

Journal of Cyber Security
DOI:10.32604/jcs.2021.026735

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Article

Research on ABAC Access Control Based on Big Data Platform

Kun Yang1, Xuanxu Jin2 and Xingyu Zeng1,*

1Beijing University of Posts and Telecommunications, Beijing, 100876, China
2Dresden University of Technology, Dresden, 01069, Germany

*Corresponding Author: Xingyu Zeng. Email: xingyuz@bupt.edu.cn
Received: 23 October 2021; Accepted: 21 December 2021

Abstract: In the environment of big data, the traditional access control lacks
effective and flexible access mechanism. Based on attribute access control, this
paper proposes a HBMC-ABAC big data access control framework. It solves the
problems of difficult authority change, complex management, over-authorization
and lack of authorization in big data environment. At the same time, binary
mapping codes are proposed to solve the problem of low efficiency of policy
retrieval in traditional ABAC. Through experimental analysis, the results show
that our proposed HBMC-ABAC model can meet the current large and complex
environment of big data.

Keywords: Big data; access control; ABAC; Hadoop

1 Introduction
With the rapid development and application of Internet of Things, cloud computing and big data

technology, the access control scheme of cloud computing platform under big data application
environment must be highly scalable, flexible and efficient. However, the access control currently
adopted by the traditional big data platform, such as Hadoop [1–3], is based on the static policy specified
by the user/user group, and cannot be authorized in groups according to multiple attribute tags of users,
let alone the dynamic change of permissions according to the changes of users’ attributes, which makes it
only suitable for the rights management of a small number of users. The data under the environment of
big data is large and dynamic, so the access control list is large and difficult to maintain, the phenomenon
of over-authorization and under-authorization is more and more serious, and rights management is
complex and difficult [4].

Based on the attribute-based access control model, this paper proposes an access control model
suitable for Hadoop. This model makes full use of the advantages of attribute access control [5], and
effectively solves the problems of difficult permission change, complex management, over-authorization
and insufficient authorization in big data environment. At the same time, it is proposed to use binary
mapping code to solve the problem of slow matching in traditional attribute access control policies.

2 Background
2.1 Traditional Access Control

The autonomy in DAC (Discretionary Access Control) model [6] is mainly reflected in that agents
with certain access rights can grant part or all of their access rights to other subjects, so the DAC model
can also be called arbitrary access control model. Although the model has certain directness, flexibility
and easy to implement in the way of authorization, because the user can transfer the authority arbitrarily
directly, for example, user A can transfer the access to the object O to user B. user B, which does not have
the access right to object O, can access O, and the arbitrary transfer of authority will pose a threat to the
data security of the system. Therefore, the security mechanism provided by the DAC model is relatively

188 JCS, 2021, vol.3, no.4

low and cannot provide sufficient security protection for the system.
Compared with the DAC model, the mandatory access control MAC (Mandatory Access Control)

model [7] has more stringent access control policies, and was first mainly used in the information
management of the US government and military. It has two main characteristics: one is mandatory, which
is also the most prominent feature of mandatory access control, which stipulates that the security
attributes and levels of the subject/object within the system are pre-defined by the system security
administrator, except for the system administrator. No subject/object has the right to modify the security
attributes of an entity. Another feature is restriction, that is, the system administrator compares the
security level of the subject/object, and then determines whether the subject can operate on the object in
the way it wants. However, the disadvantage of MAC is also very obvious, that is, the authorization
flexibility is poor, and the access control rules are booked in advance.

In view of the shortcomings of DAC model and MAC model in authorization, D. Ferraiolo and R.
Kuhn put forward the idea of role-based access control [8] (Role-Based Access Control, RBAC) for the
first time in the computer security seminar held by the National Institute of Standards and Technology in
1992. its main content is to add roles between users and permissions in the traditional access control
model, and to control the granting and revocation of user rights through role control. Thus, it can
effectively reduce the complexity of authorization management caused by too many users of the system.
Although the definition of the model has significant advantages in the open network environment, the
complexity of authorization management makes the practical application of the model relatively difficult.

