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ABSTRACT

As wind and photovoltaic energy become more prevalent, the optimization of power systems is becoming increas-
ingly crucial. The current state of research in renewable generation and power forecasting technology, such as wind
and photovoltaic power (PV), is described in this paper, with a focus on the ensemble sequential LSTMs approach
with optimized hidden-layers topology for short-term multivariable wind power forecasting. The methods for
forecasting wind power and PV production. The physical model, statistical learning method, and machine learning
approaches based on historical data are all evaluated for the forecasting of wind power and PV production.
Moreover, the experiments demonstrated that cloud map identification has a significant impact on PV generation.
With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its
causes, this paper summarizes the classification of wind power and PV generation systems, as well as the benefits
and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis
methods.

KEYWORDS

Deep learning; wind power forecasting; PV generation and forecasting; hidden-layer information analysis;
topology optimization

1 Introduction

As the energy crisis, environmental degradation, and climate change worsen, the usage of
clean energy is becoming increasingly important. Furthermore, the proportion of wind and pho-
tovoltaic energy is growing [1,2]. Wind and photovoltaic power generation are examples of new
energy power generating technologies that are clean, low-carbon, and renewable, which have been
widely used in power generation technology. China’s installed power generating capacity reached
2.26 billion kilowatts in June, gaining 9.5 percent year on year, according to statistics issued by
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the National Energy Administration. The installed solar power capacity was about 270 million
kW, up 23.7 percent year on year. Two basic patterns in wind speed are discussed due to the
low density of wind energy, atmospheric pressure, humidity, and temperature: on the other hand,
wind speed distribution is volatile and has a non-stable random trend. The stability of the output
power will be detrimental to power grid dependability, economics, and reduce the uncertainty of
wind power due to the randomness of wind and solar power and volatility features [3–5]. Wind
power forecasting with high precision is particularly important, and we must successfully carry
out power system operation optimization.

To calculate the value of wind power, modeling and mathematical analyses of historical
data may be employed. As a consequence, when comparing different forecasting methods, wind
speed and wind power may be included in their entirety. Short-term forecasting, or utilizing
physical models based on numerical weather predictions and statistical models based on wind
speed and wind power data for predicting, is the current trend in wind power forecasting. Artificial
intelligence-based wind power forecasting technology has grown in prominence in recent years.

The rest of this paper is organized as follows: The physical model, statistical learning tech-
nique, and machine learning method based on historical data are investigated for forecasting
wind and solar photovoltaic generation, and the ensemble sequential LSTM approach with opti-
mized Hidden-layers topology for short-term multivariable wind power forecasting is introduced in
Section 2; In Section 3, STL (Seasonal-Trend decomposition procedure based on Loess) and the
method of SOM cluster is successively applied to decompose the wind power time series into the
seasonal and trend component with significant information and optimize the hidden-layer topology
of forecasting method. VGG, ResNet and other transfer learning models are used for cloud image
classification and the hidden layer feature information of cloud images are used for classification
analysis.

2 The Forecasting and Generation Methods of the Wind and Photovoltaic Energy

Large-scale grid-connected power generation is the most effective approach to completely use
wind and solar energy due to exposure to sun radiation. The shooting strength, temperature,
humidity, cloud volume, and a variety of other parameters, as well as scenic power generation,
reveal an inherent follow-up machine and volatility. With the growth of the number of scenic
power stations, the demand for real-time monitoring of scenery data has developed. As a result,
there is a greater demand for enhanced and safe operation, as well as the ability to evaluate
meteorological and landscape data. The survey’s general framework is depicted in Fig. 1. This
paper examines the experimental principle, experimental process, experimental results, and sample
analysis from the perspective of different classification models in order to find a reliable method
to improve the forecasting effect by combining and analyzing the current wind power forecasting
system and photovoltaic forecasting system.
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Figure 1: The overall framework of this paper

2.1 The Modeling Analysis of Wind Power Forecasting
In recent years, the research on wind power forecasting model is very extensive all over the

world, and the forecasting methods are also innovating constantly. There are several literatures to
summarize the forecasting technology in different development periods of wind power as indicated
in Table 1, in order to better apply the existing research results of wind power forecasting technol-
ogy and improve the forecasting accuracy of wind power forecasting systems. Pinson [6] studied
and evaluates various uncertain factors of wind power forecasting accuracy from the aspects
of reliability, accuracy and resolution. Zhang et al. [7] highlighted the requirements and overall
framework of uncertainty forecasting evaluation by categorizing forecasting approaches into three
categories: probabilistic forecasting (parametric and non-parametric), risk index forecasting, and
spatiotemporal scenario forecasting. Aggarwal et al. [8], based on NWP, statistical methods,
ARIMA models and mixed technologies on different time scales, discussed wind power and
important forecasting technologies related to wind speed, and divides the forecasting technologies
into statistical models, physical models and mixed models. Foley et al. [9] went into great length
about statistical and machine learning methodologies. Benchmarking and uncertainty analysis
techniques used for forecasting are outlined and the performance of various methods over different
forecast time horizons is examined. The preceding literatures are useful for researching and using
wind power forecasting methodologies, as well as improving wind power forecasting accuracy.
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Table 1: The summary of wind power forecasting models

Classification method Type Reference

Probability and statistics method, real-time
scrolling method, statistical model

Physical model [10]

Gaussian process Physical model [11]
Statistical methods using only historical data Physical model [12]
Autoregressive moving average (ARMA) method
and vector autoregression (VAR)

Statistical model [13]

