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ABSTRACT

The insulating paper of the transformer is affected by many factors during the operation, meanwhile, the surface
texture of the paper is easy to change. To explore the relationship between the aging state and surface texture change
of insulating paper, firstly, the thermal aging experiment of insulating paper is carried out, and the insulating paper
samples with different aging times are obtained. After then, the images of the aged insulating paper samples are
collected and pre-processed. The pre-processing effect is verified by constructing and calculating the gray surface
of the sample. Secondly, the texture features of the insulating paper image are extracted by box dimension and
multifractal spectrum. Based on that, the extreme learning machine (ELM) is taken as the classification tool with
texture features and aging time as the input and output, to train the algorithm and construct the corresponding
relationship between the texture feature and the aging time. After then, the insulating paper with unknown aging
time is predicted with a trained ELM algorithm. The numerical test results show that the texture features extracted
from the fractal dimension of the micro image can effectively characterize the aging state of insulating paper, the
average accuracy can reach 91.6%. It proves that the fractal dimension theory can be utilized for assessing the aging
state of insulating paper for onsite applications.
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1 Introduction

The oil-immersed transformer is the key equipment of the power distribution system. The
normal operation of the transformer is conducive to the safety and stability of the power grid,
and the transformer insulation system is the key to ensuring its normal operation [1,2]. For the
insulation system, a long-standing problem is to accurately estimate the aging state of insulating
paper, which has attracted extensive attention in recent years. Since the direct sample of insulating
paper in actual maintenance is not easy to conduct, indirect, nonintrusive, and non-destructive
inspection methods become the main streams for insulating paper state assessment in this
field [3,4]. The image processing technology, as one of the non-destructive inspection methods,
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has made great progress with the development of computer science and digital signal processing
technology and has been widely used in many fields for non-destructive testing [5–7]. Moreover,
digital image processing techniques used in the textile and paper industry have gradually become
one of the tools to judge the aging state of insulating paper in the maintenance link [8,9]. These
beneficial attempts provide a good research idea for online detection and condition evaluation of
insulating paper of large power transformers.

In the field of image processing, the fractal theory has received a lot of attention since it can
measure the complexity of image and surface irregularity. The fractal dimension is often used as
an important feature of image texture in image edge detection, segmentation, and recognition [10].
It has been widely used in the fields of structural analysis, geological mapping, machining, and
medical CT [11–14]. In these fields, the following studies are very representative. Gong et al. [15]
analyzed the influence of bedding and loading rate on the fractal characteristics of dynamic
crack propagation in coal by combining image processing method and fractal dimension. Zou
et al. [16] summarized the remote sensing image discrimination technology based on fractal theory
and considered that it is feasible to classify remote sensing images by using fractal dimension
characteristics. Based on fractal theory, Huang [17] extracted the texture image of the Dexing
Mining Area in Jiangxi Province by using the double blanket coverage model and differential box
dimension method and analyzed and studied the land use in this area from 1998 to 2018. An
et al. [18] explored the calculation method of fractal dimension of the three-dimensional rough
surface and believed that the fractal dimension of three-dimensional rough surface can be obtained
more accurately by using wavelet transform, which provides a parameter basis for the construction
of fractal contact model of a rough surface. Sun [19] took the fractal dimension as the texture
feature parameter, extracted Hurst index H by using the fractal Brownian motion model, and then
segmented the lung CT image by using the cumulative histogram of H distribution, to obtain a
better effect of tumor region recognition. The above research provides a reference and new idea
for the application of fractal theory in the condition evaluation of the insulating paper.

As common sense, cellulose in the insulating paper can be aged and become brittle with long-
time high-temperature heating, the effect of electric fields, moisture deterioration, and in-oil acid
reaction during operation [20]. The cracking of cellulose can directly lead to the change of paper
surface texture, which corresponds to the variant of surface irregularity and image complexity. In
this sense, the fractal theory is an effective tool to characterize the change of texture. The fractal
theory is one of the effective choices to judge the condition of the cellulose or the insulating paper.
Therefore, this paper tries to use the fractal theory for assessing the condition of insulating paper.
Given the usefulness of image sensing for insulating paper inspection, the ABB and a Chinese
power company tries to invent a computer vision system to inspect the inner condition of the
transformer by collecting surface images of the transformer winding [21]. Such attempts can be
combined with the method proposed in this paper, which further helps the assets management
department in the power company to detect and evaluate the insulating paper condition in an
onsite application.

