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ABSTRACT

Although various types of anti-roll torsion bars have been developed to inhibit excessive roll angle of the electric
multiple unit (EMU) car body, it is critical to ensure the reliability of structural design due to the complexity of the
problems involving time and uncertainties. To address this issue, amulti-objective fuzzy design optimizationmodel
is constructed considering time-variant stiffness and strength reliability constraints for the anti-roll torsion bar. A
hybrid optimization strategy combining the design of experiment (DoE) sampling andnon-linear programming by
quadratic lagrangian (NLPQL) is presented to deal with the design optimization model. To characterize the effect
of time on the structural performance of the torsion bar, the continuous-time model combined with Ito lemma is
proposed to establish the time-variant stiffness and strength reliability constraints. Fuzzy mathematics is employed
to conduct uncertainty quantification for the design parameters of the torsion bar. A physical programming
approach is used to improve the designer’s preference and to make the optimization results more consistent with
engineering practices. Moreover, the effectiveness of the proposed method has been validated by comparing with
current methods in a practical engineering case.
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1 Introduction

Reliability-based design optimization (RBDO) is an important way to improve the reliability
of products under uncertainty in the design stage. Due to the time-variant property of design
parameters, working conditions and uncertainties affecting the products’ performance, time-variant
reliability-based design optimization (TRBDO) has become urgent to ensure the operating relia-
bility and safety during the products’ lifecycle. Currently, TRBDO has attracted more attentions
and is being applied in engineering practices [1–4].
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For a complicated engineering problem, one main challenging task is to build the TRBDO
model sufficiently considering the complexity of the working conditions and uncertainty quantifi-
cation as well as the nested relationship between objectives and constraints. In addition, several
objectives should be balanced and therefore the multi-objective optimization should be performed
during the procedure of the TRBDO. So far, there are several preliminary developments by
integrating the TRBDO and the multi-objective optimization, which will be one of the important
trend of the design technique under uncertainty. Multidisciplinary design optimization (MDO)
mainly focus on the coupled relationship between different disciplines or subsystems [5–11], while
multi-objective optimization makes a decision by balancing the objectives under the satisfac-
tion of constraints [12–14]. In some special cases, the MDO problem can be transformed to
the multi-objective optimization problem. Therefore, time-variant reliability-based multi-objective
design optimization (TRBMDO) is a necessary approach to guaranteeing the lifecycle reliability
and safety of products while the balance of several objectives and other constraints are satisfied.
Currently, several methods have been developed for the TRBMDO. Yu et al. [15] proposed a
multi-objective design optimization framework combining both the time-variant reliability and
robustness. Zhang et al. [16] implemented the multi-objective optimization model for the lifting
gear transmission system, where the distance between natural frequency and meshing frequency
is maximized and the volume of gears is minimized under the time-variant reliability constraints.
Dong et al. [17] studied the multi-objective optimization by considering the deterioration of the
bridge with the time progressing under uncertainty. Okasha et al. [18] discussed the time-variant
redundancy of structural systems and provided the multi-objective optimization framework for the
risk-based management. Wang et al. [19] employed a nested extreme response surface to conduct
the multi-objective optimization in an iterative RBRDO process with the lifecycle cost and the
quality of aircraft tubing as the design objectives. Angelis et al. [20] gave the general and effective
numerical method for a fatigue-prone weld to achieve the robust and time-variant maintenance
plan.

For the structure of EMU, the secondary suspension system usually uses the air spring to
obtain better vertical performance and improve the riding comfort. However, the low stiffness of
the air spring will lead to the reduction of the roll stiffness of the vehicle and then the roll angle
increases. Especially when the vehicle is operating on the curve track with superelevation, or when
the vehicle encounters a large lateral wind, the smaller roll stiffness will raise the operating risk
greatly. In order to address the issue well, the anti-rolling device is used to increase the counter-
torque against the lateral rolling of the vehicle body. The overturning safety is then improved by
reducing the inclination angle of the vehicle without increasing the vertical stiffness of the spring.
As the most part of the anti-rolling device, the time-variant reliability of the anti-roll torsion bar
will directly affect the operating safety of the vehicle.