Time series analysis Statistical model [14]
Deep learning network CNN-LSTM Hybrid model [15]
Aerodynamic atmospheric models and time-series
based model

Hybrid model [16]

Discrete wavelet transform and long short-term
memory networks (DWT-LSTM)

Hybrid model [17]

Improved wavelet transform, informative feature
selection and hybrid forecast engine

Statistical model [18]

Convolution neural network (CNN) Artificial intelligence model [19]
Random forest method Artificial intelligence model [20]
Multi-layer feedforward neural network Artificial intelligence model [21]
Long-Short-Term Memory (LSTM) Artificial intelligence model [22]
Empirical wavelet transform and gaussian process
regression

Hybrid model [23]

K means, self-organizing map (SOM); and
spectral clustering (SC)

Hybrid model [24]

BP neural network Artificial intelligence model [25]
Self-organized map Artificial intelligence model [26]
Variational mode decomposition-long short-term
memory (VMD-LSTM) forecast method

Artificial hybrid model [27]

An indirect algorithm based on the Beta pdf Statistical model [28]
Statistical hybrid wind power forecast technique
(SHWIP)

Hybrid model [29]

In order to establish a more accurate wind power forecasting model, a classification research
on wind power forecasting is constructed, which can be summarized as shown in the Fig. 2.
According to different forecasting models, wind power forecasting is mainly classified into four
categories based on distinct forecasting models: physical model, statistical model, artificial intel-
ligence model, and hybrid model [30–32], and it is classified into ultra-short-term forecast,
short-term forecast, medium-term forecast and long-term forecast [33–35] according to different
time scales. The wind power forecasting at different time scales:

i) Ultra-short-term forecasting: to forecast the wind power of the next few minutes to a
few hours, using the historical data of the wind tower to predict the wind power by continuous
method or statistical method, mainly used for the control of wind turbines [36–39].

ii) Short-term forecasting: to forecast the power output in the next few days, often using
the method of weather forecast based on data, or using historical data for forecasting, used for
reasonable dispatch of the power grid, to ensure the quality of power supply [40–46].
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iii) Mid-term forecasting: to forecast the power output in the next few months or weeks,
generally using numerical weather forecast methods, mainly used for arranging maintenance of
wind farms [47–50].

iv) Long-term forecast: the forecast unit is month or year, which usually requires decades
of wind power data to calculate the annual power generation of wind farms, mainly used for
feasibility study and site selection of wind farm design [51–55].

Figure 2: Different classifications of wind power forecasting

2.2 Physical and Statistical Models Related Approaches
The physical model obtains wind speed, wind direction, temperature, and other meteorological

data primarily through a numerical weather forecast system (NWP), and then the power curve of
a wind turbine is determined by estimating wind speed, yielding the expected power of a wind
turbine [10–12]. NWP is often implemented on supercomputers because it uses high-dimensional
and complicated mathematical equations, resulting in significant computational and manpower
expenses. As a result, this method’s capacity to foresee in the near term is more broad, and its
output is better suited as a long-term reference standard. When observed data is scarce, statistical
models must rely on historical wind data, which reduces predicting accuracy. Because actual data
is typically random for a variety of reasons, the statistical characteristics of time series change
over time. The corresponding mathematical expectation and variance factors will change with time,
which will surely make it more difficult to forecast trends based on historical data. Statistical
models such as the moving average method [13,14,16] and wavelet decomposition [17,18] have
limited ability to predict data with strong nonlinearity due to the random, intermittent, and
seasonal changes in wind speed, and statistical models are usually only suitable for short-term
forecasting.

2.3 Hybrid Forecasting Modeling Based on Neural Network-Related Approaches
Artificial intelligence models are commonly used in short-term wind power forecasting because

of the benefits in dependency analysis and pattern detection [25–27,56–60]. Ozkan et al. [61]
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suggested a multi-feature convolutional neural network-based wind power forecasting approach.
To begin, wind power is classed based on the waveform’s changing characteristic. Then, the
convolution neural network extracts the feature of the wind power waveform (CNN). The results
show that this method can effectively improve the reliability of wind forecasting. Quan et al. [62]
put forward the random forest method to construct the wind power predictor before hours, the
results show that the proposed model can significantly improve the forecasting accuracy, compared
with the classical neural network forecasting. Haque et al. [63] adopted a new recurrent neural
network called Long-Short-Term Memory (LSTM), the test results on real data sets show that
the performance of LSTM model is better than typical RNN models such as Elman, exogenous
nonlinear autoregressive model and other benchmark models.

Despite the stated artificial intelligence models can forecast the short-term wind power [64],
the forecasting accuracy is still insufficient. Long-term and short-term memory (LSTM) networks
have been widely employed in wind power forecasting because to their capacity to understand the
long-distance dependency of time series. The back propagation information may not be extracted
in RNN because of the multivariable with long temporal dependency, and the vanish gradient
and vanish explosion issues are typically caused in the learning processing of the deep neural
networks. By controlling the information updating, the LSTM network can avoid the information
exponentially decaying, and effectively overcome the outlined disadvantages of the RNN, as well
as improve the forecasting accuracy and robustness of the deep learning [65].

