined by a recur-
rence relation similar to Fibonacci numbers. The Belgian mathematician Eugene Charles Catalan
and the German mathematician E. Jacobsthal were studied Fibonacci polynomials in 1983. The
polynomials fn (x) studied by Catalan are defined by the recurrence relation

fn (x)= xfn−1 (x)+ fn−2 (x)

where f0 (x) = 0, f1 (x) = 1, f2 (x) = x and n ≥ 3. Fig. 3 notice that for x = 1, fn (1) = Fn, Fn is nth
Fibonacci number.

Figure 3: The behavior of the first six Fibonacci polynomials

In [14], the k-order Fibonacci polynomial is defined by A. N. Philippou, C. Georghiou and
G. Philippou in 1983.
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The sequence of polynomials
{

f (k)
n (x)

}∞
n=0

is said to be the sequel of Fibonacci polynomials

of order k if f (k)
0 (x)= 0, f (k)

1 (x)= 1 and

f (k)
n (x)=

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

xk−if (k)
n−i (x) if 2 ≤ n ≤ k

k∑
i=1

xk−if (k)
n−i (x) if n ≥ k+ 1

⎫⎪⎪⎬
⎪⎪⎭

.

Kizilates et al. studied a new generalization of convolved (p, q)−Fibonacci and (p, q)−Lucas
polynomials in [4]. Also, Qi et al. gave a closed formula for the Horadam polynomials in terms
of a tridiagonal determinant in 2019 in [15] and Kizilates et al. defined several determinantel
expressions of generalized tribonacci polynomials and sequences in [5]. In [6], Kizilates et al.
introduced new families of three-variable polynomials coupled with well-known polynomials and
numbers in 2019. New families of Horadam numbers associated with finite operators and their
applications were studied by Kizilates in [7].

In [16], Basu et al. introduced the generalized relations among the code elements for Fibonacci
coding theory in 2009. In 2014, Basu et al. defined a new coding theory for Tribonacci matrices
in [17] and they expended the coding theory on Fibonacci n-step numbers in [18]. Also, Basu
et al. defined generalized Fibonacci n-step polynomials and stated a new coding theory called
generalized Fibonacci n-step polynomials coding theory in [19].

In [19], for k ≥ 2

Qk (x)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

xk−1 xk−2 xk−3 · · · x 1
1 0 0 0 0 0
0 1 0 0 0 0
...

...
. . . . . .

...
...

0 0 · · · · · · 0 0
0 0 · · · 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

k×k

and

Qn
k (x)=

⎡
⎢⎢⎢⎢⎢⎢⎣

F (k)

n+k−1 (x) xk−2F (k)

n+k−2 (x)+ xk−3F (k)

n+k−3 (x)+ · · ·+F (k)
n (x)

F (k)

n+k−2 (x) xk−2F (k)

n+k−3 (x)+ xk−3F (k)

n+k−4 (x)+ · · ·+F (k)
n−1 (x)

...
...

F (k)
n+1 (x) xk−2F (k)

n (x)+ xk−3F (k)
n−1 (x)+ · · ·+F (k)

n−k+2 (x)

F (k)
n (x) xk−2F (k)

n−1 (x)+ xk−3F (k)
n−2 (x)+ · · ·+F (k)

n−k+1 (x)

xk−3F (k)

n+k−2 (x)+ xk−4F (k)

n+k−3 (x)+ · · ·+F (k)
n+1 (x) · · · F (k)

n+k−2 (x)

xk−3F (k)

n+k−3 (x)+ xk−4F (k)

n+k−4 (x)+ · · ·+F (k)
n (x) · · · F (k)

n+k−3 (x)
...

...
...

xk−3F (k)
n (x)+ xk−4F (k)

n−1 (x)+ · · ·+F (k)

n−k+3 (x) · · · F (k)
n (x)

xk−3F (k)
n−1 (x)+ xk−4F (k)

n−2 (x)+ · · ·+F (k)

n−k+2··· (x) · · · F (k)
n−1 (x)

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

where F (k)
n (x) is a k-order Fibonacci polynomials.
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Diskaya et al. created a new encryption algorithm (known as AES-like) by using the AES
algorithm in [20]. They created the encryption algorithm by splitting the message text into 2× 2
block matrices using Fibonacci polynomials.

