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Abstract: Generally, the performance of deep learning models is related to the 
captured features of training samples. When the training samples belong to 
different domains, the diverse features may increase the difficulty of training 
high performance models. In this paper, we built a new framework that generates 
multiple models on the organized samples to increase the accuracy of 
classification. Firstly, our framework selects some existing models and trains 
each of them on organized training sets to get multiple trained models. Secondly, 
we select some of them based on a validation set. Finally, we use some fusion 
method on the outputs of the selected models to get more accurate results. The 
experimental results show that our framework achieved higher accuracy than the 
existing methods. Our framework can be an option for the deep learning system 
to increase the classification accuracy. 
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1 Introduction 
Currently, deep learning models is utilized in many applications [1–5]. When utilizing the deep 

learning models for the classification, the performance of models is related to the captured feature. To get 
higher performance for the classification tasks, the structure should be well designed and the hyper-
parameters should be well tuned [6–8]. When the training set contains the samples that belong to different 
domains, the diverse features may lower the performance of trained models [9,10]. Fig. 1 illustrates some 
samples that belong to different domains. As this figure introduced, the samples may be different in 
resolution or size. Furthermore, each label may have the different number of samples (For example, label 
dog has 1000 training samples while label deer has 10000 training samples), which is a challenge to the 
training of deep learning models. A general solution uses more layers to contain more features, which 
makes the structure bigger and more complicated. On the other side, that solution does not always work 
well as the computational resource is limited.  

When using multiple models, we can make each of them well capture the features of corresponding 
domain to lower the demand of big structure. In this paper, we built a novel framework MMS (Multi-model 
scheme) that uses multiple models to improve the performance of classification. Our contribution can be 
summarized as the following. 1) Our framework can lower the requirement of computational resource. In 
our framework, the accuracy is increased by more models instead of increasing the structure of single big 
model. 2) We increase the error-tolerance of the classification. When using single model, the accuracy only 
depends on the output of this model. When using multiple models, there may be wrong results but also 
correct ones. By using fusion method, the classification accuracy may be increased. We evaluated the 
methods on some real datasets that include CIFAR-10 [11–13] and CIFAR-100 [14–16]. Furthermore, we 
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also collected a real dataset where the samples have different resolution and each label has different number 
of samples. All of these experimental results proved the effectiveness of our framework.  

We organize this paper by the following sections. Section 1 is the background and explains our 
contribution. Section 2 introduces the existing methods. In Section 3, based on some definitions, we 
explained our framework with some analyses. The experiment is organized in each part of Section 4. 
Section 5 shows the conclusion of this paper and follows the introduction of the future work. 

 
Figure 1: The samples have different resolutions and size; each label has different number of samples 

2 Related Works 
In this subsection, we firstly introduce some existing deep learning models.  In these days, there are 

many deep learning models that are used in the image classification. Image classification is an important 
research field of computer vision, which extracts the features from the image to classify this image. The 
improvement of the accuracy is based on the huge amount of training samples. With the increase of the 
number or level of layers, the amount of calculation required by the training process also increases 
sharply. We select some of these models based on our computational resource as the baseline, which are 
VoVNet-39 [17], VGG16 [18] and ResNeSt50 [19]. 

• VoVNet-39: VoVNet is designed for the object classification, which consists of blocks, 
convolution layers and OSA modules [17]. An OSA module is to minimize MAC. VoVNet-39 has more 
OSA modules than the other types of VoVNet models where down-sampling is in the last.  

•VGG16: VGG models is used for image recognition and classification [18]. The image is firstly 
passed through convolutional layers where the filters are used with a small receptive field. Then, spatial 
pooling is applied to the max-pooling layers, which is performed by a pixel sliding window. The final 
step is a soft-max layer and all of the hidden layers apply ReLU.  

• ResNeSt50: A deep learning model for the classification, which applies split-attention block [19]. 
By the variety of these blocks, there are four versions of models. From ResNeSt50 to ResNeSt269, where 
the structure becomes bigger and more complicated for higher accuracy. Based on the size of testing 
samples and computational resource, we select ResNeSt50 from these ResNeSt models in this paper.  

These models have been proved efficient in many utilizations. In some real applications, there are 
the cases that some samples belong to same label but there are big differences in the appearance. These 
differences include the size or resolution. A deep learning system should work well in these cases, which 
is important to the robustness and the level of intelligence. Deeper structure can be a solution while it is 
not always work because of the vanishing gradient problem [20–22]. Furthermore, big models need more 
computational resource, which limits the utilization of deep learning methods on some devices. Thus, 
applying multiple models in these cases can be a good choice. 

The fusion method on multiple models can improve the performance of classification [23]. 
According to that paper, we found that the weighted voting method achieved the highest accuracy among 
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all of the others. The weighted voting method is also utilized to produce the more reliable results [24]. A 
sliding window is utilized to a convolutional neural model and a long short-term memory model [25]. In 
this paper, we also apply a weighted voting method for higher accuracy. 