By calculating the vibrational energy distribution for each period, the time series can be
viewed of a reconstruction of several periodic disturbances, which is important for identifying
the periodic components of the time series [66]. High-accuracy multivariate forecasting modeling
remains a challenge due to the varied distributions of time series in different areas. Periodic
features may be obtained by decomposing the original time series sequence using a filtering strat-
egy, which can help enhance multivariate time series forecasting and modeling accuracy. Spectral
decomposition, wavelet transformation [23,67], and time series decomposition models are the most
extensively used the approaches of multivariate decomposition. The raw data can be decomposed
into trend component, seasonal component, and remaining component using the LOESS-based
method of time series decomposition, as illustrated in Fig. 3 [68]. As a result, the forecasting
models properly capture the long-term steady trend in timing across time, periodic duration and
amplitude fluctuations, as well as irregular changes caused by random factors.
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Figure 3: The STL decompresses flow chart

When comparing with a single single method, the weighted combination method can effec-
tively reduce the upper limit of error and improve the robustness of the forecasting results, greatly
improving wind speed and wind power forecasting accuracy [15,19,20,22,24,69–74]. Neshat et al.
[74] utilized a mixture of autoencoder and cluster to decrease the random noise in the original
data sequence, then use Variational Mode Decomposition (VMD), Greedy Nelder Mead (GNM)
search technique, and Adaptive Randomised Local Search to optimize the hyper-parameters of
VMD (ARLS). Finally, a hyper-parameter optimizer combining LSTM and the Self-adaptive
Differential Evolution (SaDE) algorithm and sine cosine optimisation approach is employed for
modeling. Then Neshat et al. [28] proposed a hybrid model consisting of bidirectional long



574 CMES, 2022, vol.131, no.2

short-term memory neural network, hierarchical evolutionary decomposition technique and an
improved generalised normal distribution optimisation algorithm, the introduced model performed
best on average in the two case studies. Shang et al. [29] proposed a comprehensive system of
integrated noise reduction, cluster and multi-objective optimization, and its performance in four
performance indexes is superior to other comparison models. Jiang et al. [75] presented a four-part
combined prediction system that includes optimum sub-model selection, point prediction using a
modified multi-objective optimization method, interval forecasting using distribution fitting, and
forecasting system assessment. The proposed combined system combines the advantages of the
sub-models and gives accurate point and interval forecasting results. The results of the experiments
show that the suggested combined forecasting system can produce accurate wind speed point
and interval forecasts. A single deep learning model’s forecasting ability may be limited, and
the model’s forecasting ability may also be limited due to the influence of subjective experience.
Although the deep neural network can capture the descriptive qualities of a sequence with
various time delays, the forecasting ability of the network might be improved further by utilizing
appropriate data decomposition algorithms to reduce the sequence’s complexity. Ensemble models,
in particular, are useful for predicting plausible features and then integrating all of the forecasting
results, which helps to increase forecasting model forecasting accuracy and model robustness. Self
Organizing Feature Map was introduced to solve the above problems [76]. First, the whole sample
is automatically clustered, and then LSTM forecasting models are established according to the
similar clustering results. Comparing with other neural networks, LSTM neural network has the
advantages of faster budget speed and less difficulty in falling into local minimum points, so
LSTM neural network is used for modeling and forecasting of samples [77].

2.4 The Ensemble Deep Learning Approaches for Wind Power Forecasting
The Fourier series principle indicates that any continuous time series or signals can be

represented as the superimposing of sine wave signals with different frequencies. Similarly, STL
(Seasonal-Trend decomposition procedure based on Loess) can also use the idea of overlays to
decompose the time series into complex trends terms, periodic terms and remaining terms [78],
which is usually defined by Eq. (1):

Yt = Tt +St +Rt =
[
yt, ..., yt−py , xt, ..., xt−px

]
STL

=
[
Tyt , ..., Tyt−py

, Syt , ..., Syt−py
, Ryt , ..., Ryt−py

] (1)

where Yt is the input time series, and has three variables Tt, St, and Rt after decomposition. Tt
is a trending weight at t-moment, representing the long-term characteristics of the sequence. St
is the corresponding periodic variable that represents the periodic characteristics of the sequence.
Rt is the remaining item of Yt, which represents the jitter and interference factors that the
sequence is subjected to, and is usually considered miscellaneous. One of the most extensively
used methods for smoothing discrete data is the Loess (locally weighted scatterplot smoothing)
approach. When estimating the value of a response variable, a subset of data is first taken from
the region of the target variable, and then linear or quadratic regression is used to this subset.
For regression, the weighted least square approach is used, with the weight increasing as it comes
closer to the estimation data. Finally, the local regression model is used to estimate the response
variable [79,80]. STL consists of inner loop and outer loop, and the former is mainly used for
trend component fitting and periodic component calculation. Through multi-round iteration, the
convergence value is utilized to estimate the real value of the probability distribution of the trend
and periodic component. In the outer loop, the remainder can be calculated based on the trend



CMES, 2022, vol.131, no.2 575

component and periodic component obtained in the inner loop. The remainder will not be defined
where the input data is missing. Once an outlier is detected, it will produce an abnormality. The
outer loop is mainly used to adjust the robustness weight and reduce the size of the remainder
for generated outliers [81,82].

The ensemble deep learning approaches for wind power forecasting is described in Fig. 4.
which is generally made up of four parts: Firstly, the dataset is divided into three groups based
on the STL decomposition, trend component, seasonal component and residuals. Usually, the
trend and seasonal parts can still show the significant influences to reflect the most the effective
information, and the residuals is not a simply white noise, which still has some valid information.
However, it has a far smaller impact on sequence predictions than the first two components.
This is due to the fact that the render and seasonal components contain the majority of the
original sequence’s valid information. Secondly, the data processed by the STL decomposition
methods are divided as training sample, validation sample as well as testing sample which are
used to train and test the performance of the forecasting models. Thirdly, by the SOM cluster,
the hidden-layer information is mapped into the feature space with well sample separation to
optimize the hidden topology of LSTM. The precise analysis of the hidden-layers information
can reduce the risk caused by over-fitting and improve the robustness of the proposed approaches.
Fourthly, the forecasting error is analyzed in mathematical analysis, and the output is constructed
by the ensemble LSTM networks. Finally, the benchmarks methods, such as persistence model,
multi-SVR, convnets, basic LSTM, cluster LSTM are performed to compare the performance of
the proposed approaches, and the forecasting errors are mainly analyzed.