Fibonacci polynomials have many applications in algebra. In recent years, we see that these
polynomials have many uses in the field of engineering. Also, Fibonacci polynomials are used
in solving differential equations. These solutions are used in engineering and science, adding
new approaches to the solution of engineering problems. Mirzae and Hoseini solved singularly
perturbed differential-difference equations arising in science and engineering with Fibonacci poly-
nomials in [21]. Also, in [22], Haq et al. studied approximate solution of two-dimensional Sobolev
equation using a mixed Lucas and Fibonacci polynomials.

In this paper, we generalize the encryption algorithm given in [20] and study the encryption
made with the 2×2 type block matrix operation to the k×k type in Galois field. We redefine the
elements of k-order Fibonacci polynomials sequences using a certain irreducible polynomial in our
cryptology algorithm. The algorithm consist of four steps as in the AES encryption algorithm.
The encryption algorithm defined in this algorithm is a symmetric-key algorithm in which the
keys used in both encryption and decryption of encrypted text are related to each other. The
encryption and decryption keys are the same like AES. So, this cryptology algorithm is called
AES-like cryptology algorithm on the k-order Fibonacci polynomials.

2 The k-Order Fibonacci Polynomials Blocking Algorithm

In this chapter, we redefine the elements of k-order Fibonacci polynomial sequences using
a certain irreducible polynomial in our coding algorithm. In extension fields GF (2m) elements
are not represented as integers but as polynomials with coefficients in GF (2). Throughout this
section, we take m = 5 for next process. Since m = 5, we consider the finite Galois field containing
32 elements in this algorithm and this Galois field is denoted as GF

(
25

)
. Note that there are

exactly 25 = 32 such polynomials. The set of these 32 polynomials is the finite field GF
(
25

)
. Each

elements of this polynomials correspond to one letter of the alphabet.

The AES encryption algorithm uses the P (x) = x8 + x4 + x3 + x + 1 polynomial as the
irreducible polynomial.

The irreducible polynomials of GF
(
25

)
are as follows:

x5 + x2 + 1

x5 + x3 + 1

x5 + x3 + x2 + x+ 1

x5 + x4 + x3 + x+ 1

x5 + x4 + x3 + x2 + 1

x5 + x4 + x2 + x+ 1.

In this paper, we consider the irreducible polynomials as P (x) = x5 + x2 + 1. We can also
diversify our encryption algorithm by using other irreducible polynomials.

Definition: In [8], the Fibonacci polynomial sequence {fn (x)}n≥0 is f0 (x) = 0, f1 (x) = 1 and
fn+2 (x)= xfn+1 (x)+ fn (x).
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For later use the first few terms of the sequence Fibonacci polynomials can be seen in the
following Table 2 and a few the irreducible polynomials for Fibonacci polynomials are given as
Table 3.

Table 2: Fibonacci polynomials

n 0 1 2 3 4 5 · · ·
fn (x) 0 1 x x2 + 1 x3 + 2x x4 + 3x2 + 1 · · ·

Table 3: Irreducible polynomials for Fibonacci polynomials

n fn (x) Z2

0 0 mod 2
1 1 mod 2
2 x mod 2
3 x2 + 1 mod 2
4 x3 mod 2
5 x4 + x2 + 1 mod 2
6 x2 + x+ 1 mod 2
7 x4 + x3 + x+ 1 mod 2
8 x4 + x2 mod 2
9 x4 + x2 + x mod 2
...

...
...

Polynomials of the Galois field are equivalent of each alphabet in Table 4 is as following:

Table 4: Alphabet table

No. Bit Polynomial Alphabet

0 00000 0 A
1 00001 1 B
2 00010 x C
3 00011 x+ 1 Ç
4 00100 x2 D
5 00101 x2 + 1 E
6 00110 x2 + x F
7 00111 x2 + x+ 1 G
8 01000 x3 Ğ
9 01001 x3 + 1 H
10 01010 x3 + x I

(Continued)
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Table 4 (continued)

No. Bit Polynomial Alphabet

11 01011 x3 + x+ 1 İ
12 01100 x3 + x2 J
13 01101 x3 + x2 + 1 K
14 01110 x3 + x2 + x L
15 01111 x3 + x2 + x+ 1 M
16 10000 x4 N
17 10001 x4 + 1 O
18 10010 x4 + x Ö
19 10011 x4 + x+ 1 P
20 10100 x4 + x2 R
21 10101 x4 + x2 + 1 S
22 10110 x4 + x2 + x Ş
23 10111 x4 + x2 + x+ 1 T
24 11000 x4 + x3 U
25 11001 x4 + x3 + 1 Ü
26 11010 x4 + x3 + x V
27 11011 x4 + x3 + x+ 1 W
28 11100 x4 + x3 + x2 X
29 11101 x4 + x3 + x2 + 1 Y
30 11110 x4 + x3 + x2 + x Z
31 11111 x4 + x3 + x2 + x+ 1 Q

Now, we obtain our encryption algorithm in line preliminary information we have given.

