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ABSTRACT

The EWMA charts are the well-known memory-type charts used for monitoring the small-to-intermediate shifts in
the process parameters (location and/or dispersion). The hybrid EWMA (HEWMA) charts are enhanced version
of the EWMA charts, which effectively monitor the process parameters. This paper aims to develop two new upper-
sided HEWMA charts for monitoring shifts in process variance, i.e., HEWMA1 and HEWMA2 charts. The design
structures of the proposed HEWMA1 and HEWMA2 charts are based on the concept of integrating the features of
two EWMA charts. The HEWMA1 and HEWMA2 charts plotting statistics are developed using one EWMA statis-
tic as input for the other EWMA statistic. A Monte Carlo simulations method is used as a computational technique
to determine the numerical results for the performance characteristics, such as average run length (ARL), median
run length, and standard deviation run length (SDRL) for assessing the performance of the proposed HEWMA1
and HEWMA2 charts. In addition, to evaluate the overall performance of the proposed HEWMA1 and HEWMA2
charts, other numerical measures consisting of the extra quadratic loss (EQL), relative average run length (RARL),
and performance comparison index (PCI) are also computed. The proposed HEWMA1 and HEWMA2 charts are
compared to some existing charts, such as CH, CEWMA, HEWMA, AEWMA HHW1, HHW2, AIB-EWMA-I, and
AIB-EWMA-II charts, on the basis aforementioned numerical measures. The comparison reveals that the proposed
HEWMA1 and HEWMA2 charts achieve better detection ability against the existing charts. In the end, a real-life
data application is also provided to enhance the implementation of the proposed HEWMA1 and HEWMA2 charts
practically.
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1 Introduction

Control charts are the essential tools of the statistical process monitoring (SPM) toolkit, used
to detect the shifts in manufacturing and production processes parameter(s). The control charts are
generally classified into memory-type and memoryless-type charts [1]. The memoryless-type charts
are used only for current information of the process, while the memory-type charts are based on
both current and previous information of the process. The basic memoryless-type charts are the
Shewhart charts, like the Shewhart X , R, and S2 charts, etc. [2]. The Shewhart charts are simple
and easy to apply; however, they are only efficient for the cases where large shifts occur in the
process parameter(s). On the contrary, the memory-type charts, such as the exponentially weighted
moving average (EWMA) and cumulative sum (CUSUM) charts are sensitive in monitoring small-
to-intermediate shifts in the process parameter(s).

Roberts [3] was the first to introduce the classical EWMA chart for monitoring the mean
level of the process. Later, Hunter et al. [4–7] further investigated the various EWMA-type charts
in order to facilitate the application of the classical EWMA chart in mean process monitoring.
Recent studies have shown that EWMA-type charts are the most useful tools for researchers. For
example, Haq [8], Abbas et al. [9], Ali et al. [10], Tang et al. [11], Haq [12], Rasheed et al. [13],
Rasheed et al. [14], etc., are the few recent references in this regard.

In general, most manufacturing and production processes have a shift in the mean level;
however, the process variance (or standard deviation) may be shifted from the target in many
practical situations. Domangue et al. [15] suggested that monitoring an increase in process variance
is more important for the processes. Although the EWMA-types charts are primarily used in
mean process monitoring; however, few works address the variance monitoring via these charts.
For example, Crowder et al. [16] used the logarithmic transformation to the sample variance
S2 in order to develop the EWMA chart (also known as the CH chart) for monitoring the
process standard deviation. Similarly, Shu et al. [17] suggested the EWMA chart, denoted as the
NEWMA chart, efficiently monitors process variance compared to the CH chart. Correspondingly,
Huwang et al. [18] developed the EWMA-type charts for detecting shifts in the process variance
and demonstrated that their control charts outperform the CH and NEWMA charts. Equally,
Castagliola [19] used the three parameters logarithmic transformation of S2 and proposed the
bilateral EWMA chart to monitor the process variance shifts. Besides, Chang et al. [20] designed
the optimal EWMA chart in order to monitor the process variance shifts. In addition, Razmy [21]
offered the EWMA chart the monitors the standardized process variance. Furthermore, Haq [22]
proposed two auxiliary information-based charts, symbolized by AIBEWMA1 and AIBEWMA2
charts, that monitor the process variance efficiently. Also, Ali et al. [23] suggested the generally
weighted moving average (GWMA) and hybrid EWMA (HEWMA) chart to monitor process
variance changes. Both GWMA and HEWMA perform better than classical memory charts. Other
studies based on the EWMA-type charts for tracking the process variance are provided by Saghir
et al. [24], Zaman et al. [25], Riaz et al. [26] and Chatterjee et al. [27], etc.

The use of hybrid charts enhances the efficiency of traditional charts. For example, Haq [8]
and Haq [28] proposed the HEWMA chart to monitor the mean level of the process. Later
on, numerous authors used the HEWMA charts in different process monitoring schemes. The
HEWMA charts are more efficient than the classical EWMA and CUSUM charts in terms of
small to moderate shifts monitoring. For example, Aslam et al. [29] introduced the HEWMA
chart to monitor the mean level of the process under repetitive sampling. Similarly, Aslam
et al. [30] monitored the COM-Poisson process by designing the HEWMA chart. Equally, Aslam
et al. [31] developed the mixed chart, named the HEWMA-CUSUM chart, for the Weibull process
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monitoring. Correspondingly, Noor-ul-Amin et al. [32] recommended the HEWMA chart for
Phase-II mean monitoring, based on the auxiliary information. Besides, Aslam et al. [33] suggested
the HEWMA-p chart to monitor the variance of the non-normal process. Also, Noor et al. [34]
constructed the Bayesian HEWMA chart, using two loss functions, to monitor the mean level of
the normal process. The other studies about the HEWMA chart are offered by Asif et al. [35],
Noor-Ul-Amin et al. [36], etc.

