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Abstract:  This paper is devoted to the homogenization and statistical multiscale analysis 

of a transient heat conduction problem in random porous materials with a nonlinear 

radiation boundary condition. A novel statistical multiscale analysis method based on the 

two-scale asymptotic expansion is proposed. In the statistical multiscale formulations, a 

unified linear homogenization procedure is established and the second-order correctors are 

introduced for modeling the nonlinear radiative heat transfer in random perforations, which 

are our main contributions. Besides, a numerical algorithm based on the statistical 

multiscale method is given in details. Numerical results prove the accuracy and efficiency 

of our method for multiscale simulation of transient nonlinear conduction and radiation 

heat transfer problem in random porous materials. 

Keywords: Statistical multiscale analysis method, transient heat conduction problem, 

nonlinear radiation boundary condition, random porous materials. 

1 Introduction 

With rapid developments of space aircraft in recent years, porous materials have been 

widely used as insulation for thermal protection system owing to their various elegant 

qualities, such as low relative density, high heat resistance, low thermal conductivity and 

high radiation attenuation coefficient compared to the traditional materials [Grujicic, 

Pandurangan, Zhao et al. (2006); Ishizaki, Komarneni and Nanko (2013)]. And it is 

important to understand the thermal responses of porous materials and structures in many 

engineering applications. As we know, heat transfer in porous materials contains 

conduction, convection and radiation. The convective heat transfer can be neglected in 

closed-cell porous materials and radiation is typically the major mode of heat transfer in 

high-porosity insulations at high temperature environment [Modest (2013)].  

Porous materials usually have multiple length scales [Park and Hou (2004); Zhang, Yang, 

Zhang et al. (2013); Wu and Xiao (2017)] and random microscopic configurations [Sundén 
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and Yuan (2013); Wang, Wang, Pan et al. (2007)]. According to the arrangement 

characteristics of perforations, random materials can be classified into materials with 

consistent random distribution and those with inconsistent random distribution [Li and Cui 

(2005); Han, Cui and Yu (2010)]. The consistent random distribution means that the 

volume fraction and probability distribution model of perforations are the same everywhere 

in porous materials (Fig. 1), which will be considered in this paper. Considering interior 

surface radiation effect in the closed-cells, heat transfer response of random porous 

materials would become much complicated. Therefore, it is necessary to study the heat 

conduction-radiation problem of random porous materials.  

Up to now, some theoretical models have been proposed and employed to calculate the 

effective thermal conductivity properties of composite materials, such as Maxwell-Eucken 

model [Hashin and Shtrikman (1962)], generalized self-consistent method [Chou, Nomura 

and Taya (1980)], Cheng-Vachon model [Cheng and Vachon (1969)], self-consistent 

method [Hill (1965)]. However, these methods simplified the microstructure of real 

composite materials by the homogenization schemes in order to reduce the computational 

complexity. Moreover, by using these theoretical methods the local temperature fields 

cannot be calculated. Some works have been performed on heat conduction-radiation 

problem of porous materials. Liu et al. [Liu and Zhang (2006)] calculated the effective 

macroscopic properties of static heat conduction-radiation problem. Allaire et al. [Allaire 

and El Ganaoui (2009)] gave the homogenization process of heat conduction problem with 

non-classical radiation boundary conditions by two-scale asymptotic expansion. It should 

be pointed out that the non-classical model cannot be used for the porous materials with 

low porosity, because it over-estimates the radiation behavior on the interior surface of 

cavities. The homogenization solutions of the heat conduction problem with radiation 

boundary condition were obtained in Bakhvalov [Bakhvalov (1981)]. After that, Yang et 

al. [Yang, Cui, Nie et al. (2012)] presented a second-order two-scale analysis method for 

the heat transfer problem of periodic porous materials with interior surface radiation. 

Besides, Amosov [Amosov (2010)] and Tiihonen [Tiihonen (1997)] proved the existence 

and uniqueness of the heat conduction equation with nonlinear radiation boundary 

conditions.  

To our knowledge, we have not seen the study of the transient heat transfer problem of 

random porous materials with interior surface radiation in the existing literature. Actually, 

random porous materials have been widely used in engineering, such as metal-matrix 

composites and polymer blends. The transient heat conduction-radiation model is nonlinear, 

and it is difficult to find the analytical solutions. As for numerical solutions, due to the 

random structures and characteristic coefficients oscillating rapidly in small cells, in order 

to effectively capture the local fluctuation behaviors of temperature field and its derivatives, 

the mesh size must be very small while employing the traditional numerical methods, 

which will lead to tremendous amount of computer memory and CPU time. Therefore, it 

is necessary to develop highly efficient numerical method to solve the nonlinear transient 

heat conduction-radiation problem of random porous materials.  

The homogenization method is developed to describe the overall behaviors of composite 

materials by incorporating the fluctuations due to the heterogeneities of the composites 

materials [Bensoussan, Lions and Papanicolaou (2011)]. However, numerous numerical 
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results have demonstrated that the numerical accuracy of the standard homogenization 

method may not be satisfactory [Efendiev and Hou (2009); Yang, Zhang, Dong et al. 

(2017)]. And then, based on the homogenization method, various multi-scale methods have 

been proposed [Efendiev and Hou (2009); Juanes (2005); Engquist, Li, Ren et al. (2007)]. 