2.5 Hidden-Layer Topology Analysis of the LSTM Network
When RNN (Recurrent Neural Network) dealing with ling a long sequence, LSTM network

are designed to solve the problem of gradient descent and gradient, as well as overcome short-term
dependence. LSTM network can remember the cell state basing on the cell state, and reasonably
forget the old state, then add new state and outputting new state [83]. Therefore, the final output
ft is given by Eqs. (2)–(4):

ft = σ
(
Wf · [Ht−1, Xt]+ bf

)
(2)

Ct′ = σ (Wi · [Ht−1, Xt]+ bi)+ tanh (Wc · [Ht−1, Xt]+ bc) (3)

Ct = Ct−1 ∗ ft +Ct′ (4)

The input gate determines that the number of input Xt is retained, and the input is processed
by the weight matrix Wc, bias bc, and tanh function. The cell state Ct is given in Eq. (2), and
it can be easily seen that a new cell state can be obtained by forgetting part of the past state
and adding the existing state based on Eqs. (3) and (4). After multiplying by the cell state Ct,
the output gate gets the output Ht of the next stage similar to the forget gate. Eq. (5) is the Ht
expression.

Ht = σ (Wo · [Ht−1, Xt]+ bo) ∗ tanh (Ct) (5)

Then, the partial derivative between the hidden-states at different times is calculated by
Eq. (6):

∂Ht−q,v

∂Ht,v
= f ′t,v

(
Ht−q,v

) ∑
l=1,...,n

ωl,v ·
∂Ht−q+1,l

∂Ht,u
, q > 1 (6)
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Figure 4: The framework of the multivariable wind power forecasting approaches

More precisely, the corresponding gradient is estimated by Eq. (7):

∂Ht−q,v

∂Ht,u
=

∑
l1,...,n

· · ·
∑

lq−1=1,...,n

∏
m=1,...,q

ωlm,lm−1 · f ′lm
(
Ht−q,lm

)
(7)

Furthermore, estimating the approximate value of
∥∥∥log ∂Ht−q,v

∂Ht,u

∥∥∥ derived by Eq. (8):

∥∥∥log ∂Ht−q,v
∂Ht,u

∥∥∥ ≤
∥∥∥log

((
WuT

)T F ′ (t− 1)
)∥∥∥

+ ∑
m=2,...,q−1

∥∥log
((

WF ′ (t−m)
)

Wv · f ′v
(
Ht−q,v

))∥∥

≤ log
(
n
∥∥WuT

∥∥
x

∥∥F ′ (t− 1)
∥∥

2

)

+ log
(

nf ′max · ‖W‖q−2
2 ‖Wv‖x

)
(8)
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i.e.,
∥∥∥∥
∂Ht−q,v

∂Ht,u

∥∥∥∥
x
≤ n

(
f ′max

)2 · ∥∥WuT

∥∥
x‖Wv‖x ‖W‖q−2

2 (9)

∥∥∥∥
∂Ht−q,v

∂Ht,u

∥∥∥∥
Rt

≤ n
(
f ′max

)2 · ∥∥WuT

∥∥
Rt
‖Wv‖Rt ‖W‖q−2

2

≤ NRt ‖W‖q−2
2 , NRt = nσ 2

R

(
f ′max

)2
(10)

where Rt ∼ N
(
0,σ 2

R

)
. Basing on the outlined discussion, the approximate value of partial deriva-

tives ∂Ht−q,v
∂Ht,u

between hidde-states at different times are properly estimated, and the similarity ratio

of hidden-layer nodes is related to the network weight W . In other words, the greater the weight
is, the higher the similarity is.

For multipliers in Eq. (10) at any moment, the results can be weighted to be greater than 1 or
less than 1. More precisely, the vanishing gradient may be happened when united results became
much more smaller. The total product may be larger if the mold of the multiplier at the later
moment is greater than 1 through the adjustment of the weight coefficient (i.e., the door). Thus,
the long-term memory of time series is preserved. It can be seen from the above that ht has an
effect on all errors at the time of t ∈ (0,+∞), so all subsequent errors will be transmitted back
during back propagation. The calculation process of error propagation term δh

t can be studied by
a way of recurring moment by moment from back to front.

2.6 Hidden-Layers Feature Analysis of LSTM Network
To avoid the infiltration of external information and achieve long-term memory of sequence

information, the LSTM network employs a complete structure including forget gates, input gates,
and output gates [84,85]. The LSTM network is commonly used to forecast the future time series
output of a single time step in time series. With numerous time steps, an LSTM network can also
anticipate the future time sequence output. Multiple variable sequences influence the value of the
final variable sequence in a multivariate sequence group. The LSTM model, on the other hand,
usually only learns information from a small amount of the time step. Because an interception
sequence with a lengthy time step produces low attention value output, the final LSTM network’s
predicting impact will be harmed [86,87].