The majority of manufacturing and service processes are affected by the gradual increase
in process variance. The increase in the process variance indicates a deterioration in the pro-
cess performance. This study’s first and most important goal is to propose efficient charts with
effective shifts detection ability in monitoring an increase in the process variances. So, motivated
by Crowder et al. [16], Castagliola [19], and Haq [8], this study proposes two new HEWMA
charts to monitor the increasing shifts in the process variance. The proposed charts are known
as HEWMA1 and HEWMA2 charts. The design structure of the HEWMA1 chart uses the CH
statistic as the input for the HEWMA1 statistic. In the same lines, the CEWMA statistic is
considered an input to the HEWMA2 statistic to formulate the HEWMA2 chart. The Monte
Carlo simulations are employed to compute the numerical results associated with average run
length (ARL), standard deviation run length (SDRL), extra quadratic loss (EQL), relative average
run length (RARL), and performance comparison index (PCI) for the proposed HEWMA1 and
HEWMA2 charts. Based on these measures, the proposed HEWMA1 and HEWMA2 charts are
compared to the existing CH, CEWMA, HEWMA, AEWMA, HHW1, HHW2, AIBEWMA1,
and AIBEWMA2 charts. The comparison shows that the proposed HEWMA1 and HEWMA2
charts have better detection ability to detect the shift in the process variance. Finally, two appli-
cations of the proposed HEWMA1 and HEWMA2 charts are provided, one with simulated data
and the other with real-life data, to aid in the comparison of the proposed charts.

The remainder of the article is set out in the following way: Section 2 presents the exist-
ing methods. Likewise, Section 3 lays out the methodologies and formulation of the proposed
HEWMA1 and HEWMA2 charts. In addition, the performance evaluation measures and simu-
lation study are included in Section 4. Furthermore, Section 5 consists of the comparison and
performance analysis of the proposed HEWMA1 and HEWMA2 charts against some existing
charts. Section 6 offers a real-life data application to enhance the performance of the proposed
HEWMA1 and HEWMA2 charts. The last section addresses the concluding remarks.

2 Existing Schemes

This section defines the process variable in Subsection 2.1. Similarly, Subsection 2.2 explains
the details about the transformations to the sample variance. In addition, Subsections 2.3 to 2.6
provide the design and formulation of the CH, CEWMA, HHW2, and HEWMA charts for
monitoring process variance, respectively.

2.1 Process Variable
Assuming, at the time t = 1, 2, . . ., there are X1t, X2t, . . . , Xit, . . . , Xnt; i.e., n independent iden-

tically normal random variables with mean and variance μt and σ 2
t , i.e., Xit∼N

(
μt,σ 2

t
)

for

i = 1, 2, . . . , n. As the only concern is to detect the increasing changes in σ 2
t , so the mean level

of the process is assumed to be IC, i.e., μt =μ. Suppose the underlying process variance remains
IC for a particular time, i.e., σ 2

t = σ 2
0 for t < t0, then the process goes in OOC state, i.e., σ 2

t �= σ 2
0

for t ≥ t0. Let δt denotes the size of shifts in σ 2
t then it can be defined as a ratio IC process

standard deviation to OOC process standard deviation, i.e., δt = σt
σ0

. So, δt = 1 whenever the
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underlying process is IC, and δt �= 1 in the case of the OOC process. If Xt = 1
n

∑n
i=1 Xit be the

sample mean and S2
t = 1

n−1

∑n
i=1

(
Xit −Xt

)2
denotes the sample variance of the tth subgroup,

respectively, then for IC process S2
t follows a chi-square distribution with n−1 degrees of freedom,

i.e., S2
t ∼ σ 2

0
n−1χ2

(n−1)
.

2.2 Transformation
In order to implement the EWMA-type charts, the assumption of normality is required for

the plotting statistic of the charts. However, because the sample variance S2
t has a chi-square

distribution, so it is not an acceptable statistic for the design structure of the EWMA-type charts.
In order to cope with this issue, a few transformations are available in the literature, given as
follows.

2.2.1 Transformation-I

Let Wt denote a log transformation of S2
t , defined as

Wt = ln
(

S2
t /σ

2
0

)
, (1)

where the ratio S2
t /σ

2
0 is follows the gamma distribution with parameter (n−1)/2 and 2δ2

t /(n−1).
According to Lawless [37], Wt is a log-gamma random variable and it has a approximate normal
distribution, i.e., Wt � N(μW ,σ 2

W ), where μW = ln
(
δ2

t
)− 1

n−1 − 1
3(n−1)2 + 2

15(n−1)4 and σ 2
W = 2

n−1 +
2

(n−1)2 + 4
3(n−1)3 + 16

15(n−1)5 .

2.2.2 Transformation-II

Castagliola [19] recommended the three-parameter logarithmic transformation of S2
t into a

new variable, given as

Tt = aT + bT ln
(

S2
t + cT

)
, (2)

where aT , bT and cT are the three constants of the transformation, defined as; aT = AT −
2BT ln(σ ), bT = BT , cT = CTσ , respectively. The values of AT , BT , CT , μT and σ 2

T based on
the sample size n (n = 3, 4, 5, 10, 15) are given by Castagliola [19]. The statistic Tt, in this case, is
approximately normally distributed with μT and variance σ 2

T , i.e., Tt∼N
(
μT ,σ 2

T

)
.

2.2.3 Transformation-III
In order to detect the shifts in the process variance, Quesenberry [38] suggested another

transformation defined as

Mt =Φ−1
(

F
(
χ2

t ;ν
))

, (3)

where χ2
t = (n−1)S2

t
σ 2

0
, is chi-square variable with ν = n − 1 degrees of freedom, i.e., χ2

t ∼χ2
(ν). The

F (·;ν) is the distribution function (DF) of the chi-square variable, while Φ−1 (·) denotes the
inverse DF of the standard normal variable. In this case, the statistic Mt follows a standard
normal distribution, i.e., Mt∼N (0, 1).
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2.3 CH Chart
Crowder et al. [16] introduced the CH chart, which monitored the process variance shifts. Let

{Qt} for t ≥ 1 be the sequence of IID random variable, defined on the sequence {Wt}, where Wt
is defined by Eq. (1), then using the recurrence relationship, the CH plotting statistic Qt can be
given as

Qt = (1− λ1)Qt−1 + λ1Wt, (4)

where λ1 is known as the smoothing parameter. The CH statistic mean and variance are,
respectively, given as

E (Qt)=μW and Var (Qt)= λ1

2− λ1
[1− (1− λ1)

2t]σ 2
W .