3 Our Framework  
Fig. 2 introduces our framework. Firstly, we try to increase the number of training sets by organizing 

the samples. Secondly, we select some existing deep learning models and train each model on each 
training set. Thirdly, we apply the fusion method to these trained models on the validation set. Then, we 
only select some of these models that can make the fusion method achieve the highest accuracy. Some 
hyper-parameters also computed based on this validation set. Finally, on a testing sample, the fusion 
method applies to the outputs of the selected models. 

 
Figure 2: Our framework 

We firstly give some definitions before the explanation. We define 𝑆𝑆𝑛𝑛 as a sample and 𝐺𝐺𝑛𝑛 as the 
label of 𝑆𝑆𝑛𝑛 , which means the ground truth [26,27]. Generally, we can have ∀ 𝐺𝐺𝑛𝑛 ∈ {𝐿𝐿𝑘𝑘}  where 𝑘𝑘 ∈
{1,2, . . . ,𝑁𝑁𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙} and 𝐿𝐿𝑘𝑘  represents all of the labels. The classification task is to summarize 𝑆𝑆𝑛𝑛  as 𝐿𝐿𝑘𝑘 , 
which try to be the same as the ground truth 𝐺𝐺𝑛𝑛. 

We define 𝐷𝐷𝑖𝑖  as a domain where 𝑖𝑖 = {1,2, . . . ,𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑}  and 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  as the number of these 
domains. Then we can train a deep learning model 𝑀𝑀𝑢𝑢 on domain  𝐷𝐷𝑖𝑖 to get a trained model 𝑀𝑀�𝑢𝑢,𝑖𝑖. We 
define 𝑅𝑅𝑢𝑢,𝑖𝑖,𝑛𝑛 =  𝑀𝑀�𝑢𝑢,𝑖𝑖(𝑆𝑆𝑛𝑛) as the predicted label by the model 𝑀𝑀�𝑢𝑢,𝑖𝑖 on a sample 𝑆𝑆𝑛𝑛. Then we can give the 
definition of deep learning task when using multiple models as the following: for a sample 𝑆𝑆𝑛𝑛, the task is 
to find out the highest accurate result 𝑅𝑅𝑢𝑢,𝑖𝑖,𝑛𝑛. Based on this definition, we can perform our method in the 
next subsection. 

3.1 Combining the Training Sets 
In this subsection, we introduce how to combine the training sets as the following steps. We set 𝐷𝐷�𝑖𝑖 as a 

training set that is derived from the domain 𝐷𝐷𝑖𝑖. There can be two kinds combinations. The first one is to 
make each combined training set contain the samples of all labels. Then, based on these combined training 
sets, we can arbitrary combine some of them to generate more training sets as the  of Fig. 2 shows. 

3.2 Train and Select Models 
We can use the generated sets to train a deep learning model 𝑀𝑀𝑢𝑢. Then, on a combined training set 

{𝐷𝐷�𝑖𝑖}, we can get a trained model 𝑀𝑀�𝑢𝑢,{𝐷𝐷�𝑖𝑖}. The trained models may have different performance on the 
testing set. Some high accurate models may increase the accuracy while the others may reduce the 
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accuracy. Thus, we should select the trained models that can make the fusion method achieve high 
accuracy. We can use a validation set to select the models and compute some hyper-parameters, which 
will be introduced in Subsection 3.3. 

3.3 The Fusion Method 
To use the fusion method, we should build a validation set that is labelled by the ground truths. Then 

we can use the fusion method that combine the outputs of models as the following: 

                                                                    (1) 

                                                                                                           
where 𝑃𝑃��𝑀𝑀�𝑢𝑢,{𝑖𝑖}(𝑆𝑆𝑛𝑛) = 𝐺𝐺𝑛𝑛� presents the posterior accuracy of a trained model 𝑀𝑀�𝑢𝑢,{𝑖𝑖} on the validation set. 
Furthermore, we can also compute 𝑊𝑊𝑢𝑢,{𝑖𝑖} by this validation set. 

Each trained model can well capture the features on the corresponding training set. On the other side, 
the trained model may achieve low accuracy on the other training sets. Thus, the selection of models 
plays important role to achieve high accuracy. 

4 Experiments 
We evaluated the methods on some real datasets. We trained the deep learning models by their 

default settings (without changing the structure). We set the number of epochs [28,29] as 10 when 
training these models. When we evaluate a random parameter, we evaluate 1000 times and compute the 
average as the final result.  

4.1 The Evaluation on CIFAR-10 
CIFAR-10 contains 50000 training samples and 10000 testing ones, which can be summarized as 10 

labels and all of the samples belong RGB image [11–13]. 50000 training samples are to train the deep 
learning models. Then, we randomly select 1000 validation samples from 10000 testing samples. To 
obviously show the effect of domains to the models, we construct four domains by shifting the points of 
color channels. The samples of 4 domains are shown in Fig. 3. 