However, they only obtained first-order asymptotic expansions, which are not enough to 

capture the local fluctuations of solutions in many physical and mechanical problems. 

Hence, it is necessary to develop more effective methods, which is the motivation for 

seeking higher-order multiscale methods. The existences of homogenization coefficients 

and homogenization solutions for the composite materials with consistent random 

distribution were proved in Jikov et al. [Jikov, Kozlov and Oleinik (2012)]. Cui et al. [Cui, 

Shih and Wang (1999); Yang, Ma and Ma (2017)] introduced the second-order multiscale 

method to predict different physical and mechanical behaviors of composite structures. By 

adding the second-order correctors, the microscopic fluctuation behaviors inside the 

composite materials can be captured more accurately. For the random composite material, 

Cui et al. [Li and Cui (2005); Guan, Liu, Jia et al. (2015); Han, Cui and Yu (2010)] 

established a statistical multiscale method by introducing a random sample cell. However, 

previous multiscale method cannot be directly applied to the transient conduction and 

radiation heat transfer problem because of the nonlinearity, randomness and time variation. 

Up to now, there is no effective numerical method found for the transient and nonlinear 

heat transfer problem of random porous materials.  

The aim of this paper is to develop a novel statistical multiscale analysis method for the 

transient heat conduction problem in random porous materials with a nonlinear radiation 

boundary condition. The remainder of this paper is outlined as follows. In Section 2, the 

microscopic representation of random porous materials and the transient heat conduction-

radiation model are given. The formulation of multiscale asymptotic expansion is derived 

and the finite element algorithms based on the statistical multiscale method are given in 

details in Section 3. In Section 4, numerical results obtained by the statistical multiscale 

method are given to demonstrate the effectiveness of the present method. Finally, some 

conclusions are presented in Section 5. For convenience, we use the Einstein summation 

convention on repeated indices in this paper. 

2 Transient conduction and radiation heat transfer problem 

In this section, the microscopic representation of random porous materials is described. 

And then the transient heat conduction equation with a nonlinear radiation boundary 

condition is presented. 
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(a)                                                         (b) 

Figure 1: Porous materials with random distribution of pores (a) The whole structure   ; 

(b) Unit cell sY   

 

2.1 Microscopic representation of random porous materials 

Suppose that the investigated porous material structure  is made from matrix and pores. 

All the pores are considered as ellipsoids, which are randomly distributed in the matrix. In 

this paper, all the ellipsoid pores are considered as “one-scale”, which means all of their 

long axes satisfy 1 2r a r  where 1r  and 2r  
are given lower and upper bounds. And porous 

materials with random distribution of pores can be represented as follows 

1) There exists a constant   satisfying 2r L , where L  denotes the size of  . 

Thus   can be considered as a set of cells with size , as shown in Fig. 1(a). 

2) Each ellipsoid in three-dimensional apace is defined by 9 random parameters, i.e. the 

coordinates of the central point 01 02 03( , , )x x x , the sizes of the long, middle and short 

axis 1 2 3( , , )a a a and 3 orientation parameters of the long and middle axis 1 2 3( , , )   . 

Let 1 2 3 1 2 3 01 02 03( , , , , , , , , )a a a x x x    , which contains all the information of an 

ellipsoid. If there are K ellipsoids in a cell sY , sY represents a normalized cell, then 

a random sample s can be defined as
1 2 3 1( , , , , , ).s s s s s s

K K       

The distribution of the pores in each cell satisfies the same probability distribution function. 

Then the investigated structure has periodically random distribution of pores, and then can 

be represented by the probability distribution of pores inside a typical cell. Therefore, the 

porous structure  is logically composed of - size cells subjected to the identical 

probability distribution model P and 

( , )
1

( )s

m
s

z Z
s

Y z







  

 

where 1,2,3...,s m  denotes the index of samples and Z is the integer set. For the whole 
 , define 

 s sx Y     
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Thus the thermal conductivity parameters of random porous materials can be considered by 

  1

1

( , ) , if
K

s s

ij ij k

k

k x k x Y e  


    

where ke denotes the thk pore inside sY ,  and the material coefficient 1

ijk  satisfies 

that 1 ,ijk C where C is a positive constant. 

2.2 Heat conduction-radiation equation 

Let  = : 0 1, 1,2,3jY y y j   and   be a smooth unbounded domain in 3R with random 

structures satisfying following conditions [Oleinik, Shamaev and Yosifian (1992)]: 

1) The unit cellY Y  is a domain with a Lipschitz boundary. Y Y    and    

is the surfaces of cavities andY  is the solid part of Y , shown in Fig. 1(b). 

2) The set \Y   ( stands for the closure in 3R of the domain ) and the intersection 

of \Y   with 0 neighborhood of Y consist of a finite number of Lipschitz domains 

separated from each other and from the edges of Y by a positive distance. 

The cavities of the domain are convex. Then, the investigated porous domain  as shown 

in Fig. 1(a) can be expressed as 
   , where  is a bounded convex domain in

3R without cavities, and these cavities do not intersect with  . 