However, many studies are about the stiffness and strength analysis under the time-invariant
conditions as well as the fatigue experiments for the anti-roll torsion bar. Duan et al. [21]
presented a calculation model for the deformation and stress considering the different loading state
of the anti-roll torsion bar system. Lu et al. [22] described the stress and load-bearing state of
the anti-roll torsion bar for the operating vehicle and then carried out the fatigue life analysis and
experimental verification. Wang et al. [23] discussed the influence of velocity, the curve radius, and
the superelevation on the anti-roll torsion bar according to the loading history. Dong et al. [24]
provided a multi-response robust optimization method for the anti-roll torsion bar based on a
stochastic model. However, the time-variant reliability of the anti-roll torsion bar has been rarely
investigated.
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In this paper, a time-variant reliability-based multi-objective fuzzy design optimization
(TRBMFDO) method for the anti-roll torsion bar of the EMU is proposed. The TRBDO
constraints related to the stiffness and strength are first established by accounting for the time-
variant stochastic working conditions and the working principle of the anti-rolling torsion bar.
The optimal rage of design variables is then determined by employing the membership function
combined with the fuzzy allowable interval. The physical programming method is then presented
to transform the multi-objective fuzzy design optimization problem to a single-objective design
optimization problem under the satisfaction of the reliability constraints. The results of the
TRBMFDO are finally achieved by using the combinatorial optimization strategy.

The remainder of the paper is organized as follows. Mechanical performance analysis of the
torsion bar are presented in Section 2. Time-variant reliability model under the stochastic process
is described in detail in Section 3. Section 4 proposes the fuzzy optimization model of the anti-roll
torsion bar. Section 5 uses an engineering example to illustrate the effectiveness of the proposed
method. Finally, Section 6 summarizes and concludes.

2 Mechanical Performance Analysis of the Torsion Bar

The mechanical performance analysis of the torsion bar is the foundation of the design
optimization. Basically, the anti-roll torsion bar can be divided into the built-in bar and external
bar according to the different position of the support seat. The support seat of the built-in anti-
roll torsion bar is generally composed of the upper part and lower part, where the rubber joint is
used. The support seat of the external anti-roll torsion bar is an entire structure, where the metal
joint or integral polymer wear-resistant bushing is used. In the paper, we will study the external
anti-roll torsion bar, whose installation position in the bogie frame is shown in Fig. 1.

Figure 1: Anti-roll torsion bar device of EMU

2.1 Stiffness Analysis of the Torsion Bar
As the most important performance index of the anti-roll torsion bar device, anti-roll stiffness

can ensure the roll angle of the vehicle body and the flexibility coefficient of the vehicle. Proper
anti-roll stiffness can effectively improve the safety, stability, and comfort of operation. The anti-
roll stiffness can be derived from the force analysis shown in Fig. 2 by considering the installation
position and working principle of the anti-roll torsion bar in Fig. 2.
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Figure 2: Force diagram of the anti-roll torsion bar device

For the given parameters in Fig. 2, F is the axial force of the connecting rod, θ is the roll
angle of the vehicle body, Kt is the anti-roll stiffness of the torsion bar, kr is the torsional stiffness
of the torsion bar, br is the effective length of the torsion bar, l is the length of the torsion arm,
and ζ is the vertical displacement of the connecting rod. M denotes the restoring moment of the
torsion bar and

M =Kt · θ (1)

Considering the working principle of the anti-roll torsion bar, the restoring moment can be
expressed as

M = F · br (2)

F · l= 2ζ · kr
l

(3)

where

ζ = θ · br
2

(4)

Therefore, the anti-roll stiffness of the torsion bar can be derived by

K = b2r kr
l2

(5)

The torsion bar includes three areas, namely the working area, transition area, and connection
area. Therefore, the stiffness of the bar is integrated by the stiffness of the working area, transition
area, and connection area. Provided that the cross-section of the torsion bar is circular and its
diameter is d, the torsion stiffness can be expressed by

kri = πdi
4G

32bi
(6)

where i is the number of the areas; bi is the length of the torsion bar.
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When the transition area is an arc, the length of the transition section can be provided by [25]:

L= D− d
2

√
4r

D− d
− 1 (7)

where D and d represent the large diameter and small diameter at the transition of the arc,
respectively; r represents the radius of the transition arc.