In the case of large t, the variance of Qt is reduced to; Var (Qt)= λ1
1−λ1

σ 2
W . In order to detect

the gradual rise in the process variance, let Q+
t be the charting statistic for the CH chart is given

by

Q+
t = max(Qt, 0). (5)

The initial value of and Q+
t is set on 0, i.e., Q+

0 = 0. The upper control limit for the CH chart

is denoted by UCL+
(CH)

and can be defined by

UCL+
(CH)

= L+
CH

√
λ1

2− λ1
σW . (6)

where L+
CH is the CH chart width coefficients and can be computed so that IC ARL (ARL0) is

approximately equal to the desired value. The CH chart detects the upward shifts in the process
whenever Q+

t ≥ UCL+
(CH)

.

2.4 CEWMA Chart

Castagliola [19] proposed the EWMA chart (also known as S2-EWMA chart) to monitor the
shifts in the process variance. Hereafter the S2-EWMA chart is labeled as the CEWMA chart.
The CEWMA chart used the three parameters logarithmic transformation to S2 to obtain the
approximate normality for the plotting statistic. Let {Zt} be the CEWMA sequence, based on
another sequence {Tt} for t ≥ 1, where Tt is defined by Eq. (2), then the charting statistic of the
CEWMA chart is given by

Zt = (1− λ1)Zt−1 + λ1Tt, (7)

The initial value of Zt is denoted by Z0 and can be is defined as

Z0 = AT +BT ln (1+CT) . (8)

The Z0 values for various n can be taken from [19]. The Z0 values are close to 0, so one
can replace them with 0. Here, the plotting statistic Zt is an approximate normal distributed vari-

able having mean μT and variance λ1
2−λ1

[1− (1− λ1)
2t]σ 2

T , i.e., Zt∼N
(
μT , λ1

2−λ1
[1− (1− λ1)

2t]σ 2
T

)
.

However, for a large value of t, the factor [1 − (1− λ1)
2t] tends to 1, and in this case
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Zt∼N
(
μT , λ1

2−λ1
σ 2

T

)
. If UCL+

(CEWMA)
denotes the upper control limit for the CEWMA chart, then

it can be defined as

UCL+
(CEWMA)

=μT +L+
CEWMA

√
λ1

2− λ1
σT , (9)

where L+
CEWMA is called the width coefficient of the CEWMA chart. The CEWMA chart detects

OOC signals with increasing shift whenever Zt ≥ UCL+
(CEWMA)

.

2.5 HHW2 Chart
Huwang et al. [18] proposed the EWMA chart to monitor the process variance, denoted as

the HHW2 chart. Let {Rt}, for t ≥ 1 be the HHW2 sequence that based on the IID sequence
of random variable {Mt}, where Mt is defined in Eq. (3), then the HHW2 statistic based on the
sequence {Rt} is defined as

Rt = (1− λ1)Rt−1 + λ1Mt. (10)

The initial value of and Rt is set on 0, i.e., R0 = 0. The plotting statistic Rt has a normal

distribution with mean zero, and variance λ1
2−λ1

{
1− (1− λ1)

2t
}

, i.e., Rt∼N
(

0, λ1
2−λ1

[1− (1− λ1)
2t]

)
.

The time-dependent control limits, UCLt(HHW2) for the HHW2 chart can be defined as

UCL+
t(HHW2)

= L+
HHW2

√
λ1

2− λ1

{
1− (1− λ1)

2t
}

. (11)

In case of large t values, the upper control limit for of the HHW2 chart is denoted as
UCL+

(HHW2)
and can be given as

UCL+
(HHW2)

= L+
HHW2

√
λ1

2− λ1
. (12)

The L+
HHW2 is the HHW2 chart width coefficients. The HHW2 chart detects OOC signals

whenever Rt fall above the control limits specified in Eq. (12).

2.6 HEWMA Chart
Ali et al. [23] followed the idea of [8] and designed the HEWMA chart for process variance.

Let the IID {Ht} for t ≥ 1 is known as the HEWMA sequence, which is based on the {Rt}, then
the statistic Ht for the HEWMA chart is given as

Ht = (1− λ2) Ht−1 + λ2Rt, (13)

where Rt is defined by Eq. (10) and λ2 is also a smoothing constant, such that λ2 �= λ1. The initial
values of Ht are set to 0, i.e., H0 = 0. The mean E (Ht)= 0, and the variance of Ht is given as
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Var(Ht)=
(

λ1λ2

λ1 − λ2

)⎡
⎣ 2∑

k=1

(1− λk)
2

{
1− (1− λk)

2t
}

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

{
1− (1− λ1)

t (1− λ2)
t}

1− (1− λ1) (1− λ2)

⎤
⎦.

(14)

The control limit UCLt(HEWMA) for the HEWMA chart, based on Eq. (14) is defined by

UCL+
t(HEWMA)

= L+
HEWMA

×

√√√√√(
λ1λ2

λ1 − λ2

)⎡
⎣ 2∑

k=1

(1− λk)
2

{
1− (1− λk)

2t
}

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

{
1− (1− λ1)

t (1− λ2)
t}

1− (1− λ1) (1− λ2)

⎤
⎦.

(15)

When t gets larger, the control limits defined by Eq. (15) is reduced to UCL+
(HEWMA) and

given as

UCL+
(HEWMA) = L+

HEWMA

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
. (16)

where L+
HEWMA is the width coefficient for the HEWMA chart. The HEWMA chart triggers OOC

signals whenever Ht ≥ UCL+
(HEWMA).