Suppose that the radiative surfaces of cavities are diffuse and grey, that is, the emissivity 

e of the surfaces does not depend on the wavelength of radiation. And based on the 

modeling of heat radiative process by an integral equation on the surfaces of cavities in 

periodic structures [Liu and Zhang (2006)] and microscopic representation of random 

structures, the nonlinear radiation boundary condition on interior surfaces of closed cavities 

in random porous materials can be defined as 

,

4( , , )
( , ) ( , , ) ( , , ) ( , )

c
m

i ij

j

T x t
k x e T x t e R x t F x z dz

x 

 
 


    




  

   

where ( , , )T x t  denotes the temperature,  the Stefan-Boltzmann constant, ( )iν the 

unit outward normal on  c

 ; ( )

1 ,

c m c

m m



    is the boundary composed of interior surfaces 

of cavities ,

c

m , and ( )m  the number of cavities in porous materials; the emissivity e  

satisfies 0 1e  and ( , )R x  is the intensity of emitted radiation given by 

,

4

,( , , ) ( , , ) (1 ) ( , , ) ( , ) ,
c

m

c

mR x t e T x t e R z t F x z dz x


      


      

where ( , )F x z is the view factor between two different points x and z  on ,

c

m , and is defined 

on three dimensional form for a convex cavity as follows [Allaire and El Ganaoui (2009)] 

4

( ) ( )
( , ) z xn x z n z x

F x z
z x

 



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where zn and xn denote the unit normal at different points z and x on
,

c

m , respectively. 

And for any 2

,( , ) ( )c

mx z   , it satisfies the following properties 

( , ) 0F x z  , ( , ) ( , )F x z F z x , 
,

( , ) 1
c

m

F x z dz


  

Under aforementioned assumptions, the transient heat transfer problem in random porous 

structures can be expressed as follows 

( , , ) ( , , )
( , ) ( , ) ( , ) ( , )ij

i j

T x t T x t
x c x k x f x t

t x x
    

   
       

  (1) 

The corresponding initial and thermal boundary conditions are 

,

1

2

4

( , , ) ( , ), ( , ) (0, )

( , , )
( , ) 0, ( , ) (0, )

( , ,0) ( ),

( , , )
( , )

( , , ) ( , , ) ( , ) , ( , ) (0, )
c

m

i ij
j

in

i ij
j

c

T x t T x t x t t

T x t
k x x t t

x

T x T x x

T x t
k x

x

e T x t e R x t F x z dz x t t




 





 

  




 




 

  








  


  



 






   

 

where , 1,2,3i j  ; ( , )x  , ( , )c x  and ( , )ijk x  are the mass density, specific heat and 

thermal conductivity, respectively; ( , )f x t denotes the internal heat source, ( , )T x t the 

prescribed boundary temperature, 1 and 2 the parts of the boundary of this region, where 

temperature and heat flux are specified such that 1 2 1 2,       . The time 

(0, )t t plays the role of a parameter and  t  denotes the upper bound of time. 

In order to avoid the arguments on the mathematical properties of investigated functions 

below, we suppose that the random material parameters  ( , )s

ijk x  are bounded 

measurable functions of the random variable s , and their mathematical expectations exist. 

Besides,  ( , )s

ijk x  is supposed to be symmetric. 

3 Statistical multiscale method 

In this section, the statistical multiscale formulation is derived by using the constructive 

way for calculating the nonlinear transient heat conduction behaviors of random porous 

materials. Moreover, the corresponding numerical algorithm is presented in details. 

3.1 Statistical multiscale asymptotic expansions 

Introducing the variable
sy x Y  for

s , which denotes the local coordinates defined 

on 1-normalized cell sY , and then the material coefficients of microstructure in sY can be 
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expressed as ( , ) ( , )sx y    , ( , ) ( , )sc x c y   and ( , ) ( , )s

ij ijk x k y   . Since the 

temperature solution ( , , )T x t  of the heat conduction problem (1) depends on both global 

behaviors of the structure  and local configuration in sY , and then it can be expressed as

( , , ) ( , , , )sT x t T x y t   . In this paper, it is supposed that 1e  to simplify the exposition. 

However, it is easy to extend the case 0 1e  , see Park et al. [Park and Hou (2004)] for 

details. Further, it is assumed that ( , , )T x t  can be expanded into the following form in 

two-scale variables x and y  

1 1 2

1 1 2

1

1

2
20 0

0

3 30 0
0 1

( , ) ( , )
( , , ) ( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , ) ( , ) ( , , ),  ,  

s s

s s s s

T x t T x t
T x t T x t N y N y

x x x

T x t T x t
C y T x t M y P x y ,t x y Y

x t

   

  







    

    

 
   

  

 
    

  

  (2) 

where 0 ( , )T x t is the homogenization solution, which only reflects macroscopic behaviors, 

1
( , )sN y  , 

1 2
( , )sN y   ,  

1
( , )sC y  and ( , )sM y  are called as local solutions. Due to

sy x Y  , Differentiation with respect to x  is defined as 

1

i i ix x y

  
 

  
                                                                                                            (3) 

We now substitute (2) into (1) and match terms of the same order of  , then the following 

equations can be obtained 

1

1

1

1 0 0

2 2
0 0 0

( , , ) ( , , )
( , ) ( , ) ( , )

( , )( , ) ( , )
( , )