The SOM neural network is an unsupervised network that can do unsupervised data group-
ing [88,89]. The approach assumes that the input data has certain topological connections or
sequences that allow for the realization of the dimensionality reduction mapping from the input
n-dimensional space to the output 2-dimensional plane. A typical topological distribution of the
input data is then produced on a one-dimensional or two-dimensional processing unit array. The
preservation of topological properties resembles the nature of actual brain work. SOM network
training adopts the method of “competitive learning” [90,91]. Each input sample finds a node
with the shortest distance from it in the output layer, that is, the most matching node, which is
called activation node or winning unit. Then, the node’s parameters are then updated using the
stochastic gradient descent approach. At the same time, the points adjacent to the activated node
also update their parameters appropriately according to their distance from the activated node
[92–94].
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When designing the SOM network, we must take into account the number of neurons in the
output layer [95–97]. The number of neurons in the out-put layer is related to the final number of
clusters. More neurons can be set to better map the topological structure of the sample in the case
of unknowing the number of clusters. If the number of clusters is too large, the output nodes can
be appropriately reduced. Therefore, when dividing and selecting ‘regions’ in the clustering plane,
the “distance” between samples can be calculated and then the potential categories of different
hidden-layer features can be analyzed basing on the similarity measurement between different
hidden-layer information. The corresponding distance formula is obtained according to Eq. (11):

D12 =
√

(a− b) (a− b)T (11)

where a, b is two arbitrary information points on a two-dimensional plane, the above formula
indicates that the closer the hidden layer information is, the more similar the two sample patterns
are. In particularly, the patterns of the two samples are the same if the distance obtained by
Eq. (11) between the information patterns is zero. In the cluster analysis of the hidden-layer
information, the presented threshold is usually used to judge whether the hidden-layer information
between different samples is considered as the same, or will be treated in different categories
[98,99].

2.7 The Forecasting and Generation Methods of the PV System
As indicated in Table 2, there are two types of photovoltaic power forecasting methods:

direct forecasting based on a physical model and indirect forecasting based on historical data
[100–103]. The direct forecasting methods relies heavily on weather values or weather cloud maps,
as well as other data, to predict energy generation [104–111], Ground cloud map model [112], a
forecasting model integrating weather values with cloud cover pictures [21], and so on. The direct
forecasting approach necessitates precise weather prediction information, power station geography
information, and a considerable amount of sky picture information, as well as stringent gathering
equipment and methods, resulting in the forecasting method’s weak resilience. Simultaneously, the
model utilized in the direct forecasting technique is unable to gather time correlation information
and is incapable of recalling past data. Indirect forecasting methods include time series method
[113–116], Regression analysis [117] and artificial intelligence methods such as artificial neural
network [118–125]. The indirect forecasting method can overcome the difficulties such as the
lack of physical mechanism of the direct forecasting method, which is suitable for short-term
and ultra-short-term photovoltaic power forecasting, as well as long-term and short-term memory
[126–128].

Table 2: The summary of PV forecasting models

Type Method F-steps F-indicator Advantages Disadvantages Reference

Direct Data-driven 1–4 h RMSE: 7%–7.5% Less computation
and inputs

[104]

Direct UWRF-solar 1 h MAE: 14.5% (sunny),
33.7% (cloudy),
50.7% (overcast)

Predict different
weather conditions
at 10 locations.

Sunny conditions
are better, others
are worse.

[105]

(Continued)
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Table 2: Continued

Type Method F-steps F-indicator Advantages Disadvantages Reference

Direct Post-processing of
numerical weather

0–48 h RMSE: 6.4%–9.2% Prediction range
can be adjusted
to reduce the
error in certain cases.

[106]

Direct Based on SURFRAD
ground measurement
data

ECMWF with highest
accuracy in
cloudy weather,
GFS under clear sky.

Cloud cover changes
related time are
not allowed.

[107]

Direct Cloud-assimilating
numerical weather
forecasting

Intraday,
day-ahead

RMAE:
21.3% (<24 h)
18.2% (>24 h)

Cloud assimilation
method can be extended
to other regions.

[108]

Direct Numerical weather
forecasting

Combined hit
ratio is close
to the observed.

[109]

Direct Numerical weather
forecasting

1–6 h Combine external
data (satellite)
with ground data.

More data is needed
for different weather.

[110]

Direct Numerical weather
forecasting

Daily RMSE: 20%–35%
(Spain), 30%
−45% (Canada),
40%–60%
(Mid-European)

Better than
individual models.

Cloud needs
to be parameterized.

[111]

Indirect LSTM-CNNs PMAE: 24.830%,
PRMSE: 10.390%,
PMAPE: 25.000%,
PMAPE: 6.204%

Better than
another Conv-LSTM
Network

[112]

Indirect Statistical meth. 1–3 h RMSE: 0.791 (1 h),
1.092 (2hahead),
1.831 (3hahead)

Better than
other NNs,
Statistics

For predicting
1-h ahead.

[21]

Indirect Statistical methods 3, 6, 12, 24 h The probability of
the prediction error
Ei:[−10%; +10%]

Combining weather
parameters

NN increases
computational costs.

[113]

Indirect STL, ARIMA STL produced
the lowest RMSE.

Different systems
seek optimal methods.

[114]

Indirect SARIMA, ETS,
MLP, STL,
TBATS, the theta model

Less risky Best individual
better than
integration

[115]

Indirect NNs, Regress. Multivariate factor
as inputs

[116]

Indirect GA-SVM Acc: 10%–15% Effective,
promising.

[117]

Indirect Wavelet-PSO-SVM Daily MAPE: 4.2%,
NMAE: 0.4%

Novel, effective [118]

Indirect SARIMA-SVM 1-h NMBE: 0.1790%,
MPE:2.7381%

Not require any
forecast meteorological
parameters.