Access control is a means to ensure information security, and it is a technology that most systems
(including computer systems and non-computer systems) need to use. Traditional access control, such as
discretionary access control (Discretionary Access Control, DAC), mandatory access control (Mandatory
Access Control, MAC), role-based access control (Role Based Access Control, RBAC), is based on
predefined policies that clearly distinguish between allowed access and denied access. It has the
characteristics of static and strict policy rules for authorized access, high access granularity, poor
flexibility in authorization management and tedious authorization management. Unable to adapt to the
current dynamic and distributed network environment.

2.2 Attribute-Based Access Control Model ABAC
Attribute-based access control model is a kind of access control model to solve the trusted

relationship of industry distributed applications. It uses relevant entity attributes as the basis of
authorization to study how to carry out access control. The basic authorization idea is shown in Fig. 1.
According to the pre-defined security policy of the information system, the subject of the access request is
authorized according to the attribute feature set, the object feature set and the corresponding
environmental attribute set. Three kinds of entity attributes are mainly involved in the basic ABAC model,
which are subject attributes, object attributes and environment attributes.

 Figure 1: ABAC model authorization thought diagram

Subject: The initiating entity of the access behavior. The attribute corresponding to the subject is
called the Subject Attribute (SA). For example, internal characteristics such as the creation time of the

JCS, 2021, vol.3, no.4 189

principal, the basic information, or the security level of the principal.
Object: The target object of the access behavior can be data or a service. The attribute corresponding

to the object is called the Object Attribute (OA). For example, internal characteristics such as the type,
basic information, or security level of a resource.

Environment: The contextual state of the environment when the access behavior occurs. The
corresponding attribute of the environment is called the Environment Attribute (EA).

Access: Some kind of behavior to the object initiated by the subject, such as a user applying to play a
video or downloading an academic paper. The interview process involves subject, object, environment
and behavior, but it is not necessary to know the specific subject, object and environmental information.
During the access process, the subject is abstracted as a collection of SA, and different subjects may be
abstracted into the same set in some domains. For example, students of the class of 2021 at BUPT
University can be abstracted as: {SA (year of enrollment) = 2021, SA (identity) = student}. Objects are
abstracted as a set of OA in the process of access, and different objects may be abstracted into the same
set in some domains. For example, the video file on computer disk D can be abstracted as: {OA (type) =
video, OA (location) = D:\\ video). The environment itself is a collection of EA, which can be the
information of the system itself, such as the usage of the system CPU or the security level of the system,
or the information that exists objectively, such as the current time or location information.

2.3 XACML Overview
2.3.1 Policy Language Model of XACML

XACML [9] (extensible Access Control Markup Language) is an extensible, platform-independent
and highly secure access control policy description language defined by structured Information Standards
Promotion Organization (Organization for the Advancement of Structured Information Standards,
OASIS). It mainly adds the element component of access control on the basis of ABAC language to
realize the accurate description of subject and object, context information, authorization policy and the
definition of access control authority of sensitive information such as network service and digital
copyright. It provides an important technical platform for the construction of XML model and the
compilation of access control policy. First of all, in terms of policy writing specification, XACML defines
a standardized policy language model, as shown in Fig. 2.

Figure 2: ABAC Model Authorization thought diagram

Rule: It is not only the most basic unit of XACML language model, but also the main component of
XACML strategy. Each rule is composed of target (Target), condition (Condition) and effect (Effect), and
the final authorization decision result is determined according to the evaluation of conditions. Among

190 JCS, 2021, vol.3, no.4

them, the goal indicates the object of the rule, which is usually composed of four kinds of objects: subject,
resource, environment and action. Conditions limit the scope of application of the rules, which are usually
described by a set of Boolean expressions. The effect is the result or conclusion of the expected
evaluation of the rule, which is generally expressed as “Permit” or “Deny”.