( , )( , ) ( , )
( , ) ( , )

s s
s s s

ij

i j

s

s

ij

i j j

s

s s

ij ij

i j j i

T x t T x t
x c x k x

t x x

N yT x t T x t
k y

y x y x

N yT x t T x t
k y k y

x x y x

   







 
   


 


  



  
  

    

   
    

       

 
 

    

 

1

1 2

1

1 1 2

1

1

2 2

0 0

3 0
0

0

( , )( , ) ( , )
( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , )

( , )( , )
( , )

s

s s s

ij ij

i j i j

s

s

ij

i j

s
s

ij

i j

x

N yT x t T x t
k y N y k y

y x x y y x x

C y T x t
k y T x t

y y x

T x tM y
k y

y y t



 



  






  





 






   
   

        

  
  

    

   
  

    

0( , ) ( , ) ( ) ( , ),s s T
y c y O f x t

t
  


 




  (4) 
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 

,

1 1

1

4 4 4 4

0 0

3 20
0

( , , )
( , )

( , , ) ( , , ) ( , ) ( , ) ( , ) ( , )

( , )
4 ( , ) ( , ) ( , ) ( , ) ( ).

c c
m

c

s
s

i ij

j

s s

s s

T x t
k x

x

T x t T x t F x z dz T x t T x t F y s ds

T x t
T x t N y N s F y s ds O

x



 

 

 




 

     

    

 








   


  



 



  (5) 

A series of equations are obtained if the coefficients of ( 1,0,1,2, )l l   from both sides 

of above equations are required to equal to each other. 

From the coefficients of 1  the following local problem defined on 
sY 
for

1
( , )sN y  are 

constructed 

1

1

1

1

1

1

0

0

4 4

0 0

( , ) ( , )
( , ) ( , ) 0, in

( , ) ( , )
( , ) ( , )

( , ) ( , ) ( , ) ,   
c

s

s s

i ij

i j

s

s s

i ij i

j

N y T x t
k y k y Y

y y x

N y T x t
k y k y

y x

T x t T x t F y s ds y














 


  

 





   
   

     


  
      

      (6) 

where is the interior surfaces of the cavities contained in
sY 
, as shown in Fig. 2(b), such 

that
1

N c

n n   , and N the number of cavities contained in the unit cell
sY 
. Considering 

( , ) 1
c
F y s ds


 , 

it is easy to get that 

4 4

0 0( , ) ( , ) ( , ) 0
c

T x t T x t F y s ds 


                                                                                  (7) 

Since
10 ( , )T x t x  arises from the macroscopic behavior of the structure, it is not identical 

to zero. By virtue of (7), (6) can be rewritten as 

1 1

1

1

( , ) ( , )
( , ) , in

( , )
( , ) ( , ) 0,  

s s

is s

ij
i j i

s

s s

i ij i
j

N y k y
k y Y

y y y

N y
k y k y y

y

 





 



  


       

     


 
      
  

  (8) 

To attach the following boundary condition on 
sY  

1
( , ) 0 ons sN y Y                                                                                                     (9) 

Therefore, for any sample
s ,

1
( , )sN y  is the solution of the following problem 
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1 1

1

1

1

( , ) ( , )
( , , in

( , )
( , ) ( , ) 0,

( , ) 0,                                           

s s

is s

ij
i j i

s

s s

i ij i
j

s s

N y k y
k y Y

y y y

N y
k y k y y

y

N y y Y

 







 



  




       

     


 
      

 


    (10) 

Inspired by Li et al. [Li and Cui (2005)] and from
1
( , )sN y  , for any fixed sample s , the 

homogenization coefficients can be defined as 

 
( , )1ˆ ( ) ( , ) ( , )

1ˆ( ) ( , ) ( , )

s

s

s

js s s

ij ip ijs Y
p

s s s

s Y

N y
k k y k y dy

yY

S y c y dy
Y


  

   










 









  (11) 

where
sY 

denotes the Lebesgue measure of
sY 
. From the symmetry and boundness of

( , )sy  , ( , )sc y  , ( , )s

ijk y  and Lemma 3.2 in [Li and Cui (2005)], it follows that  ˆ( )sS 

and ˆ ( )s

ijk  are bounded functions of random variable and their mathematical expectations 

exist. Thus, by taking L samples (s 1,2, , )s L  , L homogenization coefficients are 

obtained, and then according to the Kolmogorov’s classical strong law of large number, 

one can calculate the expected homogenization coefficients in formulas 

1 1

ˆ ˆ( ) ( )
lim , lim

L Ls s

ijs s
ij

L L

k S
k S

L L

 
 

 
 

 
                    (12) 

Further, one can define the homogenized problem associated with (1) as follows 

0 0

0 1

0
2

0

( , ) ( , )
( , )

( , ) (0, )

( , ) ( , ), ( , ) (0, )

( , )ˆ 0, ( , ) (0, )

( ,0) ( ),          

ij
i j

i ij
j

in

T x t T x t
S k f x t

t x x

x t t

T x t T x t x t t

T x t
k x t t

x

T x T x x









         
 

   


   



    (13) 

Similarly to Li et al. [Li and Cui (2005)], it is easy to prove that ijk is symmetric, positive 

and definite. By Lax-Milgram theorem and Poincare’s inequality, the homogenized 

problem (13) has a unique solution. 