2.1 The k-Order Fibonacci Encryption Algorithm: The Coding Algorithm
• Step 1: We can consider the message text of length n and assume that each letter represents

one length.
• Step 2: We can choose arbitrary value of k and n. The k-value we choose determine which

order Fibonacci polynomials to use. We can create the matrix Qn
k (x) in Eq. (1) according

to the kand n value we have chosen. Our message text is divided into blocks according to
the value k. We get matrices of k × 1 type. We get a new matrix by multiplying the k × 1
type matrix with the Qn

k (x). Our new message is created by looking at the values in the
matrix we obtained from the alphabet table.

• Step 3: We multiply the message matrix we just obtained by the invertible key matrix. In
this paper, we accept the key matrix as follows:

1. KeyMatrix =
⎡
⎣B B C

Ç E Ǧ
K E Y

⎤
⎦=

⎡
⎣1 1 2

3 5 8
13 5 29

⎤
⎦
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If there is an ascending 2 letters in the text, it letters is multiplied by 2. Key matrix in
2× 2:

2. KeyMatrix =
[

E A
O D

]
=

[
5 0
17 4

]
.

• Step 4: The text created in the 3th step is collected sequentially with the k-order Fibonacci
polynomials by starting from left and our encrypted message is created.

n∑
i=1

F (k)
i (x)= F (k)

1 (x)+F (k)
2 (x)+ . . .+F (k)

n (x) .

2.2 The k-Order Fibonacci Decryption Algorithm: The Decoding Algorithm
• Step 1: We can consider encrypted a text of length n and assume that each letter represents

one length.
• Step 2: The text created is addition sequentially with the k-order Fibonacci polynomials by

starting from the left and our new message is created.

n∑
i=1

F (k)
i (x)= F (k)

1 (x)+F (k)
2 (x)+ . . .+F (k)

n (x) .

• Step 3: We multiply the message matrix we just obtained by inverse of the 1. key matrix.

InverseKeyMatrix =
⎡
⎣F Ç Z

S Ğ N
V T G

⎤
⎦=

⎡
⎣6 3 30

21 8 16
26 23 7

⎤
⎦

If there is an ascending 2 letters in the text, it letters is multiplied by 2. Inverse key matrix
in 2× 2:

Inverse2.KeyMatrix =
[

T A
Ğ H

]
=

[
23 0
8 9

]
.

• Step 4: We can obtain the matrix
(
Qn

k (x)
)−1 according to the k and n we have chosen. Our

text is divided into blocks according to the value k. We get matrices of k× 1 type. We get

a new matrix by multiplying the k × 1 type matrix with the
(
Qn

k (x)
)−1. Our new message

is created by looking at the values in the matrix we obtained from the alphabet table. We
can obtain our text message text.

2.3 Illustrative Examples for AES-Like Cryptology on the k-Order Fibonacci Polynomial Matrix
Example 1: Let us consider the message text for the following:

“HELLO”

Application to the Coding Algorithm:

• Step 1: “HELLO” is 5 letters. In this example, we encrypt process by choosing n = 5 (We
can choose n arbitrarily).
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• Step 2: For k = 3 and n = 5, we can use Tribonacci polynomials for encryption.
We can get as

Q5
3 (x)=

⎡
⎣x2 x 1

1 0 0
0 1 0

⎤
⎦

5

=
⎡
⎣ x4 + 1 x4 + x+ 1 x3 + x2

x3 + x2 x2 x3 + x+ 1
x3 + x+ 1 x2 + 1 x4 + x

⎤
⎦ .

It is known that

9 = (01001)= x3 + 1 = H

5 = (00101)= x2 + 1 = E

14 = (01110)= x3 + x2 + x = L

17 = (10001)= x4 + 1 = O

So, it is

Q5
3 (x) .