The rest of this paper is organized as follows: In Section 2, details for the experimental setup
of insulating paper sample preparation and thermal aging testing are provided. In Section 3, the
insulating paper images at different aging stages are obtained through the thermal aging test, and a
pre-processing of the surface images with histogram equalization is carried out. The pre-processing
effect is verified by constructing the gray surface of typical images picked from different stages.
With these treated microscopic images of insulating paper surface available, feature extraction
and characterizing of insulating paper with fractal dimension is conducted in Section 4, where
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the singularity index- multifractal spectrum pairs along with the aging time is calculated. In
Section 5, a numerical test with the extreme learning machine (ELM) is conducted, which is used
for verifying the effectiveness of using fractal dimension, multi-fraction spectral width, and the
spectral difference for characterizing the aging condition of insulating paper. The conclusions are
finally drawn in Section 6.

2 Experimental Setup and Preparation of Insulating Paper Sample

Since the main factor affecting the aging of insulating paper is temperature, a thermal aging
test of insulating paper is implemented. In this paper, the thermal aging experiment is considered
for two reasons: one is that it can be relatively close to the aging process of insulating paper,
and the other is that it can see the surface changes of insulating paper at different aging stages.
The thermal aging experiment is conducted on an accelerated aging test platform for insulating
paper with a vacuum aging oven, with the temperature adjustable from 0∼260◦C, and several
wild-mouth bottles.

2.1 Material
The commonly used kraft paper in transformers is selected for the experiment, which is

composed of 90% cellulose, 6–7% hemicellulose, and 3–4% lignin. The liquid insulating dielectric
selects the Karamay #25 transformer oil [22]. Details of the material are provided in Table 1.

Table 1: Material parameters

Parameter of Kraft paper Value Parameter of Transformer oil Value

Thickness (mm) 0.3 Density (kg/m3) 890
Degree of polymerization 1100∼1300 Kinematic viscosity (mm2/s) 10.15
PH value of water sample 6.0∼7.2 Flash point (◦C) 141
Average moisture (%) 7.0 Breakdown Voltage (kV/cm)∗ 173

Note: With pure copper electrode.

2.2 Pre-Treatment
Considering that the initial water content in insulating paper and insulating oil will affect

the insulation aging effect, the transformer insulating oil and insulating paper are pre-treated
respectively according to ISO 5640-4:2016 [23]. The kraft paper is firstly cut into several strips
with a specification of 10 in length and 1.5 cm in width and then put into a vacuum oven at
100◦C/50 Pa for 48 h to remove moisture. The pre-treated paper strips are convenient for putting
into the wide mouth bottle. The transformer oil is also subjected to a pre-treated process before
use, which is filtered and degassed firstly. After degassing, the insulating oil is dried in a vacuum
drying oven at 40◦C, and its moisture content is measured regularly to make its moisture content
less than 10 ppm.

After pre-treatment, the insulating paper and insulation oil is put into the wide mouth
bottle with a ratio of 1:20, and nitrogen is filled to seal the bottle. After then, the wide
mouth bottles with oil and paper samples are in the oven with a temperature of 130◦C for
4, 8, 12, 16, and 20 d, respectively.

Once the thermal aging test is finished, a degreasing process is conducted. The wide-mouth
bottles are taken out from the oven and cooled to room temperature (20◦C). Then, the insulating
paper strips are taken out for surface degreasing. Here, according to IEC 60814-2014, we use
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volatile n-heptane to remove the residual insulating oil on the surface of the paper tape and then
stand for about 30 min to volatilize n-heptane to complete the degreasing process [24].