Next, comparing the coefficient of
0 on both sides of (4) and taking into account the 

homogenized Eq. (13), it can be obtained that 
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 
1 2 2 1 1 2

1 1 2

2

1 2

1 1 2

2

2

0

0

( ) ( , ) ( , ) ( , )

( , ) ( , , ) ( , )
( , ) ( , )

( , , ) ( ) ( , )
+ ( , )

s s s

i

i

s s

s s

j ij

j i j

s

s

ij

i j

k x k y N y k y
y

N y N x y T x t
k y k y

y y y x x

H x y k x T x t
k y

y y x

     

  



 

  



  

 
 




 
 


   
   

      

    
   

        1

1

1

3 0
0

0

( , ) ( , )
( , ) ( , )

( , )( , )
+ ( , ) ( , ) ( , ) ( ) 0

s

s

ij

i j

s
s s s

ij

i j

x

C y T x t
k y T x t

y y x

T x tM y
k y y c y S x

y y t











   

  
  

    

    
     

      

  (14) 

Since
1 2

2

0 ( , )T x t x x    ,
10 ( , )T x t x  and 0 ( , )T x t t  are not identical to zero and 

considering the radiation asymptotic expansion (5), the auxiliary functions 
1 2

( , )sN y   , 

1
( , )sC y  and ( , )sM y  can be defined by the constructing way analogous to

1
( , )sN y  , 

namely 

 1 2

1 2 2 1

1

1 2 2

1 2

2 1

1 2

( , )
( , ) ( ) ( , ) ( , )

( , )
( , ) ( , ) , in

( , )
( , ) ( , ) ( , ) 0,

( , ) 0,               

s

s s s

ij i

i j i

s

s s s

j

j

s

s s s

i ij i

j

s

N y
k y k x k y N y

y y y

N y
k y k y Y

y

N y
k y k y N y y

y

N y

 

   



  

 

 

 


  


 


   





  
  

    


 



 
    

  

                            sy Y












 

  (15) 

 

1

1

1 1

1

( , )
( , ) 0,          in

( , )
( , )

4 ( , ) ( , ) ( , ) , 

( , ) 0,                               

c

s

s s

ij
i j

s

s

i ij
j

s s

s s

C y
k y Y

y y

C y
k y

y

N y N l F y l dl y

C y y Y





 







 

  







     
    


     
 


  


 


  (16) 



 

 

 

Statistical Multiscale Analysis of Transient Conduction and Radiation                           11 

( , )
( , ) ( , ) ( , ) ( ), in

( , )
( , ) 0, 

( , ) 0,                          

s
s s s s

ij
i j

s
s

i ij
j

s s

M y
k y y c y S x Y

y y

M y
k y y

y

M y y Y


   


 




        


  
     
      (17) 

where l z  , z is the macroscopic coordinate of the structure, and l is the local coordinate 

of 1-normalized cell.                                                                         

Remark 3.1 In order to ensure that ( , , )T x t  expressed by (2) satisfy the boundary 

condition on 1 and 2 in the original problem (1), it is necessary to impose the boundary 

condition
1
( , ) 0sN y   on

sY since
10 ( , )T x t x  do not generally equal to zero on the 

boundary. Besides, since the distribution of pores in all cells is random, the pore 

distributions in two adjacent cells are different. Therefore, the configuration of the cells 

cannot be extended periodically, and the periodicity conditions cannot be used here to 

construct cell problems (10) and (15)-(17). In order to ensure the existence, uniqueness and 

whole continuity of solutions, zero-boundary conditions are imposed on the cell problems 

(10) and (15)-(17). 

Remark 3.2 In terms of Lax-Milgram theorem and Poincare’s inequality, it is easy to prove 

that above problems (10) and (15)-(17) have unique solution for any fixed s . 

Now, we can define the multiscale approximate solutions of the problem (1) as follows 

1

1

1

1

1 2 1

1 2 1

0
1 0

0
2 0

2 3
2 30 0 0

0

( , )
( , ) ( , ) ( , )

( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

s

s

s s s

T x t
T x ,t T x t N y

x

T x t
T x ,t T x t N y

x

T x t T x t T x t
N y C y T x t M y

x x x t













  

  

  

  

   


 




 



   
   

     

  (18) 

where
1 ( , )T x ,t  and

2 ( , )T x ,t  represent the first-order and the second-order multiscale 

approximate solutions, respectively. Let 

( , ) ( , ) ( , )ij

i j

x c x k x
t x x

L   

    
   

   
    

 

For any fixed sample
s , to compare

1 ( , )T x ,t  with the original solution ( , )T x ,t  , 

substituting
1( , ) ( , )T x ,t T x ,t

   into (1), we have 
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 

 

1

1

1

1

1

1

2

0
1

2

0 0

2 2
0 0

( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , ) ( , )

ij
j i

ij
i j

ij ij
i j i j

N y T x t
T x ,t T x ,t f x t k y

y x x

T x t T x t
k y N y y c y

y x x t

T x t T x t
k y k y N y

x x x x x

L



 




   




  







  

    

   

 
 

  

  
   

   
    



1

1

2

0 ( , )
( , ) ( , ) ( , )s T x t
y c y N y

t x
 




   








 

 

It can found that above residual is of order (1)O . However, in the practical engineering 

computation,  is a fixed smaller constant rather than tending to zero. So the first-order 

solution is not accepted by the engineers since it is not accurate enough to capture the 

micro-scale fluctuations inside materials. 