Considering the relationship of the stiffness between the torsion bar and the three areas, the
torsional stiffness of the torsion bar is

1
kr

= 2
kr1

+ 2
kr2

+ 1
kr3

(8)

2.2 Strength Analysis of the Torsion Bar
When the anti-roll torsion bar is operating, it will suffer from the bending stress and torsion

shear stress. Generally, the torsion shear stress is greater than the bending stress. The strength of
the bar can be derived with the help of the third strength theory by combining the bending stress
and torsion shear stress, where the bending moment and torque are shown in Fig. 3.

2672
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Figure 3: Bending moment and torque diagram of the torsion bar

From Fig. 3, we can see that the torsion bar is only subject to torque in the working area but
subject to the bending moment and torque at the same time in the transition and connection areas.
For the torsion bar without defect, the maximum stress appears at the crossing of the minimum
section transitions.

With the combination of the bending and shear conditions, the stress of the torsion bar is
therefore expressed by

σca = Me

W
= 32

√
M2 + (αT2)

πd3
3

(9)
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3 Time-Variant Reliability Model under the Stochastic Process

The stiffness, strength, and allowable stress of the anti-roll torsion bar are usually time-variant
due to several uncertain factors from the working conditions, loadings and also the degradation
of the material. The time-variant factors will result in the time-variant change of the reliability of
the bar. If the time-variant property is ignored, the reliability only ensure the safety of the bar at
the initial time, namely t= 0 not the whole lifecycle. Therefore, it is necessary to properly account
for the time-variant property and further conduct TRBDO to guarantee the lifecycle reliability
and safety.

3.1 Statistical Analysis for the Stiffness of the Torsion Bar
Since the diameter d changes with time due to the wear, the normal distribution geometric

Brownian motion will be employed to describe d(t) under uncertainty. Here, Ito differential
equation will be used for featuring the uncertainty propagation based on Eq. (6)

dd(t)= λdd(t)dt+ δdd(t)dω2t (10)

∂ lnkri
∂d

= 4
d
;
∂2 lnkri

∂d2
=− 4

d2
(11)

d lnkri(t)=
[

∂ lnkri
∂d

λdd(t)+ 1
2

(
∂2 lnkri

∂d2
δ2dd

2(t)

)]
dt+ ∂ lnkri

∂d
δdd(t)dω2t (12)

Mean and variance of lnkri(t) are provided by⎧⎨
⎩

μ̂lnkri(t)= lnkri(0)+
∫ t
0 (4λd − 2δ2d)ds= lnkri(0)+ (4λd − 2δ2d)t

σ̂ 2
lnkri

(t)=
[∫ t

0 (4δd)dω2s

]2 = (16δ2d)t
(13)

Based on Eqs. (8) and (13), the means of lnkri(t) can be obtained by

μ̂lnkr(t)=
1

2
μ̂lnkr1(t)

+ 2
μ̂lnk2(t)

+ 1
μ̂lnkr3(t)

(14)

Based on Eqs. (5) and (14), the mean of lnKt can be expressed by

μ̂lnK(t)= b2r μ̂lnkr(t)

l2
(15)

3.2 Statistical Analysis for the Strength of the Torsion Bar
Provided E is time-variant under uncertainty and also follows the normal distribution

geometric Brownian motion, we have{
dE(t)= λEE(t)dt+ δEE(t)dω1t
dd(t)= λdd(t)dt+ δdd(t)dω2t

(16)
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Take the logarithm of the function according to Eq. (9):

S= lnσca = ln
32
π

+ 1
2
lnE− 3 lnd (17)

dS=
(
1
2
λE − 3λd −

1
4
δ2E + 3

2
δ2d

)
dt+ 1

2
δEdω1t− 3δddω2t (18)

Mean and variance of S(t) are provided by⎧⎪⎪⎨
⎪⎪⎩

μ̂S(t)= lnσca(0)+
∫ t
0

(
1
2
λE − 3λd −

1
4
δ2E + 3

2
δ2d

)
dS= lnσca(0)+

(
1
2
λE − 3λd −

1
4
δ2E + 3

2
δ2d

)
t

σ̂ 2
S(t)=

(
1
2

∫ t
0 δEdω1t

)2
+
(∫ t

0 (−3δd)dω2t

)
=
(
1
4
δ2E + 9δ2d

)
t

(19)

3.3 Statistical Analysis for the Material Strength
The material strength of the anti-roll torsion bar is random and time-variant, and therefore

non-stationary random process can be employed to describe the material strength. The material
strength of the torsion bar can be quantified as the product of the initial material strength and
attenuation function.