3 Image Acquisition and Pre-Processing of Insulating Paper

3.1 Image Acquisition
With insulating papers aged with different degrees available, the surface texture images of the

insulating paper sample surface can be readily captured by using the optical microscope (EM-06).
After several times of comparisons, the 200 times magnification is selected for image acquisition
as the collected sample surface texture image is the clearest when the brightness of the light
source is adjusted to the highest level. Fig. 1 shows the surface microscopy images collected from
the insulating paper samples at different aging stages. It can be observed from the figure that
with the increasing aging time, the carbonization degree of the insulating paper sample surface is
increasing, the texture change degree is becoming more and more complex. However, attributed
to the interference of the background, the surface texture change of the paper sample is hard to
distinguish by naked eye recognition, further processing will be implemented to the images for a
better view.

Figure 1: Surface microscopic images of insulating paper with different aging times

3.2 Image Pre-Processing
After obtaining the sample as shown in Fig. 1, an obvious problem is that the change of

texture with aging time is not apparent. To solve that problem, the original sample images are
converted into a serial of gray images, so that the RGB color images can be converted into gray
images with only black and white colors. As a further step, these gray images will be implemented
with a normalization. After that, the pixel value of the gray images can be distributed among
0∼255, which avoids insufficient image contrast to a large extent. As the last step, histogram
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equalization is carried out to enhance the local contrast of the gray images without influencing
the overall contrast.

Let the image be f (x, y), and the gray level of the image varies from the minimum pole Nmin
to the maximum pole Ng. The gray normalization result Nnor is [25]:

Nnor= f (x,y)−Nmin

Ng−Nmin
(1)

After completing gray normalization, the image is processed with a histogram equalization
function statement, and the resulting image is shown in Fig. 2. The processed image can better
show the texture changes of the sample surface.

Figure 2: Surface microscopic images of insulating paper before and after treatment

3.3 Gray-Scale Surface Construction
In the field of image processing, texture roughness is an important visual feature of an image,

which is of great significance for image segmentation, recognition, and classification. Pentland [26]
points out that most natural objects are fractal in space, and the gray images of these objects are
also fractal. This provides a theoretical basis for the application of the fractal model in image
processing and analysis. Texture roughness intuitively uses image gray-scale surface to describe
image complexity, and most of the numerical embodiment uses fractal dimension for image
description.

For an image, the gray-scale surface can be formed with two parts: one is the position (x, y)
of the image pixel, which constitutes the x-o-y coordinate plane, while another is the gray value of
the pixel, which can be used for constructing the z-axis. Therefore, a gray-scale surface with image
pixel and the corresponding pixel can be readily obtained. Fig. 3 shows the gray-scale surface of
the insulating paper samples with different states.
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Figure 3: Gray-scale surface of the insulating paper samples with different aging times

In Fig. 3, the transition from the blue part to the yellow part of the gray-scale surface
represents the gray value varies from small to large. A yellow “peak” and blue “valley” can be
found on each grayscale surface. This surface, in essence, is a reflection of texture complexity.
Generally, the stratification of yellow and blue parts will be more clear as the texture is more
complex, and the “peak” and “valley” of the surface will be more prominent. Along with the aging
time, the density of the yellow peaks and the blue valleys of the gray-scale surface become more
and more. However, for feature extraction from the gray-scale surface, the distribution of the peaks
and valleys is very irregular, which will make it hard to extract accurate features. That is why the
original gray-scale images are implemented with a pre-treatment using histogram equalization and
normalization. After pre-treatment, the distribution of the peaks and valleys looks more uniform,
as shown in Fig. 4. By comparison, it can be seen that the yellow peaks and blue valleys after
treatment are more prominent than those before treatment. From the numerical point of view,
taking the gray-scale surface of the unaged insulating paper sample in Figs. 3a and 4a as an
example, the gray value of the image before processing is concentrated in the range of gray value
80∼200, while the gray value of the image after processing is evenly distributed in the range
of gray value 0∼250. The comparison result proves that the texture contrast is improved after
treatment.
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Figure 4: Gray-scale surface of the insulating paper treated with histogram equalization

4 Feature Extraction and Characterizing of Insulating Paper with Fractal Theory

The fractal theory was proposed by Mandelbrot in 1975 [27], to describe the self-similarity
of complex natural scenery. He proposed to use fractal dimension to describe the irregularity
of scenery. The fractal dimension measures the roughness of the image, that is, to measure
the complexity of the gray-scale surface of the image. The higher the fractal dimension, the
more complex the image surface and the coarser the image is. Later, Hausdorff proposed that
fractal dimension is used to quantitatively describe the spatial complexity of image surface, and
can quantitatively describe the texture characteristics of targets [28]. He created the concepts of
measure and dimension in fractal theory. The Hausdorff measure extends the concept of length,
area, and volume as described in Euclidean geometry, which can be described as objects that are
not limited to Euclidean geometry or fractal.