Policy: It is the smallest unit of interactive access for information systems in XACML. It defines a
series of attribute constraints that the subject must meet in order to obtain access to the object. It is mainly
composed of four parts: goal, a set of rule sets, obligations and rule combination algorithm identifiers.
Among them, the obligation mainly refers to some duties that the visitor needs to perform while
implementing the access operation, such as keeping a good record of the authorized visit process. The rule
combination algorithm defines the process of obtaining authorization decision based on the evaluation
results of a set of rules.

Policy Set: It consists of four parts: goal, a set of policy set, policy combination algorithm and
obligation. The main function of the policy combination algorithm is to obtain the authorization decision-
making process according to the evaluation results of a set of policies.

In the XACML specification, the combined algorithms that can be applied to both rules and policies are:
(1) Reject the priority algorithm. The idea of this algorithm is that if the evaluation result of a <

Rule > or < Policy > element is “Deny”, then the authorization decision result of the whole
policy combination or rule combination is Deny.

(2) Allow priority algorithm. The basic idea is that a “Permit” evaluation result will make the
decision result of the whole rule combination or policy combination as Permit.

(3) The algorithm is applied for the first time. The result of the combined evaluation is equivalent to
the evaluation of the first rule or policy element that applies to the current access request.

2.3.2 Policy Language Model of XACML
XACML defines a standardized architecture diagram, as shown in Fig. 3.

 Figure 3: XACML architecture diagram

The policy enforcement component (PEP): It is responsible for receiving the access control request
from the principal and sends the access control request to the Context Handler component to receive.

Context Handler: it is responsible for the conversion of input and output formats of data in different
application environments. Its main function is to convert the original access request into a request in
XACML format and send it to the PDP component.

Policy Decision Point (PDP): It receives the attribute-based access control request from Context
Handler; obtains all kinds of attributes and attribute values related to the access request from the AA
component, then evaluates the access request according to the access control policy provided by PAP, and
returns the evaluation result to the Context Handler component.

JCS, 2021, vol.3, no.4 191

The Policy Management Point (PAP): It is responsible for writing, managing and maintaining access
control policies and policy sets for PDP authorization decisions.

The Policy Information Point (PIP): It retrieves the attributes and attribute values related to the
subject (OA), the object (SA) and the environment (EA), and sends the retrieved result set to the Context
Handler component.

3 Related Works
At present, there are many researches on access control, but few of them are related to big data

access control. In order to find out the model of access control suitable for big data scenario, although
many existing access control technologies are not proposed for big data scenario, they can be used to deal
with the problems of access control in big data scenario.

Kunhlman et al. [10] put forward the concept of role mining. Role mining is mainly used to solve the
problem of how to generate roles and establish the mapping of user-role and role-permission. Literature
[11] uses the algorithm based on machine learning to mine the role of access log, and transforms the
problem of role mining into a problem of text classification. Reference [12] is an early work to introduce
risk into the field of access control. It defines the concepts of risk quantification and access quota, and
gives some guiding principles and suggestions that risk-based information systems should meet. In
reference [13], an access control model (Benefit and Risk Access Control, BARAC) is proposed to
balance the risks and benefits of information sharing, which measures whether the risk caused by access
behavior is acceptable to the system. Therefore, when some unexpected access behavior occurs, it can be
accessed according to the magnitude of the risk.

In terms of big data’s access control, the early Hadoop did not have any system security mechanism.
The first generation Hadoop0.20.0 version began to add a Kerberos-based identity authentication
mechanism [14]. After passing the identity authentication, users can apply for data services or submit jobs
from the master node of the Hadoop cluster. After the permission is granted, it is no longer supervised,
and the illegal operation of legitimate users cannot be prevented.

Although the above research methods solve the problems of over-authorization, lack of authorization
and complex rights management to some extent, the above methods have access risks and are likely to
cause illegal users to operate on the system. Therefore, based on the attribute-based access control model,
this paper proposes a big data access control model suitable for Hadoop, which effectively solves the
problems of difficult privilege change, complex management and more and more serious over-
authorization and insufficient authorization in big data environment.