Sm(t)= Sm0(t)×ϕ(t) (20)

where Sm(t) denotes the initial material strength at t = 0, which can be expressed by Sm(0); ϕ(t)
is the attenuation function of the material strength, which is a deterministic function.

Then the material strength can be expressed with the given expression of the attenuation
function

Sm(t)= Sm(0)× exp(−kt2) (21)

where k is the attenuation coefficient of the material strength.

Mean and variance of Sm(t) are provided by{
μ̂Sm(t)=μSm(0)× exp(−kt2)
δ̂2Sm(t)= δ2Sm(0)

(22)

3.4 Time-Variant Reliability of the Anti-Roll Torsion Bar
According to the time-variant stress-strength interference (SSI) model, the reliability of the

anti-roll torsion bar can be expressed by [26,27]

R(t)=P{lnSm(t)− lnσca(t)≥ 0} (23)

We define Z= lnSm(t)− lnσca(t), then Eq. (23) can be rewritten as

R(t)=P{Z≥ 0} (24)
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Since lnSm(t) and lnσca(t) follow the normal distribution and are independent, Z also follows
a normal distribution. Then the time-variant reliability of the torsion bar can be defined as

R(t)=P{Z≥ 0} =
∫ ∞

0
ϕ(Z)dz= 1

(2π)1/2

∫ ∞

ZSm(t)

exp

(
−v2

2

)
dv= 1

(2π)1/2

∫ −ZSm(t)

−∞
exp

(
−v2

2

)
dv (25)

The time-variant reliability of the torsion bar is the provided by

R(t)=�

⎛
⎝ lnμSm(0)− kt2 − μ̂σca(t)√

ln δ2Sm(t)+ σ̂ 2
σca

(t)

⎞
⎠ (26)

4 Fuzzy Optimization Model of the Anti-Roll Torsion Bar

4.1 Physical Programming Model
Physical programming is an effective approach to dealing with the multi-objective optimization

problem, since the designer can express his preferences according to the experience. Actually, there
are four kinds of preference function, namely Class 1S, Class 2S, Class 3S, and Class 4S, to
quantify the designer’s requirements [28]. For the anti-roll torsion bar, we mainly focus on the
lightweight and high reliability. Therefore, the reference function that the smaller the mass and
structural stress the better will be chosen, which belongs to Class 1S and shown in Fig. 4.
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Figure 4: Preference functions for Class 1S

In Fig. 4, i represents the number of design objectives, i= 1, 2, · · · ,n; fi represents the prefer-
ence value of the design objective; fik represents the interval boundary value of the design target
value in the k segment. The value of the preference function on the boundary of each interval
can be obtained by

f̄
1 = ˜̄f 1 = 0.1 (27)

˜̄f k = βn ˜̄f (k−1) (2≤ k≤ 5,β > 1) (28)

f̄
k = f̄

(k−1) + f̄
k

(2≤ k≤ 5) (29)

λki = fik− fi(k−1) (30)
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where f̄
k
is the preference function value of the interval boundary k; β is the convexity coefficient;

˜̄f k is the change of the preference function value through the k-th interval.

s̃ki = ˜̄f
k
/

λki (k= 2, 3, 4, 5) (31)

si1 = αs̃2i (0< α < 1) (32)

sik = (sik)min+α�sik (k= 2, 3, 4, 5) (33)

(sik)min =
4s̃ik− si(k−1)

3
,�sik =

8
3
(s̃ik− si(k−1)) (34)

where sik is the first derivative of the preference function at the interval boundary k; s̃ki is the
average slope of the preference function at the interval boundary k.

The quantitative preference function can be obtained with the piecewise function curve fitting
method based on Eqs. (27)–(34). The preference function of each design objective is further
taken into the common logarithm of the average value and synthesized into the comprehensive
preference function with f (x) as the objective function. The physical programming model of the
anti-roll torsion bar can be provided by

find d = (d1,d2,d3)

min f (d)= log10

{
1
n

[
3∑
i=1

f̄ i(fi(d))

]}

s.t.{
f1(d) ≤ f1(d)5; f2(d) ≤ f2(d)5; f3(d) ≤ f3(d)5
d−i ≤ di ≤ d+i

(35)

where d−i and d+i represent the lower and upper bounds of the fuzzy interval for design variables,
respectively.