⎡
⎣H

E
L

⎤
⎦=

⎡
⎣ x4 + 1 x4 + x+ 1 x3 + x2

x3 + x2 x2 x3 + x+ 1
x3 + x+ 1 x2 + 1 x4 + x

⎤
⎦

⎡
⎣ x3 + 1

x2 + 1
x3 + x2 + x

⎤
⎦

=
⎡
⎣ x4 + x3 + x

x4 + x3 + x
x3 + x2 + x+ 1

⎤
⎦=

⎡
⎣V

V
M

⎤
⎦

Since the word “HELLO” has 5 letters, we divide it into blocks of 3×1 and 2×1. So now
we encrypt the 2× 1 block with the usual Fibonacci polynomial matrix.
We can get in Eq. (1) as

Q5
2 (x)=

[
x 1
1 0

]5

=
[

x2 + x+ 1 x4 + x2 + 1
x4 + x2 + 1 x3

]

So, it is

Q5
2 (x) .

[
L
O

]
=

=
[

x2 + x+ 1 x4 + x2 + 1
x4 + x2 + 1 x3

][
x3 + x2 + x

x4 + 1

]

=
[

x3 + x2 + 1
x4 + x2

]

=
[

K
R

]

It results “HELLO”→ “VVMKR”.
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• Step 3: We multiply the message matrix we just obtained by the invertible 1. Key matrix.
Turn into blocks of 3s and multiply with the key matrix.⎡
⎣B B C

Ç E Ğ
K E Y

⎤
⎦

⎡
⎣V

V
M

⎤
⎦=

⎡
⎣ 1 1 x

x+ 1 x2 + 1 x3

x3 + x2 + 1 x2 + 1 x4 + x3 + x2 + 1

⎤
⎦

⎡
⎣ x4 + x3 + x

x4 + x3 + x
x3 + x2 + x+ 1

⎤
⎦

=
⎡
⎣x4 + x3 + x2 + x

1
x2

⎤
⎦=

⎡
⎣Z

B
D

⎤
⎦

Since we have 2 letters left, we can use our 2. Key matrix,[
E A
O D

][
K
R

]
=

[
x2 + 1 0
x4 + 1 x2

][
x3 + x2 + 1

x4 + x2

]

=
[

x4 + x3 + x2

x4 + x3 + 1

]
=

[
X
Ü

]

It results “VVMKR”→ “ZBDXÜ .

• Step 4: We get

Z +T1 (x)= x4 + x3 + x2 + x+ 1 = Q

B+T2 (x)= 1+ x2 = E

D+T3 (x)= x4 + x2 + x = S

X +T4 (x)= x4 + x2 + x+ 1 = T

Ü +T5 (x)= x4 + x2 + 1 = S

where Tn (x) is a nth Tribonacci polynomial.

It results “ZBDXÜ”→ “QEŞTS”.

Application to the Decoding Algorithm:

• Step 1: We can get as

Q+T1 (x)= x4 + x3 + x2 + x = Z

E +T2 (x)= 1 = B

S +T3 (x)= x2 = D

T +T4 (x)= x4 + x3 + x2 = X

S +T5 (x)= x4 + x3 + 1 = Ü

where Tn (x) is a nth Tribonacci polynomial.

It results “QEŞTS”→ “ZBDXÜ”.
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• Step 2: We multiply the message matrix we just obtained by inverse of the 1. Key matrix.⎡
⎣F Ç Z

S Ğ N
V T G

⎤
⎦

⎡
⎣Z

B
D

⎤
⎦=

⎡
⎣V

V
M

⎤
⎦

Since we have 2 letters left, we can use our 2. Inverse key matrix.[
T A
Ğ H

][
X
Ü

]
=

[
K
R

]

It results “ZBDXÜ”→ “VVMKR”.

• Step 3: We can obtain the matrix
(
Qn

k (x)
)−1 according to the k and n value we have chosen.