Define Hs(f ) as an s-dimensional Hausdorff measure of F , with the change of s, there is an s0
that changes Hs(F) from ∞ to 0, which can be denoted as the Hausdorff dimension dH (F) [29]:

dH (F)= inf
{
s : Hs (F)= 0

}= sup
{
s : Hs (F)=∞}

(2)

The Hausdorff dimension describes the complexity and space occupation of an irregular
fractal, which is the mathematical basis of other forms of fractal dimension [30]. However, the
calculation of the Hausdorff dimension is relatively complex. Therefore, the calculated values of
other dimension methods are usually selected as the estimated values of the Hausdorff dimension,
e.g., box dimension.

4.1 Box Dimension
The fractal dimension, based on box-counting, can be measured by calculating the mini-

mum number of boxes covering the image surface [31], which was proposed by Gangpain and
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Roques Carmes in 1986. It is generally believed that surfaces with fractal characteristics have a
self-similarity.

When the bounded set A in n-dimensional Euclidean space can be expressed as the union of
its own Nr subsets that do not cover each other, then A is self-similar. Then, the fractal similarity
dimension D of A is given by the following relationship:

1=NrrD, that is : D= logNr

log 1
r

(3)

where r is the scale factor in all coordinate directions, and Nr is the number of uncovering subsets
of bounded set A.

For the gray-scale image, the two-dimensional image can be regarded as a surface in a three-
dimensional space, expressed as {x, y, f (x, y)}, with f (x, y) denoting the gray-scale value of
the two-dimensional image (x, y). In this way, the gray-scale change of the image is reflected in
the roughness of the surface, and the dimension is the fractal dimension of the image by using
different scales to measure the surface. In [32,33], an accurate and convenient algorithm called
differential box-counting (DBC) is proposed for fractal dimension calculation, the main principles
are as follows.

Divide the image with an M ×M size into L × L sub-blocks, set r = L/M, and treat the
two-dimensional image as the gray value of a surface in the three-dimensional space {x, y, f (x,
y)}, f (x, y), then the X and Y planes are divided into many L×L grids. Each grid has a column
of L×L×h boxes, where h is the height of a single box. Assuming that the total gray-scale level
is G, h= L×G/M. If the minimum and maximum values of the image gray-scale in the (i, j)-th
grid locate in the k-th and l-th boxes, respectively, then:

nr (i, j)= l− k+ 1 (4)

where nr(i, j) is the number of boxes required to cover the image in the (i, j)-th grid, l and k
stand for the box number.

The number of boxes required to cover the entire image Nr can be calculated as follows:

Nr =
∑
i,j

nr (i, j) (5)

While the fractal dimension is:

D= lim
log (Nr)

log (1/r)
(6)

By selecting a set of L, calculating Nr and the linear regression result of point pairs {log(1/r),
log(Nr)}, the obtained slope can be taken as the fractal dimension D.

The results of the differential box-counting method of insulating paper sample images are
shown in Table 2 and Fig. 5.
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Table 2: DP value and calculated fractal dimension of microscopy images with the different aging
states

Aging time 0 d 4 d 8 d 12 d 16 d 20 d

DP value 1197 857 762 606 521 436
Fractal dimension 2.5376 2.5444 2.6754 2.6829 2.5412 2.5829