4.2 Membership Function of the Fuzzy Constraint and Non-Fuzzy Processing
Due to the existence of incomplete information, fuzzy variable is used to describe the uncer-

tainty of the design variables. It is important to select the proper membership function for the
fuzzy variables, since the shape of the membership function will affect the design optimization
results. According to the boundary constraint of the design variables, the linear membership
function is usually used and provided by

μdj =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 dj ≤ dj
l

(dj− dj
l)
/

(dj
u− dj

l) dj
l ≤ dj ≤ dj

u

1 dj
u ≤ dj ≤ d̄j

l

(d̄j
u− dj)

/
(d̄ j

u− d̄ j
l
) d̄ j

l ≤ dj ≤ d̄j
u

0 d̄j
u ≤ dj

(36)
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where dj
l is the lower limit for the lower bound; dj

u is the upper limit for the lower bound; d̄j
l
is

the lower limit for the upper bound; d̄j
u
is the upper limit for the upper bound.

The upper and lower limits of the upper and lower bounds in Eq. (36) are determined by the
expansion coefficient method, which is widely used in engineering practices. The upper and lower
limits of the transition interval are determined by introducing an amplification coefficient. There-
fore, the range of the expansion coefficient can be determined as ᾱ ∈ [1.05, 1.30], α ∈ [0.7, 0.95].
Level cut set is a commonly used method and the fuzzy comprehensive evaluation method can be
used to the optimal level cut set λ∗ [29].

The framework of the proposed TRBMFDO method of the anti-roll torsion bar is shown in
Fig. 5.

5 Practical Engineering Examples

The detailed structure of the anti-roll torsion bar is shown in Fig. 6. The material of the
anti-roll torsion bar is 52GrMoV4, whose tensile strength is 1450 MPa, yield limit is 1300 MPa,
and allowable stress is 745 MPa.

5.1 Time-Variant Stiffness of the Torsion Bar
The initial stiffness of the torsion bar in the working area, transition area, and connection

area can be calculated, respectively

kr1 = πd1
4G

32b1
= 2.246× 106 N ·m/rad

kr2 = πd2
4G

32b2
= 2.918× 106 N ·m/rad

kr3 = πd3
4G

32b3
= 3.20× 104 N ·m/rad

In order to obtain the distribution parameters of d(t), the experimental data about the
torsional stiffness of the torsion bar are collected, shown in Fig. 7.

With the collected data in Fig. 7, the shift and volatility rate of the stiffness can be estimated
as

λd = 1.5× 10−5; δd = 1× 10−3.

When the drift and volatility rate are substituted into Eqs. (13)–(15), the time-variant stiffness
of the torsion bar can be obtained at t= 9000.

μ̂lnkr1(t)= lnkr1(0)+ (4λd − 2δ2d)t= 14.07N ·m/rad

μ̂lnkr2(t)= lnkr2(0)+ (4λd − 2δ2d)t= 14.328N ·m/rad

μ̂lnkr3(t)= lnkr3(0)+ (4λd − 2δ2d)t= 10.32N ·m/rad

Then the time-variant stiffness of the torsion bar is

K = b2r kr
l2

= 2.7522× 2.8× 104

0.172
= 7.34MN ·m/rad
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Figure 5: The framework of the proposed TRBMFDO method

Considering the design requirements and stiffness change with time of the torsion bar, the
constraint of stiffness is given as 6.606MN ·m/rad≤K(t)≤ 8.074MN ·m/rad.

5.2 Time-Variant Strength of the Torsion Bar
According to the CRH3-350-PS-021 technical specification, the loadings of the torsion bar

mainly include the static loading Fstatic caused by the vehicle’s center of gravity deviation, the
dynamic operating loading Fdynamic, and the loading Fmax under special working conditions. The
detailed information of the loadings is provided in Table 1.
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Figure 6: Structural diagram of the torsion bar

Figure 7: Historical observations of torsion bar stiffness

Table 1: Loading information of the torsion bar

Load type Fstatic/kN Fdynamic/kN Fmax/kN

Value 2 ±35 ±60

The value of the loading is usually determined by the vehicle’s center of gravity deviation and
the outside lateral force. The expressions of the loading normal condition and special condition
are provided by