3 Proposed Methods

Haq [8] suggested the HEWMA chart to monitor the process mean. Similarly, Ali et al. [23]
presented the HEWMA chart’s design structure for tracking the process variance. Following
Haq [8], the HEWMA1 and HEWMA2 charts can be developed using Transformations I and II,
respectively. These charts detect increasing shifts in process variance. The methodologies and con-
struction of the HEWMA1 and HEWMA2 charts are, respectively, presented in Subsections 3.1
and 3.2.

3.1 HEWMA1 Chart
The design structure for the HEWMA1 chart can be constructed using the CH statistic as

input for the HEWMA1 statistic. Let defined the sequence of IID random variable, say {Ut} for
t ≥ 1, based on the CH sequence {Qt} then the HEWMA1 statistic Ut can be defined by the
relation given as

Ut = (1− λ2)Ut−1 + λ2Qt, (17)

where Qt is the CH statistic defined by Eq. (4). The starting value of Ut is equal to 0, i.e., U0 = 0.
The mean of Ut is E (Ut)= 0 and its variance, for the case of very large t, is defined as

Var(Ut)=
(

λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σ 2

W . (18)
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In order to monitor the increasing shift in the process, the HEWMA1 statistic is defined as

U+
t = max(Ut, 0). (19)

The initial value of U+
t is set on 0, i.e., U+

0 = 0. The control limit for upper sided HEWMA1
is given as

UCL+
(HEWMA1)

= L+
HEWMA1

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σW . (20)

where L+
HEWMA1 is the width coefficient for the HEWMA1 chart. The HEWMA1 chart detects

OOC signals whenever U+
t ≥ UCL+

(HEWMA1)
. Similarly, for monitoring the gradual decrease in the

variance, the HEWMA1 statistic is given by

U−
t = min(Ut, 0). (21)

The initial value of U−
t is denoted by U−

0 set on 0, i.e., U−
0 = 0. The control limit for lower

sided HEWMA1 is given as

LCL−
(HEWMA1)

= L−
HEWMA1

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σW . (22)

The lower-sided HEWMA1 chart detects OOC signals whenever U−
t ≤ LCL−

(HEWMA1)
. The

control limits defined in Eqs. (20) and (22) are called the HEWMA1 upper and lower control
limits, respectively. However, the HEWMA1 two-sided control limits are given as

UCL(HEWMA1) = LHEWMA1

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σW

LCL(HEWMA1) =−LHEWMA1

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σW

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (23)

The two-sided HEWMA1 chart detects OOC signals whenever Ut ≥ UCL(HEWMA1) or Ut ≤
LCL(HEWMA1).

3.2 HEWMA2 Chart
In order to formulate the design of the HEWMA2 chart, the charting statistic of the

CEWMA chart can be used as an input for the HEWMA2 statistic. Let {Vt} for t ≥ 1 be the
HEWMA2 sequence, then the HEWMA2 chart statistic is Vt, and it can be defined by

Vt = (1− λ2) Vt−1 + λ2Zt, (24)

where Zt is the HHW2 plotting statistic defined by Eq. (7). The starting values of Vt is equal to
Z0 defined by Eq. (8). The expected value for the statistic Vt is E (Vt) = μT and its variance is
given as
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Var (Vt)=
(

λ1λ2

λ1 − λ2

)

×
⎡
⎣ 2∑

k=1

(1− λk)
2

{
1− (1− λk)

2t
}

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

{
1− (1− λ1)

t (1− λ2)
t}

1− (1− λ1) (1− λ2)

⎤
⎦σ 2

T . (25)

The HEWMA2 control limits UCLt(HEWMA2) and LCLt(HEWMA2) are given as

UCLt(HEWMA2)

=μT +L(HEWMA2)

×

√√√√√(
λ1λ2

λ1 − λ2

)⎡
⎣ 2∑

k=1

(1− λk)
2

{
1− (1− λk)

2t
}

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

{
1− (1− λ1)

t (1− λ2)
t}

1− (1− λ1) (1− λ2)

⎤
⎦σT

LCLt(HEWMA2)

=μT −L(HEWMA2)

×

√√√√√(
λ1λ2

λ1 − λ2

)⎡
⎣ 2∑

k=1

(1− λk)
2

{
1− (1− λk)

2t
}

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

{
1− (1− λ1)

t (1− λ2)
t}

1− (1− λ1) (1− λ2)

⎤
⎦σT

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

(26)

The control limits defined in Eq. (26) are known as the two-sided time-dependent control
limits; however, in the case of large t values, the two-sided fixed HEWMA2 control limits are
defined as

UCL(HEWMA2) =μT +L(HEWMA2)

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σT

LCL(HEWMA2) =μT −L(HEWMA2)

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σT

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.

(27)

In this case, The HEWMA2 chart triggers OOC signals whenever Vt ≥ UCL(HEWMA2) or Vt ≤
LCL(HEWMA2). The control limits specified in Eq. (27) are the two-sided control limits; however,
the HEWMA2 upper control limit is defined as

UCL+
(HEWMA2)

=μT +L+
HEWMA2

√√√√(
λ1λ2

λ1 − λ2

)[
2∑

k=1

(1− λk)
2

1− (1− λk)
2 − 2 (1− λ1) (1− λ2)

1− (1− λ1) (1− λ2)

]
σT . (28)

The L+
HAEWMA2 is known as the chart constants. The HEWMA2 chart detects OOC signals

with increasing shift whenever Vt ≥ UCL+
(HAEWMA2)

.
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4 Performance Analysis and Simulation Study

This section defines the performance evaluation measures, such as average run length in
Subsection 4.1 and overall performance measures in Subsection 4.2. Similarly, the simulation
study for the proposed HEWMA1 and HEWMA2 charts is designed in Subsection 4.3. Like-
wise, Subsection 4.4 provides the choices design parameters for the proposed HEWMA1 and
HEWMA2 charts.

4.1 Average Run Length
The most popular and commonly used performance evaluation measures are the ARL and

SDRL measures. The ARL can be defined as the average number of sample points until a chart
indicates the OOC signal [2]. The ARL is further categorized as IC ARL (ARL0), and OOC
ARL (ARL1). When a process is working in an IC state, the ARL0 should be as large enough to
prevent the frequent false alarms, while the ARL1 should be smaller so that the shift is detected
quickly [39]. A chart with smaller ARL1 is preferred over the competing charts at a prespecified
ARL0 [40].