For k = 3 and n = 5; we get as

(
Q5

3 (x)
)−1 =

⎡
⎣ 0 x x3 + 1

x3 + 1 1 x4

x4 x+ 1 x2

⎤
⎦=

⎡
⎣A C H

H B N
N Ç D

⎤
⎦

So, it is

(
Q5

3 (x)
)−1

⎡
⎣V

V
M

⎤
⎦=

⎡
⎣ 0 x x3 + 1

x3 + 1 1 x4

x4 x+ 1 x2

⎤
⎦

⎡
⎣ x4 + x3 + x

x4 + x3 + x
x3 + x2 + x+ 1

⎤
⎦

=
⎡
⎣ x3 + 1

x2 + 1
x3 + x2 + x

⎤
⎦=

⎡
⎣H

E
L

⎤
⎦

Since we have 2 letters left, we can get
(
Q5

2 (x)
)−1

for k = 2 and n = 5 as

(
Q5

2 (x)
)−1 =

[
x3 x4 + x2 + 1

x4 + x2 + 1 x2 + x+ 1

]
=

[
Ğ S
S I

]

So, it is
(

Q5
2 (x)

)−1
[

K
R

]
=

[
x3 x4 + x2 + 1

x4 + x2 + 1 x2 + x+ 1

][
x3 + x2 + 1

x4 + x2

]

=
[

x3 + x2 + x
x4 + 1

]
=

[
L
O

]

It results “VVMKR”→ “HELLO”.

We have handled the example given in [20] again with the algorithm we created. The correct
result was obtained as a result of the operation we have done. In addition, the encryption process
performed with 2× 2 block matrices in the other study was performed faster and easier with this
method.

Example 2: Let us consider the message text for the following:

“PUBLIC”
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Application to the Coding Algorithm

• Step 1: “PUBLIC” is 6 letters. In his example, we encrypt process by choosing n = 6 (We can
choose n arbitrarily. We do not have to choose the same number of letters as the number
of n in our message text to be encrypted).

• Step 2: For k = 4 and n = 6, we can use Tetranacci polynomials for encryption. We can get
as

Q6
4 (x)=

⎡
⎢⎢⎣

x3 x2 x 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

6

=

⎡
⎢⎢⎣

x4 + x3 + x x3 + x x3 + 1 x4 + x3 + x2 + x+ 1
x4 + x3 + x2 + x+ 1 x4 + x3 + 1 x4 + x3 + 1 x4 + x

x4 + x x4 + x3 + x+ 1 x4 + x3 + x+ 1 x4 + x3

x4 + x3 x3 + x2 x4 + x2 x3 + x2 + x

⎤
⎥⎥⎦

It is known that

19 = (10011)= x4 + x+ 1 = P

24 = (11000)= x4 + x3 = U

1 = (00001)= 1 = B

14 = (01110)= x3 + x2 + x = L

10 = (01010)= x3 + x = I

2 = (00010)= x = C

So, it is

Q6
4 (x)

⎡
⎢⎢⎣

P
U
B
L

⎤
⎥⎥⎦= Q6

4 (x)

⎡
⎢⎢⎣

x4 + x+ 1
x4 + x3

1
x3 + x2 + x

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

x4 + x3 + x2 + x
x+ 1

x3 + x2 + x
x3 + x2 + x+ 1

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

Z
Ç
L
M

⎤
⎥⎥⎦

Since the word “PUBLIC” has 6 letters, we divide it into blocks of 4 × 1 and 2 × 1. So
now:
We encrypt the 2× 1 block with the usual Fibonacci polynomial matrix.
We can get as

Q6
2 (x)

[
I
C

]
=

[
x4 + x3 + x+ 1 x2 + x+ 1

x2 + x+ 1 x4 + x2 + 1

][
x3 + x

x

]
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=
[

x4 + x3 + x+ 1
x4 + x3 + x2

]
=

[
W
X

]

It results ‘PUBLIC’→ ‘ZÇLMWX ’.

• Step 3: We multiply the message matrix we just obtained by the invertible 1. Key matrix.
Turn into blocks of 3s and multiply with the key matrix.⎡
⎣B B C