4 Access Control of Big Data Based on ABAC
4.1 The Limitations of Big Data’s Traditional Access Control

Big data has the characteristics of large volume (Volume), high speed (Velocity), many kinds
(Variety) and so on (often referred to as 3V). Big data’s 3V characteristics bring great challenges to
access control, in which there are a large number of entities and entities are dynamically added or
generated, and the relationship between permissions is complex, so it is difficult to manage effectively
through the traditional identity-based access control model.

Access control is the key technology to ensure that big data can be shared safely and effectively. The
traditional access control model authorizes one by one through static policies, so it will lead to the
exponential growth of static policies in the face of a large number of users. This not only brings huge time
and space costs [15], but also makes the subsequent permission changes very complex.

The traditional big data access control authorizes a single user or user group. when the rights of
multiple users need to be managed uniformly, and these users are not in the same user group, they can
only modify the policies of each user one by one, and cannot effectively abstract a class of users.

In big data environment, in the face of dynamically changing users and data resources, the traditional

192 JCS, 2021, vol.3, no.4

access control model cannot dynamically change permissions with the change of user attributes, and use a
single user ID to distinguish users, so it is difficult to meet the complex user model in big data
environment. Based on ABAC, the concept of user group is abandoned and the concept of user attribute
set is introduced. The access decision is made by using the attribute, and the access control is carried out
according to the subject-object attribute and environment attribute. The corresponding permissions can be
obtained according to the attributes of the requesting user, which greatly enriches the authorization mode,
makes the access control more flexible, and can be effectively applied in the environment of big data.

4.2 Limitations of Traditional ABAC
In traditional ABAC, the request of subject to object is allowed or denied according to subject

attribute, object attribute, environment attribute, request action and ABAC authorization rules, in which
attributes and policies are the core elements of ABAC. ABAC makes permission decisions based on the
inherent attributes of entities, which largely avoids the difficulty of defining entity permission labels.

When a user requests access to a resource, the attribute information related to the user is analyzed
and compared with the policies in the policy set. Usually, the policy analysis in the traditional ABAC
model refers to traversing each policy in the policy set to determine whether the user-related attribute
information conforms to the policy or not, and if so, grant the corresponding permissions to it. This kind
of retrieval is what we often call violence detection, and the disadvantage of violence detection is
inefficiency. The main reason is that when analyzing each strategy, it is necessary to analyze the attributes
in the strategy in a fine-grained way. In the worst case, the last attribute of the policy does not match the
existing attribute of the user. Therefore, it may be necessary to compare more than a dozen or even
dozens of attributes of the policy in order to find that the policy does not meet the requirements. Tens of
thousands or even hundreds of thousands of policies may be stored in the large policy set in the cloud
environment, which will greatly reduce the efficiency of the system.

Suppose that in the control domain, the attribute set contains a bar of attributes, and the policy set
contains N policies, with an average of K attributes per policy. Below, we will analyze the time
complexity of various algorithms in this domain.

The violence detection algorithm compares the newly added strategy with each policy of the existing
policy set in turn. A total of N comparisons are made throughout the comparison process to determine
whether it conflicts with the existing policies of the policy set. The condition sets of the two policies need
to be compared each time, and the comparison time complexity of the two unordered attribute sets is
O(𝑀𝑀2). In the process of comparison, no additional space is needed except for the use of finite variable
space, so the time complexity is O(𝑁𝑁𝑁𝑁2).

In the scenario of big data, due to too many policy sets, too much time is spent on matching policy
sets, which is not conducive to the user experience. In order to solve the problem that the matching speed
of ABAC to rules is too slow in big data scene, we propose to use binary mapping code to accelerate the
matching speed of rules.

4.3 Optimization Based on Binary Mapping Code ABAC
4.3.1 Definition and Storage of Attribute Set

In order to improve the speed of strategy matching in big data scene. In this paper, we propose to use
binary mapping codes to solve this problem. In the traditional access control model, although each
attribute in the attribute set has its own serial number, but the serial number does not have much meaning,
it is only the ID number set for easy storage. In this paper, the attribute sequence number has a special
meaning, and the binary mapping code is also based on the attribute sequence number. We build a table of
subject attributes (SA), object attributes (OA) and environment attributes (EA) and number each attribute
sequentially. Table 1 shows some of the property sets in the ABAC model.