Fnormal = Fstatic+Fdynamic = 37 kN

Fspecial = Fstatic+Fmax = 62 kN

When designing the torsion bar, three conditions should be satisfied: (1) the maximum stress
should be less than the fatigue limit of the material; (2) the maximum stress is not greater than
the yield strength of the material; (3) the maximum shear stress is less than the allowed shear
stress of the material under the special load case. The stresses of the torsion bar under the normal
and special conditions are calculated based on Eq. (9):



CMES, 2022, vol.131, no.2 1013

σca1 = Me1

W
= 378.26MPa< 745MPa

σca2 = Me2

W
= 633.85MPa< 1300MPa

where Me1 and Me2 are the moments of torsion bar under normal condition and special
condition, respectively, W is the bending section coefficient.

The stresses of σca1 and σca2 observed from the product are shown in Fig. 8, where the
observation interval �= 1d.

Figure 8: Historical observations of torsion bar stress (a) Torsion bar stress σca1 (b) Torsion bar
stress σca2

With the collected data in Fig. 8, the shift and volatility rate of the stress can be estimated
as λE = 9× 10−5; δE = 8× 10−4.

When the drift and volatility rate are substituted into Eq. (19), the time-variant stress of the
torsion bar can be obtained at t= 9000.⎧⎪⎪⎨
⎪⎪⎩

μ̂σca1
(t)= lnσca1(0)+

(
1
2
λE − 3λd −

1
4
δ2E + 3

2
δ2d

)
= 666MPa

σ̂ 2
σca1

(t)=
(
1
4
δ2E + 9δ2d

)
t= 2.25× 10−3 MPa

⎧⎪⎪⎨
⎪⎪⎩

μ̂σca2
(t)= lnσca2(0)+

(
1
2
λE − 3λd −

1
4
δ2E + 3

2
δ2d

)
= 1119MPa

σ̂ 2
σca2

(t)=
(
1
4
δ2E + 9δ2d

)
t= 2.25× 10−3 MPa

5.3 Degradation of the Material Strength and Time-Variant Stress Constraints
Due to the existence of the failure modes of fatigue, wear and corrosion, the strength of the

bar will degrade with time. The collected historical data of the allowable stress is provided in
Fig. 9.
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Figure 9: Historical observations of the material strength

When the data in Fig. 9 is considered as the inputs of Eqs. (20)–(22), the mean and standard
deviation of allowable shear stress can be obtained.{

μ̂R1(t)=μR1(0)× exp(−kt2)= 691MPa

δ̂R1(t)= δR1(0)= 1MPa

The mean and standard deviation of the yield limit can be expressed by{
μ̂R2(t)=μR2(0)× exp(−kt2)= 1205.67MPa

δ̂R2(t)= δR2(0)= 1MPa

The time-variant reliability constraints of the stresses are provided⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g4(t)= 0.9−�

⎛
⎝ ln 745− (9.3× 10−10)t2 − μ̂σca1

(t)√
ln δ2R1(t)+ σ̂ 2

σca1
(t)

⎞
⎠≤ 0

g5(t)= 0.95−�

⎛
⎝ ln 1300− (9.3× 10−10)t2− μ̂σca2

(t)√
ln δ2R2(t)+ σ̂ 2

σca2
(t)

⎞
⎠≤ 0

5.4 Fuzzy Allowable Interval of Design Variables
The diameters of the working area, transition area, and connection area for the anti-roll

torsion bar of the EMU are usually uncertain, because the uncertainty is from the design,
manufacturing and the working conditions. According to the design rule, the upper and lower
bounds of expansion coefficients for diameter are ᾱ = 1.05 and α = 0.9, respectively. Then the
upper and lower bounds of the fuzzy allowable interval can be determined, shown in Table 2.

The optimal level cut set obtained by the fuzzy comprehensive evaluation is λ∗ = 0.6 [30]. The
fuzzy allowable intervals of design variables are given by 62.4≤ d1≤ 75.48 52.8≤ d2≤ 65.28 49.92≤
d3≤ 62.22.
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Table 2: Bounds of the fuzzy allowable interval of optimization variables

Upper and lower limit d1/mm d2/mm d3/mm

Upper bound Upper limit 77.70 67.20 64.05
Lower limit 74.00 64.00 61.00

Lower bound Upper limit 65.00 55.00 52.00
Lower limit 58.50 49.50 46.80

5.5 Fuzzy Optimization Model of Time-Variant Reliability for the Anti-Roll Torsion Bar
In this example, the objective is to maximize the strength and stiffness, and meanwhile to

minimize the mass of the anti-roll torsion bar under the satisfaction of the reliability and other
performance constraints.