Ç E Ğ
K E Y

⎤
⎦

⎡
⎣Z

Ç
L

⎤
⎦=

⎡
⎣ 1 1 x

x+ 1 x2 + 1 x3

x3 + x2 + 1 x2 + 1 x4 + x3 + x2 + 1

⎤
⎦

⎡
⎣x4 + x3 + x2 + x

x+ 1
x3 + x2 + x

⎤
⎦

=
⎡
⎣ 1

x4 + x2 + x+ 1
x4 + x3 + x

⎤
⎦=

⎡
⎣B

T
V

⎤
⎦

Since we have 3 letters left, we can use our 1. Key matrix again.⎡
⎣B B C

Ç E Ğ
K E Y

⎤
⎦

⎡
⎣M

W
X

⎤
⎦=

⎡
⎣ 1 1 x

x+ 1 x2 + 1 x3

x3 + x2 + 1 x2 + 1 x4 + x3 + x2 + 1

⎤
⎦

⎡
⎣x3 + x2 + x+ 1

x4 + x3 + x+ 1
x4 + x3 + x2

⎤
⎦

=
⎡
⎣x3 + 1

x4 + x
x4 + x

⎤
⎦=

⎡
⎣H

Ö
Ö

⎤
⎦

It results “ZÇLMWX”→ “BTVHÖÖ”.

• Step 4: We get

B+F (4)
1 = 1 = B

T +F (4)
2 = x4 + x2 + x+ 1 = T

V +F (4)
3 = x4 + x3 + x+ 1 = W

H +F (4)
4 = 1 = B

Ö+F (4)
5 = x4 + x3 + x2 = X

Ö+F (4)
6 = x3 + x = I

where F (4)
n (x) is a Tetranacci polynomial.

It results “BTVHÖÖ”→ “BTWBXI”.



CMES, 2022, vol.131, no.1 291

Application to the Decoding Algorithm

• Step 1: We can get as

B+F (4)
1 = 1 = B

T +F (4)
2 = x4 + x2 + x+ 1 = T

W +F (4)
3 = x4 + x3 + x = V

B+F (4)
4 = 1+ x3 = H

X +F (4)
5 = x4 + x = Ö

I +F (4)
6 = x4 + x = Ö

where F (4)
n (x) is a Tetranacci polynomial.

It results “BTWBXI”→ “BTVHÖÖ”.

• Step 2: We multiply the message matrix we just obtained by inverse of the 1. Key matrix.⎡
⎣F Ç Z

S Ğ N
V T G

⎤
⎦

⎡
⎣B

T
V

⎤
⎦=

⎡
⎣Z

Ç
L

⎤
⎦

Since we have 3 letters left, we can use our 1. Inverse key matrix again.⎡
⎣F Ç Z

S Ğ N
V T G

⎤
⎦

⎡
⎣H

Ö
Ö

⎤
⎦=

⎡
⎣M

W
X

⎤
⎦

It results “BTVHÖÖ”→ “ZÇLMWX”.

• Step 3: We can obtain the matrix
(
Qn

k (x)
)−1 according to the k and n value we have chosen.

For k = 4 and n = 6; we get as

(
Q6

4 (x)
)−1

⎡
⎢⎢⎣

Z
Ç
L
M

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

P
U
B
L

⎤
⎥⎥⎦

and for k = 2 and n = 6(
Q6

2 (x)
)−1

[
W
X

]
=

[
I
C

]
.

It results “ZÇLMWX”→ “PUBLIC”.
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3 Conclusion

AES (Advanced Encryption Standard) is a standard offered for encryption of electronic data.
The AES cipher is almost identical to the block cipher Rijndael. The Rijndael block and key size
vary between 128, 192 and 256 bits. However, the AES standard only calls for a block size of 128
bits. Hence, only Rijndael with a block length of 128 bits is known as the AES algorithm. In the
remainder of this page, we only discuss the standard version of Rijndael with a block length of
128 bits.

The Rijndael algorithm perform encryption with the help of polynomials in Galois fields.
We have obtained a new encryption algorithm by generalizing the previous studies. In this paper,
we generalized the encryption algorithm given in [20] and studied the encryption made with the
2× 2 type block matrix operation to the k× k type in Galois field. We redefined the elements of
k-order Fibonacci polynomials sequences using a certain irreducible polynomial in our cryptology
algorithm. The algorithm consist of four steps as in the AES-like encryption algorithm. The
encryption algorithm defined in this algorithm is a symmetric-key algorithm in which the keys
used in both encryption and decryption of encrypted text are related to each other. The encryption
and decryption keys are the same like AES. So, this cryptology algorithm is called AES-like
cryptology algorithm on the k-order Fibonacci polynomials. In this way, researchers can perform
the encryption process based on arbitrary choices.

In this paper, we present the mathematical basis for understanding the design rationale and
the features that follow the description itself. Then, we define AES-like encryption by giving the
encryption method and its implementation.
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