JCS, 2021, vol.3, no.4 193

Table 1: ABAC model property set

ID Type Name
0 SA A𝑡𝑡𝑡𝑡0
1 SA A𝑡𝑡𝑡𝑡1
2 SA A𝑡𝑡𝑡𝑡2
…
n-1 EA A𝑡𝑡𝑡𝑡𝑛𝑛−1

As shown in Table 1, we map each attribute to its own ID number and attribute type, and the
attribute ID follows the principle of self-increment starting at 0. Because most of big data is a distributed
environment, we store the table in big data storage component HBase database, which can not only use
distributed storage, but also ensure the consistency of multiple machines accessing ABAC attribute sets.

4.3.2 Construction of Binary Mapping Code Policy Set
Binary mapping codes are used to represent the attributes contained in each policy. According to the

ID number of the attribute, the corresponding binary mapping code is generated for the policy, which is
used to mark the set of attributes involved in a policy.

As shown in the Fig. 4, Binary mapping code is a piece of data of length n. Each bit has two values
of 0 or 1. Bit 𝑖𝑖 is 1, indicating that it contains a qualification for the attribute numbered 𝑖𝑖, 0 indicates that
it does not contain this attribute. In the process of practical use, the length of Binary mapping code can be
adjusted appropriately.

0/1 0/1 0/1 ... 0/1

0 1 2 N-1...
 Figure 4: Binary mapping code diagram

Assume that the ID numbers of the 8 attributes in the policy set are the same as their subscripts, and
there are only these 8 attributes in the model, that is, the value of n corresponding to Table 1 is 8. Then,
the policy set can be represented as Table 2 after the introduction of binary mapping codes, and the policy
part is omitted in this table, where Num represents the ID number of the policy set, S represents the sum
of binary mapping codes, B represents the binary mapping codes, and P represents the policy.

Table 2: Binary mapping code policy table

Number S B P
0 5 111001010 P0
1 6 111010011 P1
2 3 000111000 P2

After introducing binary mapping code policy set, this paper improves PIP module and PDP module
in XACML framework. The BMC module supporting binary mapping code is added in PIP and PDP,
respectively. Some adjustments to the XACML system architecture are shown in Fig. 5.

After PIP collects the information of subject, object and environment attribute. The corresponding
binary mapping code and binary mapping code and are generated by the BMC module and sent to the
PDP along with the attributes. BMC in PDP module based on the analysis. First, compare the sum of the
binary mapping codes. If the sum of the binary mapping codes is greater than or equal to the sum of the
binary mapping codes in the policy set, then carry out logic or operation with the binary mapping codes of

194 JCS, 2021, vol.3, no.4

the policy set in turn. If the calculation result is the same as the original binary mapping code, it may
satisfy the relevant policy, and then the attribute information is compared with the policy.

Figure 5: Part of the frame improvement diagram

The sum of binary mapping code and binary mapping code is an optimization to improve the retrieval
speed. The second column stores the sum of the binary mapping code S, which represents the number of
attributes contained in the policy, and the third column stores the binary mapping code B. Only if the sum of
the binary mapping code of the policy to be matched is greater than or equal to the sum of the binary
mapping code of the policies in the policy set, the binary mapping code of the policy to be matched will
“OR” operate with the binary mapping code of the policies in the policy set. In addition, the fine-grained
attribute information comparison analysis should be carried out only if the result of “OR” operation is the
same as that of the original binary mapping code; otherwise, the policy will be skipped without matching.