4.2 Overall Performance Evaluation Measures
The ARL and SDRL measures evaluate the performance of the charts on a single specified

shift. However, sometimes the researcher may want to investigate the charts performances for the
entire range of shifts, i.e., δmin < δ < δmax. For this purpose, the other performance measures, such
as extra quadratic loss (EQL), relative average run length (RARL), and performance comparison
index (PCI), are used. The details on the EQL, RARL, and PCI measures are provided in the
following subsections.

4.2.1 Extra Quadratic Loss
The EQL can be considered as a weighted average of ARL defined over the range of shifts

δmin to δmax, using δ2 as a weight. Symbolically, the EQL can be defined as

EQL = (δmax − δmin)
−1

∫ δmax

δmin

δ2ARL (δ)dδ.

where ARL(δ) is the ARL at specific shift δ and δmin and δmax are the minimum and maximum
shift values, respectively. A chart with a low EQL value is considered to have a better overall
detection ability [41].

4.2.2 Relative Average Run Length
Like the EQL measure, the RARL also evaluates the overall performance of the charts. The

RARL mathematically can be defined as

RARL = (δmax − δmin)
−1

∫ δmax

δmin

ARL(δ)

ARLbenchmark(δ)
dδ.

where ARLbenchmark(δ) is the ARL value for benchmark chart at shift δ. A chart with a smaller
ARL at specific δ is known as a benchmark chart. The RARL value for the benchmark chart
is always equal to 1. The benchmark chart is considered superior to the competing chart if
RARL > 1 [42].
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4.2.3 Performance Comparison Index
The PCI also assesses the overall performance of the best chart. Ou et al. [43] defined the

PCI as a ratio of EQL of the best chart to the EQL of the benchmark chart. Mathematically, it
can be given by the expression given as

PCI = EQL
EQLbenchmark

.

The PCI value for the benchmark chart is equal to be 1, and for the rest of the charts,
PCI > 1 [44].

4.3 Monte Carlo Simulations
The random sample of size n, i.e., X1t, X2t, . . . , Xit, . . . , Xnt for t > 1, is generated from a

normal distribution under different parameter settings. Domangue et al. [15] suggested that mon-
itoring a gradual rise (process deterioration) in the process variance is more important; therefore,
an upward shift is considered in the process variance. The shift is reflected in the process standard
deviation, i.e., σ = δσ0, where δ = 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0. The Monte
Carlo simulation approach is utilized as a computational methodology for the numerical results
by designing an algorithm in the statistical package R. At each shift size δ, the simulations are
performed with 20,000 replicates. The simulation algorithm for the HEWMA1 and HEWMA2
charts include the following steps:

(i) Specify sample size n, smoothing parameters (λ1,λ2) and parameters of the pro-
cess distribution, i.e., for IC process N

(
μ0,σ 2

0

)
and for OOC process N

(
μ0, (δσ0)

2)
,

where δ = σ
σ0

.

(ii) Generate random observations X1t, X2t, . . . , Xnt for t = 1, 2, . . . from N
(
μ0,σ 2

0

)
.

(iii) Compute the statistics, Wt and Tt in Eqs. (1) and (2), respectively.
(iv) Using Wt from Tt, compute the EWMA statistics, Qt and Zt in Eqs. (4) and (7),

respectively.
(v) Using Qt and Zt, compute the HEWMA1 statistic U+

t and HEWMA2 statistic Vt in
Eqs. (19) and (24), respectively.

(vi) Selected L+
HEWMA1 and L+

HEWMA2 for desired ARL0 and compute UCL+
(HEWMA1)

and

UCL+
(HEWMA2)

in Eqs. (20) and (28), respectively.

(vii) Plot the statistic U+
t against the UCL+

(HEWMA1)
and the statistic Vt against the

UCL+
(HEWMA2)

. If U+
t ≥ UCL+

(HEWMA1)
and Vt ≥ UCL+

(HEWMA2)
then record sequence

order called the run length for the HEWMA1 and HEWMA2 charts, respectively.
(viii) Repeat Steps (ii)–(vii) m = 105 times and record run lengths and hence compute the approx-

imate ARL by ARL =
∑m

j=1 RLj

m and approximate SDRL by SDRL =
√∑m

j=1(RLj−ARL)
2

m−1 .

(ix) For ARL1 values generate random observations Xit, X2t, . . . , Xnt for t = 1, 2, . . .from
N

(
μ0, (δσ0)

2)
and repeat the Steps (iii)–(viii).
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4.4 Choices of Design Parameters
The design parameters for the proposed HEWMA1 and HEWMA2 charts are the smoothing

constants λ1, λ2 and the chart width coefficient Lproposed , which have a certain effect on the
chart performance. Therefore, the different settings of the design parameters are used in comput-
ing ARL, MDRL and SDRL measures. The various combination of smoothing parameters are
chosen as (λ1 = 0.05, λ2 = 0.050001, 0.1, 0.20), (λ1 = 0.1, λ2 = 0.05, 0.100001, 0.20), (λ1 = 0.2,
λ2 = 0.05, 0.1, 0.200001), (λ1 = 0.3, λ2 = 0.05, 0.1, 0.2) to determine the values of L+

HEWMA1and

L+
HEWMA2, so that ARL0 = 200. The numerical results regarding the proposed HEWMA1 and

HEWMA2 charts are displayed in Tables 1–4.

5 Comparative Study

This section addresses the detailed comparative study of the proposed charts to the existing
charts. The ARL values in Tables 1–4 reveal that the HEWMA2 chart outperforms the HEWMA1
chart; therefore, the HEWMA2 chart is recommended to compare with the existing charts for
better detection performance. Thus the HEWMA2 charts is compared against the existing CH [16],
CEWMA [19], HEWMA [23], AEWMA [45], AIBEWMA1, and AIBEWMA2 [22] charts. Table 5
presents the ARL values for comparison, while Table 6 contains the overall performance values.
The following Subsections offer further details about the comparisons.