[119]

Indirect KNN , SVM OA: 96.18% (KNN),
95.14% (SVM)

KNN has higher
upper limit of
accuracy than SWM.

[120]

Indirect NNs Weekly Best acc: 1.093% NN can reduce
prediction error.

Over-reliance
on correlation

[121]

Indirect Fuzzy recognition Hourly MAPE:
12.19%–7.15% (sunny),
13.27%–8.58% (cloudy),
58.76%–23.20% (rainy)

Less samples,
less time,
high precision

Low accuracy
in rainy days.

[122]

Indirect LSTM,
attention mechanism

7.5, 15, 30, 60 min Lower RMSE, MAE Valid for
all four seasons

[124]

Due to the blocking of solar radiation by moving clouds, the photovoltaic power fluctuates
rapidly and dramatically in minutes, posing a significant threat to the power grid’s reliability
[129–132]. The traditional photovoltaic power forecasting model based on the historical power
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data of photovoltaic power stations and numerical weather forecast is restricted by the algorithm
principle and data accuracy, and it is difficult to precisely predict the minute power fluctuation
caused by cloud movement [133–136]. However, under certain weather conditions such as overcast,
the surface irradiance fluctuates dramatically in minute time scale because of the influence of
moving clouds [137–141]. At this time, there is almost no correlation between the irradiance
fluctuation and the historical irradiance data [142,143]. Therefore, the above phenomena pose a
challenge to the extraction and forecasting of minute level meteorological features.

Zhen et al. [144] took pictures of clouds in the sky with the all-sky imager to obtain the visual
cloud features, and on this basis, predicts the ultra-short-term photovoltaic power [145]. Zhen
et al. [146] proposed a computing method for cloud motion velocity of solar photovoltaic power
forecasting (PCPOW) sky image based on pattern classification and particle swarm optimization
weight, and simulates it using real data recorded by Yunnan Electric Power Research Institute.
The results confirme that PCPOW can improve the accuracy of displacement calculation. Cros
et al. [147] proposed a forecasting method based on phase correlation algorithm for motion
estimation between subsequent nebula-images derived from Meteosat-9 images. The forecasting of
this method is 21% better than the relative RMSE persistence of the cloud index. It is found
that sky images are widely used to improve weather forecast performance [148,149], and cloud
identification is one of the challenges faced by photovoltaic forecasting.

3 Experiments

The neural network is an artificial intelligence system model that models and links the basic
unit neurons of the human brain to replicate the activities of the human brain neuron system
selection, pattern recognition, correlation analysis, and learning. The network learning algorithm
performs network training by constantly altering the learning rate and weight of the network
neuron nodes, and the model can design the learning environment using the input data samples or
patterns. The training results will be dispersed across the neuron nodes that were first built. After
repeated training analysis, the weight of network neuron nodes will approach a predefined value.
Finally, the network can classify data samples autonomously and select the obvious qualities after
learning and training.

3.1 The Short-Term Wind Power Forecasting Based on the Hidden-Layers Topology Analysis
The Kohonen neural network is a common unsupervised learning technique, whose network

structure and learning algorithms have a better feature selection ability than other neural networks.
In the learning or training stage, the Kohonen network structure-based clustering algorithm can
adapt to the learning environment, adjust and optimize the learning rate and neuron weight,
receive external data samples and environmental characteristics as input, as well as divide different
categories of regions autonomously. In Fig. 6, SOM analyzes the hidden layer information of the
deep neural network, reduces the dimension and maps the read hidden layer information into
the two-dimensional space. The first line of Fig. 6 delicate, before the STL data decomposition,
the number of clusters is not obvious, that is, the geometric relationship between clusters or the
nodes that can be used as clusters in the topology are not obvious. The corresponding error
trend fluctuates sharply around the peak value, which indicats that the convergence speed of the
algorithm at this time will be affected by the local area of the data.

The second row to the fourth row of Fig. 5, and display the data trend, cycle, and residual
items into low dimensional discrete data, the network nodes are mapped to the local area and
the active point in the network. After Competitive Process, Cooperation Process and Adaptation
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Process, the low dimensional data clustering center of the respectively show about 1 2. The
attenuation of vector corresponding with the time of learning, as well as the convergence speed
of SOM have the effect of reducing, and the corresponding error is reduced gradually.

Figure 5: The hidden layer information of the deep neural network: cluster visualization and som
error history
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Figure 6: The hidden layer information of the deep neural network in different neurons

Designing the number of hidden nodes requires to read the information of the hidden layer.
There are 40,254 pieces of output dable by LSTM, and the feature value dimension of the sample
data at each time point is 20. The following Fig. 6 shows the violin chart of the data feature
value, which shows the distribution and probability density of the data. The thick black bar in the
middle of the violin chart is used to show the quartile, the white dot in the middle of the black
thick bar represents the median. The top and bottom edges of the thick bar represent the upper
quartile and the lower quartile, respectively. The value of the quartile can be seen from the value
of the y-axis corresponding to the position of the edge can see the value of the quartile. The two
sides of the graph reflect the density information of the data. The data density at any position
can be seen from the shape of the violin graph, the feature distribution of the time series more
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intuitively is estimated. From the previous analysis of the hidden layer information, it can be seen
that the closer the hidden layer information is, the more similar the two sample patterns are, and
they can be classified into the same category. Therefore, the 20 hidden layer nodes can be reduced
to 6.