Figure 5: Differential box counting

In Fig. 5, it can be seen that with the increase of log(1/r), the value of log(Nr) increases
gradually and exhibited an approximately linear relationship with log(1/r). However, the log(1/r) –
log(Nr) curves of the insulating paper with different aging states show an alternating overturning
phenomenon. When the value of log(1/r) is small, the value of log(Nr) of samples in different
aging stages are almost equal, that is, the log(1/r) – log(Nr) data points are almost coincident. With
the increase of the log(1/r) value, the log(Nr) value of samples at each aging stage is significantly
different, as shown in the locally enlarged picture in the figure. It can be seen that the log(Nr)
value of the non-aged sample (0 d) is always less than that of the aged sample (4 d). However,
with the increase of log(1/r) value, the corresponding log(Nr) value of the samples aged for 8, 12,
16, and 20 d takes the lead in turn. Therefore, it is hard to determine the relationship between
L value and n value by simple linear fitting, and it is impossible to determine the relationship
between aging time and fractal dimension by linear relationship.

4.2 Multifractal Spectrum
Multifractal is a set of infinite scaling indices defined on the fractal structure. Different local

conditions on the fractal structure are described by a continuous spectral function. Multifractal
is often used to describe the singularity distribution of an image, which can quantify the singular
structure of the measure. In other words, a complex image can be divided into many small regions
with different degrees of singularity, and the overall fine structure of the image can be understood
hierarchically by studying the characteristics of each small region. Therefore, multifractal can be
used to describe the texture features of an image [34,35].
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Define α be the singularity index in practical applications which represents the fractal dimen-
sion of a small area of the image in fractal theory, and its value can reflect the growth probability
of the small area. To get the multifractal spectrum of an image, the singular index α of each
point on the image is calculated, firstly. The pixels with the same singular indices are set as a set
of points corresponding to a numerical f (α), which is called the multifractal singularity spectrum.
Then, the pixels that are different from the above pixels but also have the same singular index
are taken as a point set again, corresponding to another value f (α), by analogy, the multifractal
spectrum image α-f (α) can be obtained. Generally, the direct calculation method is used to
calculate the multifractal spectrum and singular index. This method is based on the concept of
box dimension and has the characteristics of simple calculation steps and high precision. The
calculation process is as follows [36]:

(1) Using the box of scale δ to cover the studied image, and set pi(δ) as the probability of
pixels falling to the i-th box, thus obtaining the probability measure distribution, namely:

μi (q, δ)= [pi (δ)]q∑
j [pi (δ)]

q (7)

where q is the weighting factor. The difference of q values divides the image into regions with
different levels.

(2) Theoretically, the value range of q is [–∞, +∞]. When q > 0, the subset with a larger
probability in the summation of probability measures has a greater influence on the fractal
dimension. When q < 0, the subset with a smaller probability in the summation of probability
measures has a greater influence on the fractal dimension. So, at this time, the singular index
α(q) is:

α (q)= lim
δ→0

{∑
i

μi (q, δ) ln
[
pi (δ)

]
/lnδ

}
(8)

The multifractal spectrum f [α (q)] is:

f [α (q)]= lim
δ→0

{∑
i

μi (q, δ) ln [μi (q, δ)]/lnδ

}
(9)

(3) Select different values of q to calculate the singular probability measure pi(δ) in the non-
empty grid in the corresponding fractal space, and then draw the curve at different scales δ in the
unscaled area of the figure, and use the least square method to calculate the slope of this section
of the curve. The absolute value of the slope is the singular index α(q) and the corresponding
multifractal spectrum f [α(q)] under the given q value.

Multifractal spectrum can accurately describe the image fractal structure under different sin-
gularity indices, so it has unique advantages in the description of image texture features. In this
paper, the calculated multifractal spectrums of images corresponding to insulating papers with
different aging states are provided in Fig. 6.
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Figure 6: Multiple spectrums of insulating paper at different aging stages

It can be seen that in the range of singularity index α(q) ∈ [3,3.3], or the multi-sufficiency
spectrum f [α(q)] ∈ [0.35,0.55], the point distribution of the average value corresponding to each
aging stage is relatively discrete and there seems to be no special rule. Therefore, similar to the
log(1/r) – log(Nr) curves or the values of fractal dimension of the insulating paper with different
aging states shown in Fig. 6, the singularity index and multi-sufficiency spectrum data pair (α,
f [α]) along with the aging time can be used for condition assessment and classification of the
insulating paper. The points in the red ellipse in Fig. 6 represent the average value of one aging
stage of the insulating paper. The eigenvalue of the image in each aging stage is selected based
on the average value point, and the points within the range are selected with the abscissa ± 0.1
and ordinate ± 0.25 of the average value point as the range. If there is only a single point in
this range, the singularity index of the point α and multifractal spectrum f (α) are the eigenvalues
representing the image. If there are multiple points in the range, the average value of the abscissa
and ordinate of these points is taken as the characteristic value of the representative image. The
specific values of each point (or data pair) are shown in Table 3.