5.1 Proposed vs. CH Chart
The proposed HEWMA2 chart achieves better performance against the CH chart. For exam-

ple, at ARL0 = 200, with λ1 = 0.1, 0.2, λ2 = 0.05 and δ = 1.1, the proposed HEWMA2 charts
provide the ARL1 values 25.40 and 26.91, respectively, whereas the CH chart produces the
ARL1 = 44.26, 46.63, respectively (see Table 5 & Fig. 1). Similarly, the proposed HEWMA2 chart
indicates improved overall performance against the CH chart. As for λ1 = 0.1 and λ2 = 0.05 the
EQL, PCI, and RARL values of the proposed HEWMA2 charts are 19.5141, 1.0000, and 1.0000,
which are less than the EQL, PCI, and RARL values of the CH chart; 27.7505, 1.4221, and
1.8851 (see Table 6).

5.2 Proposed vs. CEWMA Chart
The proposed HEWMA2 chart shows lower ARL1 values when it is compared to the

CEWMA chart. For instance, assuming ARL0 = 200, with λ1 = 0.1, 0.2, λ2 = 0.05 and δ = 1.1
the proposed HEWMA2 chart has ARL1 values of 25.40 and 26.91, respectively, whereas the
CEWMA chart owns the ARL1 values of 31.80 and 37.80 (see Table 5 & Fig. 1). Similarly, in
terms of overall performance (see Table 6), the proposed HEWMA2 charts attained smaller the
EQL, PCI, and RARL values, i.e., 20.1797, 1.0000, and 1.0000 against the CEWMA chart the
EQL, PCI, and RARL values, i.e., 23.5747, 1.1682, and 1.2818, respectively, when λ1 = 0.2, and
λ2 = 0.05.

5.3 Proposed vs. HEWMA Chart
The proposed HEWMA2 chart achieves superior performance over the HEWMA chart. For

instance, at ARL0 = 200, λ1 = 0.1, λ2 = 0.05 and δ = 1.2, 1.3, 1.4, 1.5 the proposed HEWMA2 chart
gives the ARL1 values 9.94, 5.73, 3.87, 2.87, whereas the HEWMA chart yields the ARL1 = 10.11,
5.75, 3.92, 2.96 (see Table 5 & Fig. 2). Similarly, the proposed HEWMA2 chart indicates improved
overall performance against the HEWMA chart. For example, the proposed charts deliver the
EQL, PCI, and RARL values as 19.5141, 1.0000, 1.0000, respectively; however, the HEWMA
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chart provides the EQL, PCI, and RARL values as 20.6981, 1.0607, and 1.1126, respectively (see
Table 6).

5.4 Proposed vs. AEWMA Chart
Haq [45] developed the adaptive EWMA (AEWMA) chart for monitoring the process vari-

ance. The proposed HEWMA2 chart is compared to the AEWMA chart at ARL0 = 200, and the
results indicate that the proposed HEWMA1 and HEWMA2 chart has better detection ability
against the AEWMA chart for the small shift, i.e., 1 < δ ≤ 1.2. For instance, with ARL0 = 200,
λ1 = 0.1, λ2 = 0.05 and δ = 1.1, 1.2, the proposed HEWMA-2 charts deliver the ARL1 values as
25.40, 9.94, while the AEWMA chart has the ARL1 values equal to 26.04, 10.35 (see Table 5
& Fig. 2). Likewise, when λ1 = 0.2 and λ2 = 0.05, the overall performance of the proposed
HEWMA2 chart is superior to the AEWMA chart as the proposed chart has a smaller EQL =
20.1797 than the AEWMA chart EQL = 20.3854 (see Table 6).

5.5 Proposed vs. AIBEWMA1 and AIBEWMA2 Charts
Haq [22] proposed the AIBEWMA1 and AIBEWMA2 charts for monitoring the process

variance. The comparison of the HEWMA2 chart against the AIBEWMA1 and AIBEWMA2
charts demonstrates that the proposed HEWMA2 chart is more efficient than the AIBEWMA1
and AIBEWMA2 charts. For example, with chart properties, i.e., ARL0 = 200, λ1 = 0.1, λ2 = 0.05,
ρ = 0.5 and δ = 1.1 the ARL1 values for the proposed HEWMA2 charts is observed as 25.40,
while the ARL1 values for the AIBEWMA1 and AIBEWMA2 charts are reported as 30.11 and
30.79 (see Table 5 & Fig. 3). Likewise, the proposed charts’ EQL, PCI, and RARL values also
show the edge in the overall detection ability of the HEWMA2 chart over the AIBEWMA1
and AIBEWMA2 charts. As the EQL, PCI, and RARL values for the proposed HEWMA2
charts are 19.5141, 1.0000, and 1.0000, respectively, where EQL, PCI, and RARL values for the
AIBEWMA1 and AIBEWMA2 charts are 20.8605, 1.0690 and 1.1185, and 21.4587, 1.0996 and
1.1919, respectively (see Table 6).

6 Important Points of the Study

A few important points related to the HEWMA1 and HEWMA2 charts can be listed as:

(i) The HEWMA statistics undoubtedly boost the efficiency of the proposed HEWMA1 and
HEWMA2 charts.

(ii) The proposed HEWMA2 chart has better detection performance than the proposed
HEWMA1 chart (see Tables 1–4).

(iii) At different parametric settings, the ARL1 values for the proposed HEWMA1 and
HEWMA2 charts are less than the ARL1 values of the CH, CEWMA, HEWMA,
AEWMA, AIBEWMA1, and AIBEWMA2 charts (see Section 5).

(iv) The overall performance reveals the dominance of HEWMA1 and HEWMA2 charts over
the CH, CEWMA, HEWMA, AEWMA, AIBEWMA1, and AIBEWMA2 charts (see
Section 5).

(v) The proposed HEWMA1 and HEWMA2 charts have better ARL1 performance for smaller
λ1 and λ2 (see Tables 1–4).