For the proportion of places inhabited by a given sample of the cluster, the associated
accuracy can be shown as a percentage of the map’s logarithmic sample response, or computed
as a percentage of the data sample’s response on the map. BMU is the closest representation
of the data sample to the above percentages, estimating accuracy through relative quantization
errors and fuzzy responses (quantitative nonlinear functions and percentages of all map units).
The quantitative results were analyzed by displaying a histogram (or aggregate response). In fact,
if treating the data result as a table shape, a cylinder or ring graph can be visualized, and the map
shapes containing flat visualization percentages also will be visualized by using self-organizing grid
graphics. The statistical results show that the average algorithm quantization error of trend term,
period term and residual term after original data, and STL data decomposition is 0.175, 0.032,
0.125 and 0.080. Comparing with the hidden layer characteristic analysis of the original data, the
average fluctuation degree of the data characteristic after STL decomposition is reduced by about
54.85%. According to the above analysis, the number of hidden layer nodes is reduced from the
original artificial experience of 20 (related to the number of inputs, which are determined by the
order of the model) to 68. Thus, the preliminary optimization of hidden layer topology structure
of deep LSTM network is designed.

When evaluating the prediction capacity of time series models, it is critical to use the baseline
model. In general, the baseline model is easy to implement forecasting modeling and naive of
problems-specific details. For example, the persistence model can quickly, simply and repeatable
calculate the corresponding expected output based on the current input, so as to effectively
measure the reliability and effectiveness of the forecasting model currently established [150–157].
Multiple vector regression analysis (Multi-SVR) is a common kind of time-series forecasting
model, which can use statistical methods to determine the quantitative relationship of the inter-
dependence between multiple variables [158–160]. Especially the modeling of causal forecasting in
the big data, Multi-SVR is used to establish the forecasting model with high accuracy, and mainly
used in the model to determine the development regularity of time series data [161–164]. CNN has
the analysis ability of using the convolution kernel feature analysis, especially the hidden layer’s
awareness of the deep network information [165–169]. Through the establishment of a strong
expression ability of nonlinear mapping, it can effectively and accurately analyze data and on the
basis of the law of the development trend of the current data, and speculated the data law of
development in the future [170–172].

The LSTM network works well for evaluating and forecasting important events in time series
with long gaps and delays, which have a improved classification accuracy and parallel processing
power, as well as the ability to properly discern the trend development between historical data
and anticipated variables. However, several factors in this model must be tweaked, particularly
the calculation of topology structure, weight, and hidden-layer threshold. If the hidden-layer data
cannot be adequately comprehended. In other words, accurate analysis of the deep neural net-
work’s hidden-layer information is beneficial to the model’s generalization capacity. Furthermore,
ensemble LSTM approaches can combine many trained LSTM models and increase each LSTM
model’s learning ability, resulting in better and more reliable outputs.

Table 3 shows that the ensemble LSTM model has a greater forecasting accuracy than Per-
sistence, Multi-SVR, ConvNets, Basic LSTM and Cluster LSTM, in every step in the next hour.
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The improvement of model accuracy also shows that memory gate and forgetting gate in LSTM
network structure have significant advantages in dealing with long history dependence. More ever,
When the method of SOM cluster is applied to wind power forecasting, it can provide guidance
for wind power operation and dispatch. Compared with the traditional LSTM network, the
forecasting accuracy of the Ensemble LSTM has been respectively improved by 44.51%, 41.90%,
41.89%, 41.39%, 38.83% and 9.42%. The detailed forecasting results are given in Table 4.

Table 3: Experiments evaluation

Methods 1-h 2-h 3-h 4-h 5-h 6-h

Persistence 322816.17 373024.54 409111.62 438282.46 464761.52 487138.23
Multi-SVR 541.191 553.403 595.400 623.102 632.239 648.970
ConvNets 222.368 226.737 242.829 261.327 269.327 290.668
Basic LSTM 184.800 185.968 188.574 191.387 192.735 195.853
Cluster LSTM 185.070 185.160 186.463 187.519 187.711 187.779
Ensemble LSTM 102.540 108.050 109.589 112.166 117.889 118.641

Table 4: The improvement of ensemble LSTM compared with other models (%)

Methods 1-h 2-h 3-h 4-h 5-h 6-h

Persistence 99.97 99.97 99.97 99.97 99.97 99.98
Multi-SVR 81.05 80.39 81.59 82.00 81.35 81.72
ConvNets 53.89 52.15 54.87 57.08 56.23 59.18
Basic LSTM 44.51 41.66 41.89 41.39 38.83 39.42
Cluster LSTM 44.59 41.40 41.23 40.18 37.20 36.82

Comparing with the benchmark model such as Persistence, Multi-SVR, ConvNets, Basic
LSTM and Cluster LSTM, the forecasting accuracy has been improved by (1-h ahead) 99.97%,
81.05%, 53.89%, 44.51% and 44.59%, (2-h ahead) 99.97%, 80.39%, 52.15%, 41.66% and 41.40%,
(3-h ahead) 99.97%, 81.59%, 54.87%, 41.89% and 41.23%, (4-h ahead) 99.97%, 82.00%, 57.08%,
41.39% and 40.18%, (5-h ahead) 99.97%, 81.35%, 56.23%, 38.83% and 37.20%, (6-h ahead)
99.98%, 81.72%, 59.18%, 39.42% and 36.82%. Compared to the traditional LSTM network, the
forecasting accuracy of the Ensemble LSTM has been respectively improved by 44.51%, 41.90%,
41.89%, 41.39%, 38.83% and 9.42%. The detailed forecasting results are given in Tables 3 and
4. It can be seen that, no matter what dataset it is, CNNs based on the new topology gets the
highest accuracy. On the MNIST dataset, CNNs based on the improved topology has no obvious
advantages and achieves an average accuracy improvement of 7%. However, the accuracy in other
datasets has improved by 30% and 7%, which achieves a great advance of the topology-optimized
network.