The mass can be calculated by

f1 =m= ρ

(
πd21
2
l1+

πd22
2
l2+

πd23
4
l3

)
(37)

where ρ is the density of material 52GrMoV4; l1, l2 and l3 are the length of the working area,
transition area, and connection area, respectively.

The stresses are given by

f2 = σca1 = Me1

W
=

32
√
M2

1 + (αT1)
2

πd33
(38)

f3 = σca2 = Me2

W
=

32
√
M2

2 + (αT2)
2

πd33
(39)

The preference function interval of optimization objectives can be obtained based on relevant
standards and engineering experience, provided in Table 3.

Table 3: Preference function interval of optimization objectives

Optimization objectives Sign Unit fi1 fi2 fi3 fi4 fi5

Mass m Kg 36.42 41.47 46.52 51.58 56.61
Stesss 1 σca1 MPa 378.26 450.20 522.13 594.07 666
Stesss 2 σca2 MPa 633.85 755.29 876.32 997.56 1118.79

By using Eqs. (27)–(34), the preference function expression of each optimization objective can
be obtained by piecewise function fitting.

The expression of preference function for the mass of the anti-roll torsion bar is

f̄ 1(m)= 0.004862m4− 0.8364m3+ 53.82m2− 11534m+ 16350

The expression of preference function for the stress σca1 of the anti-roll torsion bar is

f̄ 2(σca1)= (7.184× 10−7)σ 4
ca1− 0.001372σ 3

ca1+ 0.9759σ 2
ca1− 306.5σca1+ 35820
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The expression of preference function for the stress σca2 of the anti-roll torsion bar is

f̄ 3(σca2)= (8.908× 10−8)σ 4
ca2− (2.854× 10−4)σ 3

ca2+ 0.3406σ 2
ca2− 179.5σca2+ 35180

The fitting curve of preference functions for the mass, stress σca1, and stress σca2 are shown
in Fig. 10, respectively.

Figure 10: Fitting curve of preference function. (a) Preference function curve of the mass (b)
Preference function curve of the stress σca1 (c) Preference function curve of the stress σca2
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With the obtained preference functions of the objective functions and the related constraints,
the TRBMFDO model is

find d = (d1,d2,d3)

min f (d)= log10

⎧⎪⎨
⎪⎩

1
3
[f̄ 1(f1(d))]+

1
3
[f̄ 2(f2(d))]

+1
3
[f̄ 3(f3(d))]

⎫⎪⎬
⎪⎭

s.t.

g1 = f1(d)− 56.61≤ 0
g2 = f2(d)− 666≤ 0
g3 = f3(d)− 1118.79≤ 0

62.4≤ d1 ≤ 75.48
52.8≤ d2 ≤ 65.28
49.92≤ d3 ≤ 62.22
6.606≤K(t)≤ 8.074

g4(t)= 0.9−�

⎛
⎝ ln745− (9.3× 10−10)t2 − μ̂σca1

(t)√
ln δ2R1(t)+ σ̂ 2

σca1
(t)

⎞
⎠≤ 0

5.6 Solving the TRBMFDO Problem
Since the complicated and coupled relationship exists in the TRBMFDO model, it is difficult

to obtain the highly efficient and accurate results of the design by using general optimization
strategies. In order to obtain the global optimal results effectively, a hybrid optimization strategy
is implemented with integrating DOE sampling and numerical optimization. This hybrid optimiza-
tion strategy can reduce the probability of trapping in the local optimal solution. The main task
of the proposed strategy is that DOE method is employed to draw samples in the design region
evenly and the parameter optimization module is to conduct design optimization for the optimal
design results. The flowchart of the hybrid optimization strategy is provided in Fig. 11.