(vi) The control limit coefficient L for the suggested HEWMA1 and HEWMA2 charts increases
as λ1 and λ2 increases.
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Table 5: ARL values for the proposed HEWMA1 and HEWMA2 vs. existing charts when λ2 =
0.05 at ARL0 = 200

δ

Chart 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

HEWMA1 λ1 = 0.1 200.29 27.52 11.15 6.48 4.38 3.29 2.65 2.21 1.94 1.74 1.61
λ1 = 0.2 200.26 29.33 12.09 7.04 4.81 3.63 2.92 2.47 2.13 1.89 1.74

HEWMA2 λ1 = 0.1 200.38 25.40 9.94 5.73 3.87 2.87 2.37 2.00 1.75 1.59 1.46
λ1 = 0.2 200.19 26.91 10.75 6.09 4.19 3.16 2.53 2.15 1.87 1.70 1.58

HEWMA λ1 = 0.1 200.04 25.50 10.11 5.75 3.92 2.96 2.40 2.02 1.79 1.62 1.49
λ1 = 0.2 201.11 26.82 10.73 6.19 4.19 3.18 2.54 2.14 1.88 1.69 1.55

AEWMA λ1 = 0.1 200.76 26.04 10.35 5.71 3.78 2.83 2.29 1.97 1.75 1.58 1.47
λ1 = 0.2 200.23 29.00 11.13 6.14 4.09 3.07 2.47 2.09 1.84 1.65 1.52

AIBEWMA1 λ1 = 0.1 200.06 30.11 11.52 6.42 4.31 3.25 2.63 2.21 1.94 1.75 1.61
λ1 = 0.2 200.09 37.00 14.00 7.61 5.00 3.70 2.92 2.44 2.13 1.89 1.73

AIBEWMA2 λ1 = 0.1 199.93 30.79 12.17 6.90 4.68 3.52 2.83 2.40 2.09 1.86 1.71
λ1 = 0.2 200.95 36.03 13.86 7.74 5.19 3.88 3.09 2.59 2.24 1.99 1.82

CH λ1 = 0.1 200.02 44.26 18.23 10.56 7.35 5.68 4.68 4.02 3.56 3.22 2.95
λ1 = 0.2 200.64 46.63 18.79 10.54 7.16 5.41 4.38 3.73 3.27 2.92 2.67

CEWMA λ1 = 0.1 200.82 31.80 12.53 7.15 4.90 3.61 2.94 2.48 2.16 1.93 1.76
λ1 = 0.2 200.24 37.80 14.74 8.18 5.50 4.08 3.24 2.70 2.33 2.07 1.88

Table 6: Overall performance measures for the proposed HEWMA1 and HEWMA2 vs. existing
charts

λ1 = 0.1,λ2 = 0.05 λ1 = 0.2,λ2 = 0.05

Charts EQL PCI RARL EQL PCI RARL

HEWMA1 20.5397 1.0526 1.1091 21.4339 1.0622 1.1272
HEWMA2 19.5141 1.0000 1.0000 20.1797 1.0000 1.0000
HEWMA 19.6104 1.0049 1.0143 20.2266 1.0023 1.0009
AEWMA 19.6088 1.0049 1.0075 20.3854 1.0102 1.0025
AIBEWMA1 20.8605 1.0690 1.1185 22.7672 1.1282 1.1878
AIBEWMA2 21.4587 1.0996 1.1919 22.9490 1.1372 1.2238
CH 27.7505 1.4221 1.8851 27.6287 1.3691 1.6911
CEWMA 21.8921 1.1219 1.2317 23.5747 1.1682 1.2818

7 Real-life Application of the Proposed Charts

This subsection explains the application of the proposed HEWMA1 and HEWMA2 charts
to real-life data. For this purpose, the real-life data are considered, representing the inside diam-
eter of the cylinder bores in an engine block. These real-life data are used by [46,47] in their
studies. The data comprise 30 samples, each size n = 5 given in Table 7. In order to imple-
ment the proposed HEWMA1 and HEWMA2 control along with CH and CEWMA charts,
following [23,48], an upward shift of size δ = 1.25 is introduced artificially after sample number
16 [49,50]. At ARL0 = 200, the smoothing parameter values λ1 = 0.1, λ2 = 0.05 are used, which
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provides the width of the the HEWMA1, and HEWMA2, CH and CEWMA charts, respec-
tively, given as L+

HEWMA1 = 1.365, L+
HEWMA2 = 1.399, L+

CH = 1.303 and L+
CEWMA = 2.198. Using

the aforementioned parameters, the charting statistics for the HEWMA1, and HEWMA2, CH
and CEWMA charts and their corresponding upper control limits are computed. The chart-
ing statistics for HEWMA1, and HEWMA2, CH and CEWMA charts are given in Table 7,
while their corresponding upper control limits are given as 0.1528, 0.1314, 0.2547, and 0.4876,
respectively. Figs. 4–7 display the charting statistics of the CH, CEWMA, HEWMA1, and
HEWMA2 charts against sample number. The results show that the proposed HEWMA1 chart
outperforms the CH chart as the proposed HEWMA1 chart trigger the first OOC point after
sample number 25, while the CH chart detects OOC point after sample number 28. Overall,
the proposed HEWMA1 chart declares 7 OOC points, while the CH chart detects 2 OOC
signals. Similarly, the HEWMA2 chart gains better detection ability relative to the CEWMA
chart, as as the proposed HEWMA2 chart identifies the first OOC signal at sample number 26,
while the CH chart diagnoses OOC signal at sample number 29. This indicates that the proposed
HEWMA1 is more efficient than the CH chart, and the HEWMA2 chart achieves better detection
ability than the CHWMA chart.