In addition, taking
2( , , ) ( , , )T x t T x t

   into (1) and considering homogenized Eq. (13), 

it yields that 

   

 

1 1

1

1 2

2 1

1 2 2

2 2

1 0

( , , ) ( , , ) ( , ) ( , , )

( , ) ( , ) ( , )
( , )

( , )
( , ) ( , ) ( , )

( , ) ( ,

s s

is

ij
i j i

s

s s s

ij i
i j i

s

j

T x t T x t f x t T x t

N y k y T x t
k y

y y y x

N y
k y k y N y

y y y

k y k y

L L 



 



 

 

  

   

 
 


  





 

      
     
  

      
     

 





1

1 2

1 2

1

1

2 3

0

0

3 20
0 0

( , ) ( , )
)

( , )( , )
( ) ( , ) ( , ) ( , )

( , ) ( , )
( , ) ( , )

s

s

j

s
s

ij
i j

s

s

ij
i j i

i

N y T x t
k

y x x

T x tM y
S x y c y k y

y y t

C y T x t
k y T x t

y y x x
F F



 
 

 









   


  

 
 

  

           

     
    
 



  (19) 

where 
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 
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1
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0 0
0

3
30 0

0

3 0
0
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i j j i
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j j
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j

i i

i

yT T
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C yT T
y y y T
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T
y C y T

x x

N
F k N k

k N k
y x

k
y



   


  



  

 
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 





  


  

 

 

      

   
   

     

 


  

 

 
 




 

1 2

1 2

1

1

4

0

2 2

0 0

3
3 0 0

0

( , ) ( , )

( , )
( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )

ij
i j

s
s s s

ij ij
i j j i

s s

i ij ij
j i j

T
y y

x x x x

T TM y
k y M y k y

y t x y t x

T T
y C y T k y M y

x x t x x

k N

F k

 

 
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 




  


  

   




   

  
     

    
     

  (20) 

By the definitions of
1
( , )sN y  ,

1 2
( , )sN y   ,

1
( , )sC y  and ( , )sM y  given by (10) and 

(15)-(17), the first four terms on the right side of (19) are equal to zero. So the residual of 

(19) is of order ( )O  . It means that the second-order multiscale solutions are equivalent to 

the solutions of original problem (1) with order ( )O  in nearly pointwise sense. This is the 

reason for seeking second-order two-scale expansions. 

Summing up, one obtains following results  

Theorem 3.1 The transient conduction and radiation heat transfer problem of random 

porous materials has statistical multiscale approximate solutions as follows      

1

1

1 2 1

1 2 1

0
0

2
2 30 0 0

0

( , )
( , , ) ( , ) ( , )

( , ) ( , ) ( , )
( , ) ( , ) ( , ) ( , )

,  ,

s

s s s

s s

T x t
T x t T x t N y

x

T x t T x t T x t
N y C y T x t M y

x x x t

x y Y P

 



  

  



  

   




 



   
   

     

  

  (21) 

where 0 ( , )T x t is the solution of the homogenized problem (13); 
1
( , )sN y  ,

1 2
( , )sN y   , 

1
( , )sC y  and ( , )sM y  are auxiliary functions defined by (10), and (15)-(17) on the 

normalized cell
sY 
, respectively. 

From the formula of temperature (21), the heat flux density is evaluated approximately by 
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  (22)                         

3.2 Numerical implementation 

3.2.1 Finite element (FE) formulations 

The computer simulation algorithm developed in Yu et al. [Yu, Cui and Han (2008)] is 

used to generate a sample with random distribution of pores, and the FE meshes of sample 

cells applied in this study are those of Han et al. [Han, Cui and Yu (2010)], shown in Fig. 

2(a). It can be observed that cell problems (10) and (15)-(17) are all elliptic boundary value 

problems, and they can be solved by the standard finite element method to get the FE 

solutions of the first-order and second-order auxiliary functions. And then the 

homogenized coefficients are evaluated by (11-12) based on the FE solutions of first-order 

auxiliary functions. Further, the spatial region  is divided by using the FE mesh first, 

shown in Fig. 2(b), and then the temporal domain (0, )t is divided by using the backward 

Euler full discrete format to solve the homogenized problem (13). According to (21) and 

the FE solutions of auxiliary problems, homogenized coefficients and homogenized 

problem, the statistical multiscale FE solution of temperature can be evaluated. 

3.2.2 Algorithms for statistical multiscale method 

The algorithm procedure of statistical multiscale method based on the FE computations for 

predicting the transient heat conduction-radiation performance is stated as follows 

1) Generate a sample
s for a unit cell sY  according to the given probability distribution 

model P , and determine the material coefficients in (1). Further, partition sY  into FE 

meshes. 

2) Solve the problem (10) by FE method to get the solution of
1
( , )sN y  . Furthermore, 

the homogenized coefficients ˆ ( )s

ijk and ˆ( )sS  are calculated through formula (11). 
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3) Repeat steps 1-2 for L samples ( 1, , )s s L . And the expected homogenized 

coefficients and cane be evaluated by the formula (12). 