4.3.3 Strategy Set Matching Algorithm Based on Binary Mapping Code
Assume that user U is assigned subject attributes att0, att1, object attributes att2, att3, and

environment attributes att5, att6, att7. This attribute set constitutes policy Px, and the policy set P of the
system is shown in Table 2. Then, when a user sends an access request to the system, the policy retrieval
process can be divided into the following steps:

Step 1: Generate policy 𝑃𝑃𝑃𝑃 according to the attributes of the access policy, and obtain binary
mapping code 𝐵𝐵𝐵𝐵, sum of binary mapping code 𝑆𝑆𝑆𝑆;
Step 2: Judge whether the traversal of the policy set has been completed. If the traversal has been
completed, the detection process will end; otherwise, continue;
Step 3: Read the first policy 𝑃𝑃𝑃𝑃, binary mapping code 𝐵𝐵𝐵𝐵, sum of binary mapping code 𝑆𝑆𝑆𝑆;
Step 4: Compare the sum of the binary mapping code 𝑆𝑆𝑆𝑆 with the sum of the binary mapping code of
the policy 𝑆𝑆𝑆𝑆. Continue if 𝑆𝑆𝑆𝑆 is greater than or equal to 𝑆𝑆𝑆𝑆, otherwise proceed to Step 2;
Step 5: The logic operation “or” of 𝐵𝐵𝐵𝐵 and 𝑆𝑆𝑆𝑆, and judge whether its operation result 𝐵𝐵𝐵𝐵 | 𝐵𝐵𝐵𝐵 is equal
to the 𝐵𝐵𝐵𝐵, if they are equal then continue, otherwise go back to Step 2;
Step 6: Judge whether each attribute value of 𝑆𝑆𝑆𝑆 conforms to 𝑆𝑆𝑆𝑆. If so, continue; otherwise, return to
Step 2;
Step 7: Return the matching policy.
The algorithm flow chart is shown in Fig. 6.

JCS, 2021, vol.3, no.4 195

Figure 6: Flowchart of the proposed algorithm

4.4 Based on Improved ABAC Big Data Access Control Framework
Based on the improved ABAC attribute big data access control architecture, HBMC-ABAC, as

shown in Fig. 7.

Figure 7: HBMC-ABAC architecture diagram

196 JCS, 2021, vol.3, no.4

(1) Function and implementation of PAP module
PAP is a policy set in the HBMC-ABAC model, whose main task is to match the applicable attribute

policies for PDP. The format of the policy is the data structure corresponding to Table 2, and the ABAC
attribute set corresponding to Table 1 is also stored in PAP module. These two tables are stored in HBase.

(2) Function and implementation of Context Handler module
Send the original access request to the PDP component or receive the result of the PDP decision to

the PEP.
(3) Function and implementation of PDP module
PDP is a policy decision module in HBCM-ABAC model. Its main task is to get the decision result of

access request by using matching algorithm of matched policy set in PAP and return it to PEP. The policy
matching algorithm is the binary mapping code policy matching algorithm proposed in the last section.

(4) Function and implementation of PEP module
PEP is the policy execution module in the HBMC-ABAC model, whose main task is to accept the

access request, send it to PDP, accept the decision result of PDP and execute it.
(5) Function and implementation of PIP module
PIP is responsible for providing PDP with the attribute information needed for decision-making, and

PIP maintains the attribute information tables of subject, object, operation and environment.
(6) Resource module
Currently, our resource module only supports Hadoop’s HDFS module. If you need other big data

components, you can add them according to the demand
In the HBMC-ABAC model, the Resource Accessor Client Access request determination process

includes the following steps:
Step 1: Client’s identity authentication through the Kerberos.
Step 2: When the client passes the authentication, send an access request to the PEP.
Step 3: PEP Send the request to the Context Handler, including attribute information such as

resource, action, and environment in the access request, and the Context Handler component resolves the
original access control request and send it to the PDP component.

Step 4: PDP parses access request and sends a search request for attribute information to the PIP
through the Context Handler component.

Step 5: PIP looks for attribute information such as the subject, resource, environment, etc. associated
with access requests, and returns the status information of the search result and the resource to the
Context Handler component.

Step 6: PDP sends a policy match request to the PAP, search the relevant policies.
Step 7: PAP uses a binary mapping code algorithm to find matching policies in the policy set and

sends all matching policies to the PDP.
Step 8: PDP returns the result to the PEP.
Step 9: PEP returns the result to the client. client accesses data resources in HDFS based on the

determination results.