Table 7: Real-life data along with charting statistics for CH, CEWMA, HEWMA1, and
HEWMA2 charts

t X1t X2t X3t X4t X5t S2
t Wt Q+

t U+
t Tt Zt Vt

1 205 202 204 207 205 3.3 –0.0835 0 0 –0.9194 –0.0919 –0.0038
2 202 196 201 198 202 7.2 0.2553 0.0255 0.0013 –0.0109 –0.0838 –0.0058
3 201 202 199 197 196 6.5 0.2109 0.0441 0.0034 –0.1503 –0.0905 –0.0071
4 205 203 196 201 197 14.8 0.5682 0.0965 0.0081 1.1324 0.0318 –0.0010
5 199 196 201 200 195 6.7 0.2240 0.1092 0.0131 –0.1096 0.0177 0.0049
6 202 202 198 203 202 3.8 –0.0223 0.0961 0.0173 –0.7815 –0.0622 0.0068
7 197 196 196 200 204 11.8 0.4698 0.1335 0.0231 0.7444 0.0184 0.0136
8 199 200 204 196 202 9.2 0.3617 0.1563 0.0297 0.3474 0.0513 0.0225
9 202 196 204 195 197 15.7 0.5938 0.2000 0.0383 1.2373 0.1699 0.0376
10 205 204 202 208 205 4.7 0.0700 0.1870 0.0457 –0.5518 0.0977 0.0486
11 200 201 199 200 201 0.7 –0.7570 0.0926 0.0480 –1.8048 –0.0925 0.0491
12 205 196 201 197 198 13.3 0.5218 0.1356 0.0524 0.9463 0.0114 0.0554
13 202 199 200 198 200 2.2 –0.2596 0.0960 0.0546 –1.2545 –0.1152 0.0549
14 200 200 201 205 201 4.3 0.0314 0.0896 0.0563 –0.6512 –0.1688 0.0519
15 202 202 204 198 203 5.2 0.1139 0.0920 0.0581 –0.4333 –0.1953 0.0480
16 201 198 204 201 201 4.5 0.0512 0.0879 0.0596 –0.6010 –0.2358 0.0423
17 200 204 198 199 199 8.6 0.3321 0.1123 0.0623 0.2444 –0.1878 0.0398
18 203 200 204 199 200 7.3 0.2639 0.1275 0.0655 0.0168 –0.1673 0.0388
19 196 203 197 201 194 21.4 0.7285 0.1876 0.0716 1.8125 0.0306 0.0484
20 197 199 203 200 196 11.7 0.4668 0.2155 0.0788 0.7329 0.1009 0.0615
21 201 197 196 199 197 6.3 0.1938 0.2133 0.0855 –0.2021 0.0706 0.0725
22 204 196 201 199 197 16.1 0.6046 0.2225 0.0939 1.2819 0.1917 0.0896

(Continued)
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Table 7 (continued)

t X1t X2t X3t X4t X5t S2
t Wt Q+

t U+
t Tt Zt Vt

23 206 206 199 200 203 16.7 0.6211 0.2293 0.1037 1.3508 0.2076 0.1120
24 204 203 199 199 197 13.8 0.5362 0.2340 0.1142 1.0037 0.2372 0.1371
25 199 201 201 194 200 13.3 0.5212 0.2347 0.1252 0.9439 0.3339 0.1641
26 201 196 197 204 200 16.1 0.6046 0.2417 0.1370 1.2819 0.3787 0.1943
27 203 197 199 197 201 10.6 0.4243 0.2480 0.1486 0.5732 0.4541 0.2234
28 203 197 199 197 201 10.6 0.4243 0.2494 0.1598 0.5732 0.4990 0.2515
29 197 194 199 200 199 8.9 0.3476 0.2550 0.1704 0.2981 0.5059 0.2770
30 200 201 200 197 200 3.6 –0.0465 0.2693 0.1783 –0.8374 0.3716 0.2941
31 199 199 201 201 201 1.9 –0.3291 0.2334 0.1826 –1.3633 0.1981 0.3010
32 200 204 197 197 199 13.0 0.5108 0.2482 0.1879 0.9032 0.2686 0.3114

Figure 1: Comparison of proposed HEWMA1 and HEWMA2 charts with CH and CEWMA
charts at (λ1,λ2)= 0.1 and ARL0 = 200

Figure 2: Comparison of proposed HEWMA1 and HEWMA2 charts with HEWMA and
AEWMA charts at (λ1,λ2)= 0.1 and ARL0 = 200
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Figure 3: Comparison of proposed HEWMA1 and HEWMA2 charts with AIBEWMA1 and
AIBEWMA2 charts at (λ1,λ2)= 0.1 and ARL0 = 200

Figure 4: Real-life application of CH chart using (λ1,λ2)= (0.1, 0.05) and ARL0 = 200

Figure 5: Real-life application of proposed HEWMA1 chart using (λ1,λ2) = (0.1, 0.05) and
ARL0 = 200
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Figure 6: Real-life application of CEWMA chart using (λ1,λ2)= (0.1, 0.05) and ARL0 = 200

Figure 7: Real-life application of proposed HEWMA2 chart using (λ1,λ2) = (0.1, 0.05) and
ARL0 = 200

8 Concluding Remarks

This paper proposes two new hybrid EWMA charts to monitor the shifts in the process
variance. The proposed charts are called HEWMA1 and HEWMA2 charts. The HEWMA1
chart is designed using the CH statistic as the input for the HEWMA1 statistic, while in the
same lines, CEWMA statistic is used as the input for the HEWMA2 statistic to construct the
proposed HEWMA2 chart. In order to evaluate the performance of the proposed HEWMA1 and
HEWMA2 charts, the extensive Monte Carlo simulation approach is used to approximate the run
length properties, including the average run length and standard deviation run length. Similarly,
to assess the overall performances of the proposed HEWMA1 and HEWMA2 charts, the extra
quadratic loss, relative average run length, and performance comparison index are computed. The
proposed HEWMA1 and HEWMA2 charts are compared to existing CH, CEWMA, HEWMA,
AEWMA, HHW1, HHW2, AIBEWMA1, and AIBEWMA2 charts, and the comparison indicates
that the proposed HEWMA1 and HEWMA2 charts outperform the existing charts. In the end,
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real-life data are analyzed to enhance the efficiency of the proposed HEWMA1 and HEWMA2
charts.
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