4) With the expected homogenized coefficients ijk and S obtained by step 3, the 

homogenization solution 0 ( , )T x t can be obtained through solving problem (13) in 

(0, )t by using FE method and finite difference method. 

5) Solve the cell problems (13)-(15) for s by using the same meshes in step 2 to get the 

FE solutions of
1 2

( , )sN y   ,
1
( , )s

aC y  and ( , )sM y  . 

6) From (21) and (22), the temperature and heat flux density distributions corresponding 

to the sample
s are evaluated. 

 

           
(a)                                                   (b) 

Figure 2: (a) The meshes of unit cell; (b) the meshes of the homogenized domain  

4 Numerical examples 

In this section, in order to verify the validity and feasibility of the statistical multiscale analysis 

method for studying the transient heat conduction problem of random porous materials with 

nonlinear radiation boundary condition, some numerical examples are given here. 

4.1 Validation of the statistical multiscale method 

A macrostructure
 , which is a union of entire periodic cells as shown in Fig. 3(a), is 

chosen, and the unit cell is depicted in Fig. 3(b). 
1( )=0T x K and

2( )=0T x K are boundary 

temperatures in x3-direction. The time step is =0.02t , the radius of the cavity inY  is 0.25 

and 
8 2 45.669996 10 W m K   . 
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Figure 3: (a) Domain
3[0,0.25]  ; (b) Unit cell 

3[0,1]Y  

Since it is difficult to find the analytical solution of above problem, we have to replace

( , , )T x t  with more precise FE solution FET in a very fine mesh for comparison. The 

tetrahedron partition is implemented and the information of the FE meshes is listed in Table 

1. Without confusion, it should be noted that 0 ( , )T x t denotes the numerical solution of the 

homogenized Eq. (13), 
1 ( , )T x t

 and 
2 ( , )T x t

the first-order and the second-order multiscale 

numerical solutions based on (21). We consider two cases 

Case1： ijk =15 W/m K, ( )f x =10000 J/m3s 

Case2： ijk =15 W/m K, ( )f x =100000 J/m3s 

where ij is the Kronecker delta. 

Table 1: Comparison of computational cost 

Elements Original equation Unit cell Homogenized equation  

736815 5817 93750 

Nodes 137431 1351 17576 

Fig. 4 and Fig. 5 show the numerical results for 0 ( , )T x t ,
1 ( , )T x t

,
2 ( , )T x t

 and FET at the 

intersection 3 0.15x and at time 0.2t of different cases. From Fig. 4 and Fig. 5, it can 

be found that the homogenized solutions, first-order and second-order approximate 

solutions are in accordance with the FE solutions in the very fine mesh. But Fig. 4 and Fig. 

5 demonstrate that the second-order approximate solutions are much better than the 

homogenized and first-order approximation solutions for temperature. It means that the 

homogenization solution and the first-order solution are insufficient to describe local 

fluctuation of the solution. But the second-order multiscale method gives more accurate 

numerical solutions. 

In addition, from Tab. 1, it can be found that the mesh partition numbers of the newly 

statistical second-order multiscale approximate solution are much less than that of the 

refined FE solution. It means that the statistical multiscale method can greatly save 

computer memory and CPU time without losing precision, especially for small  , which is 
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very important in actual engineering computation. Both the multiscale and direct FE 

simulations are performed on the same computer with memory of 512 GB and 16 

processors of CPU=2.67 GHz. Actually, it is very cheap by using the statistical multiscale 

method, taking about 0.8 seconds to finish solving the cell problem and homogenized 

problem about 6 seconds for one iteration, which takes the majority of the computational 

efforts. On the other hand, the direct FE simulation takes about 660 seconds because it 

requires fine meshes. 

 
(a)                                                         (b) 

   

(c)                                                            (d)    

Figure 4: The temperature (K) in the cross section 3x =0.15 and at time 0.2t , case 1: (a)

0 ( , )T x t ; (b)
1 ( , )T x t

; (c)
2 ( , )T x t

; (d) FET  

         

(a)                                                             (b)   
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(c)                                                              (d)    

Figure 5: The temperature (K) in the cross section 3x =0.15 and at time 0.2t , case 2: (a)

0 ( , )T x t ; (b)
1 ( , )T x t

; (c)
2 ( , )T x t

; (d) FET  

4.2 Influence of micro-structures on the thermal properties and performance 

The influence of micro-structures of random porous materials on thermal properties 

performance is investigated here. Fig. 6 depicts the geometry structure of a plate whose 

length is 10 mm, width is 10 mm and thickness is 5 mm. The internal heat source ( , )f x t is 

taken as zero, the temperatures in 3x -direction are set as 
1( , )T x t =100K and 

2( , )T x t =1000K 

on 1 , and the thermal conductivity of ceramics is 21.16 W/mK. 

Porous material structures with three different random distributions of pores are considered: 

uniformly stochastic distribution of spherical pores in a cell; normally stochastic 

distribution of spherical pores around the centric point of a cell; uniformly stochastic 

distribution of ellipsoidal pores whose long axes is about two times of the middle axes and 

short axes, and which are subjected to normal distribution along 1x -axis, in a cell. Fig. 7 

depicts these three samples corresponding to those, which are generated based on Yu et al. 