5 Experiment
Experiment 1: Compare ABAC Policy Set Matching Method
In order to test the efficiency of the search algorithm based on binary mapping code, this paper uses

Java language to write test code on a PC configured with Intel (R) Core (TM) i5-8500 CPU, Ubuntu 18.04.1
LTS operating system and 8 G memory. The efficiency of the search strategy in the traditional ABAC
model and the search efficiency based on the binary mapping code algorithm are tested, respectively.

JCS, 2021, vol.3, no.4 197

This paper selects 20 attributes in the attribute set, each policy contains 10 to 14 attributes, and the
number of policies is set to 1000, 2500, 5000, 5000, 7500, 10000, respectively. The search efficiency of
traditional brute force detection and based on binary mapping code is tested by increasing the number of
policies. The brute force algorithm and the binary mapping code are numbered A and B, respectively, and
the experimental results are shown in Table 3.

Table 3: Compare the time spent on matching algorithms

K(Number of attributes per policy) 10~14
N(Number of policy) 1000 2500 5000 7500 10000
A(Time spent /ms) 155 760 2802 4366 7544
B(Time spent /ms） 48 245 678 1011 1558

In the case of an increase in the number of policies, the binary mapping code algorithm proposed in
this paper does not increase much time. Compared with A algorithm, B algorithm has good performance,
as shown in the following Fig. 8.

Figure 8: The relationship between policies and time diagram

Experiment 2: Access Control Effectiveness Testing
Set up a Hadoop cluster in the laboratory, which is physically configured as one master node and

four slave nodes. The master node is deployed on the server, Ubuntu 18.04.1 LTS OS. Configured for
Intel (R) Xeon (R) CPU E5-2650 CPU, 256 G memory, 1000 Mbps Ethernet, 13 TB hard disk. The slave
node is deployed on the server, Ubuntu 18.04.1 LTS OS. Configured for Intel (R) Xeon (R) CPU E5-2650
CPU,128 G memory, 1000 Mbps Ethernet, 8 TB hard disk.

The file F defined on the HDFS system is used as the request target of the client access, and the access
policy is made for the file. If you access the file F of HDFS, you need to have four attributes, att0, att1, att2,
att3. Their values can be specified as val0, val1, val2, respectively. The file can be accessed only if the user
contains four attributes: att0, att1, att2 and att3, and the attribute value is one of {val0, val1, val2}.

The total number of users in each experiment was set to 1000, 2500, 5000, 7500 and 10000,
respectively. The random function is used to generate the attributes of each end user, so that the ratio of
legal users (who have four attributes at the same time and the attribute values meet the requirements) and
illegal users (who do not have the above four attributes at the same time or the attribute values are not in
the range) is about 1:1 in the total number of users. Count the number of users passed in each experiment
(the total number of legal users determined as legal and illegal users determined as illegal), the number of
legal users passed (the number of legal users determined as legal) and the number of illegal users passed
(the number of illegal users determined as illegal), the experimental results are shown in Table 4.

0

2000

4000

6000

8000

1000 2500 5000 7500 10000

A B

198 JCS, 2021, vol.3, no.4

Table 4: HBMC-ABAC validity test

Total users Passed users Passed
legitimate users

Passed
illegal users Correct rate

1000 1000 495 505 100%
2500 2500 1266 1234 100%
5000 5000 2582 2418 100%
7500 7500 3740 3760 100%
10000 10000 5050 4950 100%

Table 4 shows the total number of users in each experiment, the number of passed users, the number
of legitimate users passed, and the number of illegal users passed, based on which the correct rate of each
experiment can be calculated (correct rate = number of passed users/total users). According to the data in
Table 4, with the increase of the total number of users, the number of users passed in each experiment is
always equal to the total number of users, that is, the correct rate of the HBMC-ABAC model is 100%.
And the ratio of legal users to illegal users is close to 1:1, which is in line with the expected results of the
experiment. The experimental results show that the HBMC-ABAC model can realize the access control
function based on user attributes, and the correct rate is 100%.