 
Figure 3: The shifted samples of the same label 
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As we can see in Table 1, our best method achieved higher accuracy: 2.1% than the best one of the 
existing methods. Appeared Max selects the final result that appeared max times among the outputs of 
models. 

Table 1: Classification results on CIFAR-10 
                       Models 
Methods 

VoVNet-39 [17] VGG16 [18] ResNeSt50 [19] 

1-Model 82.72% 86.09% 79.39% 
Appeared Max 68.89% 85.64% 70.79% 
Fusion Method [25] 87.65% 
Our framework (MMS) 89.75% 

4.2 The Evaluation on CIFAR-10 and CIFAR-100 
CIFAR-100 is similar to the CIFAR-10. This set has 100 classes and each class has 600 images [14–16]. 

50000 training samples are to train the models. We combined the generated 4 domains of CIFAR-10 
(introduced in the Subsection 4.1) and the samples of CIFAR-100 to evaluate the methods. In more details, 
we use the training samples of CIFAR-10 and CIFAR-100 to train the models. Then we randomly select 1000 
of CIFAR-10 and CIFAR-100 for the validation set. The remained 19000 samples of these two datasets are 
for the testing. 

Table 2: Classification results on CIFAR-10+CIFAR-100 
                     Models 
Methods 

VoVNet-39 
[17] 

VGG16  
[18] 

ResNeSt50 
[19] 

VoVNet-
39 [17] 

VGG16  
[18] 

ResNeSt50 
[19] 

1-Model 83.36% 79.79% 79.36% 62.43% 43.87% 57.48% 
Appeared Max 62.94% 62.06% 68.14% 58.23% 42.90% 48.10% 
Fusion Method [25] 86.65% 65.05% 
Our framework (MMS) 89.64% 67.85% 

As we can see in Table 2, our best method achieved higher accuracy: On the samples of CIFAR-10, 
2.99% than the best one of the existing methods; on the samples of CIFAR-100, 2.80% than the best one 
of the existing methods 

4.3 The Evaluation on the Collected Dataset 

 
Figure 4: The examples of collected dataset 
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In this subsection, we construct 4 domains by collecting the samples from some real datasets. These 
samples have different resolutions and sizes. The labels are based on those of CIFAR-10 [11–13]. When 
there is only one dataset for the labels like frog or deer, the samples are separated into different domains 
by their appearances like the color.   

Domain1 is CIFAR-10 dataset as we introduced in the Subsection 4.1. Domain2 has 76605 samples 
where we use 80% for training and 20% for testing. We collect Domain2 from the datasets [30-36] with 
the frog samples from https://github.com/jonshamir/frog-dataset. 

Domain3 has 32089 samples where we use 80% for training and 20% for testing. The samples are 
from the datasets [32,36–39] with frog dataset from https://github.com/jonshamir/frog-dataset and horse 
dataset from http://www.laurencemoroney.com/horses-or-humans-dataset 

Domain4 has 67980 samples where we use 80% for training and 20% for testing. The samples are 
from Imagenet dataset [40,41]. 

Table 3: Classification results on the collected dataset 

                              Models 
Methods 

VoVNet-39 [17] VGG16 [18] ResNeSt50 [19] 

1-Model 82.68% 81.49% 80.39% 
Appeared Max 60.22% 53.79% 57.2% 
Fusion Method 84.62% 
Our framework (MMS) 86.75% 

Fig. 4 shows some samples of 4 domains, which belong to the same label but have high or low 
resolutions (also have different figure sizes, each label has different number of samples). We set 10000 
samples as the validation set and 32121 samples as testing set. As we can see in Table 3, our best method 
achieved higher accuracy: 2.13% than the best one of the existing methods.  

4.4 Analysis 
We have evaluated our framework and the existing methods on real datasets. The selected deep 

learning models achieved different accuracies from low (which is about 44%) to high (which is about 86%). 
The experimental results show the effectiveness of our framework. We also evaluated our framework on 
some real samples of collected datasets, which also achieved higher accuracy than the existing ones. 

When increasing the structure of a model is impossible for some reasons, the utilization of multiple 
models can be a choice as our framework proved. As we applied multiple models, the execution time may 
be increased, which is related to the number of models. This problem can be solved by executing these 
models at the same time by using parallel technology [42]. 

5 Conclusions 
In this paper, we have introduced a novel framework that uses multiple models to increase the 

accuracy of classification. Our framework can be a choice to increase the classification accuracy 
especially when the training set contains the samples of multiple domains.  

As the wide utilization of deep learning models, there will be cases that should combine the outputs 
of multiple models. These models may be installed in different devices or places. In the future work, we 
will do research about the parallel execution of multiple models, which is to solve the communication 
time between models. 
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