3.2 The PV Classification and Forecasting Based on the Hidden-Layers Topology Analysis
Although the bulk of cloud identification depends on visual observation by meteorological

observers, the majority of manual identification conclusions are likely to be incorrect depending
on the observers’ competence and physical state [173–175]. Furthermore, continuous long-term
observation is not practicable owing to the diversity of cloud morphologies and the difficulties of
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manual observation, affecting cloud identification accuracy and consistency [176–178]. Intelligent
cloud categorization and recognition technology has become a prominent study area in meteorol-
ogy in recent years, thanks to the rapid growth of digital image processing technology. Satellite
cloud image research has a wide range and span, but the description accuracy of high resolution
and local cloud information is not very good, whereas ground-based cloud image classification has
the advantages of ease of operation and strong local guidance, which is something that researchers
are concerned about [179,180]. The multi-category support vector machine (MSVM) is employed
in the literature [181] for cloud classification of satellite radiation data, demonstrating MSVM’s
promise as a cloud detection and classification system. A classification technique based on extreme
learning machines and K nearest neighbors is suggested in the literature [182]. Simulation results
show that the proposed model is more suitable for cloud classification than extreme learning
machine (ELM) model and artificial neural network (ANN) model. Reference [183] develops
a novel time update method for a probabilistic neural network (PNN) classifier to track time
changes in image sequences. The results on satellite cloud image data show that the classification
accuracy of this method is improved. In literature [184], the fuzzy set algorithm is used for cloud
classification of satellite data. Through careful analysis of the fuzzy set, spectral channels are most
suitable for the information of specific feature classification are determined. The feature extraction
network architecture of nephogram is shown in Fig. 7.

sec

Figure 7: The model structure for feature extraction

CNN has a great capacity to extract visual features and has been used in the categorization
of cloud images [133]. At present, in the field of deep learning, such as VGG16 [185–187], ResNet
[188–191] and InceptionResnet-v2 [192–195]. CNN have achieved good results in classification,
so these mature research results can be used as a reference cloud classification model can be
built [196,197]. In order to guarantee higher accuracy, shown in the following Table 5, this
paper tests the five classical model: VGG16, ResNet18, ResNet34, ResNet50, InceptionResnnetv2
migration learning accuracy, and compared with ordinary CNN, found that ordinary CNN has
the highest accuracy, at 0.8. This is because, while deeper hidden layers in deep neural networks
may extract characteristics with better resolution, the model is also easier to overfit [198–201].
Fig. 8 shows the information of the first four hidden layers of the cloud image data set. It can
be seen that the texture features of the cloud image in the first three layers are well retained.
The fourth layer begins to learn invalid features. In order to further the cloud, a rich hierarchy
of objects for feature extraction, a kind of attention mechanism making the model more focus
on the characteristics of effective figure is designed. In the structure, two tensors of extended
channel dimensions are firstly used to obtain features, and average pooling and max pooling
are performed respectively. The former for spatial information aggregation, which can extract the
texture information of the object, be able to infer updated channel information. Then, the output
feature vectors are multiplied to connect the two channels, and finally the overall feature extraction
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of the connected channels is carried out through the two fully connected layers. The accuracy rate
was finally reached 92%.

Table 5: The acc of different models

VGG16 ResNet18 ResNet34 ResNet50 InceptionResNetv2 CNN

0.61 0.68 0.72 0.59 0.62 0.80

Figure 8: The hidden layer information of CNN for cloud cover

4 Conclusions and Discussions

Wind power and solar power generation are widely employed in the power grid, and power
system optimization is becoming increasingly important. In this paper, Firstly, the physical model,
statistical model, and machine learning model for wind power forecasting are fully detailed, and
the hybrid machine learning method is universal and effective, especially in short-term wind power
forecasting. Secondly, the set order LSTMs method based on optimized hidden layer topology is
emphatically introduced, which is utilized for short-term multivariable wind power forecasting. The
STL is used to obtain the trend component, seasonal component and residuals, to reflect the most
effective information for short-term wind power forecasting. And the hidden-layer information
is mapped into a higher-dimensional feature space, so that the similar information of hidden-
layer are well separated via the SOM clusters. The forecasting error of the ensemble LSTM
network is analyzed in mathematical analysis. Thirdly, we summarizes the direct method based on
physical model and the indirect method based on historical data in photovoltaic power generation
forecasting, emphasiz the importance of cloud map identification photovoltaic power generation
forecasting. Finally, the performance of the ensemble deep learning approaches is compared to
benchmark methods such as persistent model, multi-support vector machine, convolution, basic
LSTM and cluster LSTM, and the forecasting error is thoroughly examined. The accuracy of
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cloud image classification is compared to VGG16, ResNet18, ResNet34, ResNet50, InceptionRes-
Netv2, CNN and other benchmark methods, and the hidden layer feature information of the
model is emphatically analyzed. Through our research, it is found that wind power prediction
and photovoltaic prediction have similar characteristics. Solar radiation, wind speed and cloud
change are all important factors affecting the two kinds of power generation. Therefore, in order
to improve the accuracy of prediction, it is the trend for future power generation prediction to
extract predicted time characteristics from multiple factors.
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