DOE

Task

Optimization

Task

Calculate the most 
effective design domain

Calculate the best
design results

Minimum value of 
comprehensive preference function

Figure 11: The hybrid optimization strategy
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Three combinations based on the DOE including DOE+NLPQL, DOE+MIGA and
DOE+ASA are used for the problem. The related results are provided in Table 4. From Table 4,
we can see that the DOE+NLPQL strategy is better than the DOE+MIGA and DOE+ASA
methods in the computational efficiency under the satisfaction of the computational accuracy. The
DOE+MIGA and DOE+ASA optimization strategies require a total of more than 1000 function
calls respectively, but the DOE+NLPQL optimization strategy requires only 17 function calls.
The optimization results from the non-fuzzy method (the cut level set method) is lightly more
conservative, which will reduce the objective of the lightweight design of the torsion bar. The reli-
ability of the torsion bar increases 14% and 4.7%, respectively under the fuzzy optimization and
non-fuzzy optimization methods. The mass of the torsion bar obtained by the fuzzy optimization
method is 56.265 kg, a decrease of 0.14%; while the mass of the torsion bar obtained by the fuzzy
optimization method is 56.265 kg, a decrease of 0.6%. The iterative processes of the fuzzy and
non-fuzzy optimization with three different optimization strategies are given in Fig. 12.

Table 4: Optimal results of the torsion bar

Optimization
strategy

Optimization
method

d1/m d2/m d3/m m/kg φ(β1) φ(β2) Computation
time/times

DOE+NLPQL Non-fuzzy
optimization

0.065 0.055 0.0574 56.689 0.900 0.9837 17

Fuzzy
optimization

0.0624 0.0528 0.0574 56.265 0.900 0.9837 17

DOE+MIGA Non-fuzzy
optimization

0.065 0.0552 0.0574 56.698 0.906 0.9850 1001

Fuzzy
optimization

0.0625 0.0531 0.0574 56.290 0.900 0.9838 1001

DOE+ASA Non-fuzzy
optimization

0.065 0.055 0.0574 56.689 0.900 0.9837 2527

Fuzzy
optimization

0.0624 0.0528 0.0574 56.265 0.900 0.9837 3370

Figure 12: Iterative processes of the fuzzy and non-fuzzy optimization. (a) Iterative process of
fuzzy optimization (b) Iterative process of non-fuzzy optimization
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It can be seen from Fig. 12 that the preference function value based on the fuzzy optimization
method is lower than that based on the non-fuzzy optimization method. It means that the optimal
solution of the multi-objective function obtained by the fuzzy optimization method is better
than that by non-fuzzy optimization method. It also shows that the number of iterations of the
DOE+NLPQL optimization strategy is smaller than that of the other two optimization strategies.
The better computational efficiency of the proposed method is further validated.

To further verify the differences between the three optimization strategies in the optimization
process, the design space and the optimal solution set are shown in Fig. 13. The solution set of
the physical programming and the solution set of the DOE+ASA optimization strategy are more
evenly distributed in the whole design space, but more function calls are needed. The solution set
of the DOE+MIGA optimization strategy is still evenly distributed in the whole design space,
however the number of iterations reduces because the solution set is around the concentration.
Nevertheless, the DOE+NLPQL optimization strategy can quickly capture the optimal domain to
obtain the global optimal solution with a minimum set of solutions.

Figure 13: Optimal solutions of the physical programming with three optimization strategies. (a)
The DOE+NLPQL optimization strategy (b) The DOE+MIGA optimization strategy (c) The
DOE+ASA optimization strategy
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6 Conclusions

In this paper, a TRBMFDO method for the anti-roll torsion bar of the EMU is proposed,
which will be an effective tool to design the anti-roll torsion bar optimally under the satisfaction
of the lifecycle reliability and safety. The time-variant reliability models of the torsion bar are first
built related to the stiffness and strength considering the uncertainty and time-variant property.
The physical programming method is then presented to handle the multi-objective design optimiza-
tion to avoid the selection of the weight factors. The fuzzy allowable interval of design variables
is then estimated based on the fuzzy theory. The comprehensive preference function is solved by
the DOE+NLPQL hybrid optimization strategy. With the practical example, it is testified that the
reliability of the anti-roll torsion bar increases by 14% during the lifecycle, and the weight of
the torsion bar decrease by 0.6%. For the proposed DOE+NLPQL optimization strategy, only
17 function calls are needed for the global optimal solution, and therefore the computational
efficiency increased by over 58.8 times compared with the DOE+ASA optimization strategy and
the DOE+MIGA optimization strategy. In our future work, we will consider more time-variant
failure modes including wear, corrosion and so on.
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