[Yu, Cui and Han (2008)]. The radii are both taken as 0.0375 for the pores subjected to 

uniform distribution and pores subjected to normal distribution. As for the orientations of 

spherical pores are normal distribution, the sizes of their long axes are taken as 0.1, middle 

and short axes are both 0.05. The effect of locations, orientations and shapes of pores on 

thermal properties and performance of the plate are investigated by using the statistical 

multiscale method. However, due to the pores random dispersion, different samples with 

the same probability distribution may lead to different numerical results. Therefore, to 

obtain more accurate prediction values, a number of samples are required. 
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Figure 6: Schematic of porous materials plate 

 

               

                         (a)                                        (b)                                         (c) 

Figure 7: (a) Uniform distribution; (b) Location-normal distribution; (c) Orientation-

normal distribution 

Table 2: Orientation-normal distribution with a volume fraction of 20% for different 

samples 

 

No. 

 

11k  

 

12k  

 

13k  

 

22k  

 

23k  

 

33k  

5 16.8624 0.01552 0.008785 16.1757   0.01897 16.1781 

10 16.8425  0.00973      0.008701 16.1587   0.01689 16.1399 

20 16.8218 0.01631 0.007078 16.1571   0.02285 16.1604 

40 16.8317   0.01079     0.015493 16.1506   0.01931 16.1448 

50 16.8340   0.01161   0.015572 16.1471      0.01942 16.1505 

The expected homogenized thermal conductivity coefficients of porous material with 

orientation-normal distribution of pores and a volume fraction of 20% for different samples 

are displayed in Tab. 2. Fig. 8 shows the convergence of expected homogenized parameters 

with the number of samples. Statistically, different samples should have different 

numerical results, as shown in Fig. 8. However, as the increasing number of samples with 

the same random distribution, the mathematical expectation of the computation results 
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should converge. Obviously, as shown in Fig. 8, the scatter of data decreases with 

increasing number of samples. As can be seen, 50 samples are chosen in this work to avoid 

an unacceptable scatter of the computation results. 

 

Figure 8: Effective thermal conductivity with different number of samples for two different 

volume fractions (a) 15%; (b) 25% 

Fig. 9 depicts the statistical multiscale results of material parameters and those computed 

by different analytical methods, i.e. Maxwell-Eucken model [Hashin and Shtrikman 

(1962)], generalized self-consistent method [Chou, Nomura and Taya (1980)], Cheng-

Vachon model [Cheng and Vachon (1969)] and self-consistent method [Hill (1965)]. It can 

be found that the expected thermal conductivity parameter of porous material with uniform 

distribution of pores calculated by statistical multiscale method agrees well with the 

generalized self-consistent method and Maxwell-Eucken model. However, analytical 

methods cannot obtain satisfactory results for the orientation-normal distribution of 

spherical pores. Besides, the statistical multiscale results give better approximations than 

analytical results at lower porosity, as the volume fractions increasing, the deviations of the 

results increasing. Obviously, it can be concluded that the statistical multiscale method 

proposed in this paper is sufficiently accurate for predicting the effective properties of the 

random porous materials. Fig. 10 and Fig. 11 show the local heat flux density distributions 

in the cells of uniform and orientation-normal distributions with 5.0% and 15.0% of pores 

at time 1.0t  . It can be found that local heat flux densities in different cells have a marked 

fluctuation. And local heat flux density distributions with a high volume fraction are 

relatively high. As a result, it can be concluded that the heat flux densities of random porous 

materials is concurrently affected not only by macroscopic properties, but also by the 

microscopic structure of random distribution of pores. 
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Figure 9: Comparison of the thermal conductivity coefficients obtained from different 

numerical models: Uniform distribution of pores and location-normal distribution of pores 

 

    

(a)                                                              (b) 

Figure 10: Heat flux density in local cells with different volume fraction and pores 

subjected to uniform distribution (a) 5%; (b) 15% 
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(a)                                                             (b) 

Figure 11: Heat flux density in local cells with different volume fraction and pores 

subjected to orientation-normal distribution (a) 5%; (b) 15% 

5 Conclusion 

This paper presents a statistical multiscale analysis method for a transient heat conduction 

problem with nonlinear radiation boundary condition in random porous materials. The 

homogenization and the statistical multiscale formulation are derived in details. A linear 

homogenized problem independent of radiation effect is obtained, and the second-order 

correctors featuring nonlinear radiative heat transfer in perforations is introduced, which is 

absolutely necessary in multiscale simulation of this problem. Error analysis indicates that 

the second-order multiscale solution has a much better approximation to the solution of the 

original problem. The validity and effectiveness of the statistical multiscale method and 

numerical algorithm have been verified by two examples. It was concluded that the 

statistical multiscale method is accurate to numerically solve the transient conduction and 

radiation heat transfer problem in random porous materials. Moreover, numerical results 

also demonstrate that the thermal properties depend greatly on the micro-structures, like 

volume fraction, location, orientation and spatial distribution of perforations. And local 

fluctuations of temperature and its gradient can be captured more precisely by adding 

second-order correctors. As a result, the statistical multiscale analysis method and related 

numerical approximations techniques proposed can be practically employed to predict the 

transient heat transfer problem in random porous materials. 
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