6 Conclusion
Aiming at the challenge of access control technology in big data environment, this paper studies the

shortcomings of open source component Hadoop access control component. Based on ABAC model, this
paper proposes an attribute-based access control model suitable for Hadoop platform. Each module in the
HBMC-ABAC model is realized. Finally, the correctness of the model is verified and the time-consuming
of its access control is tested. This scheme realizes the access control based on the attribute level, and can
realize the dynamic change of permissions according to the dynamic attributes, and can complete the
authorization of the access control system more flexibly and accurately. In addition, aiming at the problem
of matching efficiency of traditional ABAC strategy, the binary mapping code is proposed at the same time,
which improves the matching efficiency of traditional ABAC strategy set and is more suitable for the
environment scene of big data. However, this model still has some defects in solving the problem of strategy
redundancy and conflict, which needs to be improved and perfected through in-depth analysis and research.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] B. Dhyani and B. Anurag, “Big data analytics using Hadoop,” International Journal of Computer Applications,

vol. 108, no. 12, pp. 1–5, 2014.
[2] A. Rudniy, “Data warehouse design for big data in academia,” Computers, Materials & Continua, vol. 71, no. 1, pp.

979–992, 2022.
[3] N. Ragavan and C. Y. Rubavathi, “A novel big data storage reduction model for drill down search,” Computer

Systems Science and Engineering, vol. 41, no. 1, pp. 373–387, 2022.
[4] S. Das, B. Mitra and V. Atluri, “Policy engineering in RBAC and ABAC,” in From Database to Cyber

Security, vol. 11170, pp. 24–54, 2018.
[5] K. Yang, Q. Han and H. Li, “An efficient and fine-grained big data access control scheme with privacy-

preserving policy,” IEEE Internet of Things Journal, vol. 4, no. 2, pp. 563–571, 2016.

JCS, 2021, vol.3, no.4 199

[6] J. Zamite, D. Domingos and M. J. Silva, “Group-based discretionary access control in health related
repositories,” Journal of Information Technology Research, vol. 7, no. 1, pp. 78–94, 2014.

[7] P. Alexander, L. Pike and P. Loscocco, “Model checking distributed mandatory access control policies,” ACM
Transactions on Information and System Security, vol. 18, no. 2, pp. 1–25, 2015.

[8] C. Ruan and V. Varadharajan, “Dynamic delegation framework for role based access control in distributed data
management systems,” Distributed and Parallel Databases, vol. 32, no. 2, pp. 245–269, 2014.

[9] O. Standard, Extensible Access Control Markup Language (XACML) version 2.0. [Online] Avaliable:
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf.

[10] M. Kuhlmann, D. Shohat and G. Schimpf, “Role mining-revealing business roles for security administration
using data mining technology,” in Proc. of the Eighth ACM Sym. on Access Control Models and Technologies,
pp. 179–186, 2003.

[11] I. Molloy, Y. Park and S. Chari, “Generative models for access control policies: applications to role mining
over logs with attribution,” in Proc. of the 17th ACM Symp. on Access Control Models and Technologies, pp.
45–56, 2012.

[12] P. C. Cheng, P. Rohatgi and C. Keser, “Fuzzy multi-level security: An experiment on quantified risk-adaptive
access control,” IEEE Symp. on Security and Privacy, pp. 222–230, 2007.

[13] L. Zhang, A. Brodsky and S. Jajodia, “Toward information sharing: Benefit and risk access control,” Seventh
IEEE International Workshop on Policies for Distributed Systems and Networks, pp. 46–53, 2006.

[14] K. Zheng and W. Jiang, “A token authentication solution for hadoop based on kerberos pre-authentication,” in
2014 Int. Conf. on Data Science and Advanced Analytics, pp. 354–360, 2014.

[15] C. Feng, Z. Qin, D. Yuan and Y. Qing “Key techniques of access control for cloud computing,” Acta
Electonica Sinica, vol. 43, no. 2, pp. 312–319, 2015.

	Research on ABAC Access Control Based on Big Data Platform
	Kun Yang1, Xuanxu Jin2 and Xingyu Zeng1,*
	References