Table 3: Average value of multiple spectra of insulating paper in each aging stage

Aging time (α, f [α]) Aging time (α, f [α])

0 d (3.248,0.390) 12 d (3.096,0.511)
4 d (3.207,0.398) 16 d (3.086,0.499)
8 d (3.111,0.476) 20 d (3.150,0.427)

5 Classification and Recognition of Image Texture Features

5.1 Extreme Learning Machine
In this paper, the extreme learning machine (ELM) is taken as the classification algorithm.

The ELM is a neural network with multi-hidden layers, which can achieve reasonable output
weights of the network with only randomly assigning input weights and biases. Then, the relation-
ship between the input variables and the output can be fitted. In theory, the ELM can approximate
any function [37].
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Given a neural network with only one layer, suppose N arbitrary samples (Xi, ti) are available
for study, with Xi = [xi1, xi2, xi3, . . ., xin]T ∈Rn, ti = [ti1, ti2, . . ., tim]T ∈Rm. Then, such a neural
network with one layer and L hidden layer nodes can be expressed using the following equation:

L∑
i=1

β ig
(
Wi ·Xj + bi

) = oj, j= 1, · · · ,N (10)

where g(x) stands for activation function, while Wi and βi represent the input and output weight,
bi denotes the bias of the i-th hidden layer.

For each hidden layer, the goal is to minimize the error of output, this means:

N∑
j=1

∥∥oj− tj
∥∥= 0 (11)

Namely, βi, Wi and bi available, and:

L∑
i=1

β ig
(
Wi ·Xj + bi

) = tj, j= 1, · · · ,N (12)

By transforming the above equation into a matrix: Hβ = T , with H, β and T denoting the
output of the hidden layer node, the output weight, and the desired output, respectively.

H (W1, · · · ,WL,b1, · · · ,bL,X1, · · · ,XL)=

⎡⎢⎣g (W1 · X1+ b1) · · · g (WL ·X1+ bL)
...

. . .
...

g (W1 ·XN + b1) · · · g (WL ·XN + bL)

⎤⎥⎦
N×L

(13)

with β =

⎡⎢⎣βT1
...

βTL

⎤⎥⎦
L×M

,T =

⎡⎢⎣T
T
1
...
TT
N

⎤⎥⎦
N×M

In order to train the neural network with one hidden layer, the desirable values of Ŵi, b̂i and
β̂ i are usually hoped to be obtained, then:∥∥H (

Ŵi, b̂i
)
β̂ i −T

∥∥ = min
W ,b,β

∥∥H (Wi,bi)β i −T
∥∥ (14)

where i = 1, . . ., L, which is numerically equivalent to the minimal value of the loss function,
namely:

E=
N∑
j=1

[ L∑
i=1

β ig
(
Wi ·Xj+ bi

)− tj

]2

(15)

Generally, gradient descent-based algorithms are applied to solve the abovementioned problem
by knowing the parameters of all variables at the initial stage. This, in actuality, is not realistic.
In comparison, the ELM solved such a problem by randomly assigning weights and biases of the
inputs to determine the output. The process of training a neural network with one layer is thus
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converted as dealing with a linear system Hβ =T . Behind, by using β̂ =H†T , the output weight
β of the network is determined. Details relating to the algorithm of the ELM can refer to [37].

5.2 Aging State Classification Based on ELM
In this paper, the ELM is selected to verify the effectiveness of using fractal dimension

analysis for the aging assessment of insulating paper with surface microscopic images. The specific
process is depicted in Fig. 7 and summarized as follows.

Input layer

Hidden layer

Output layer

Aging time
(or DP)

D

α

f(α)

• Fractal
dimension using
Equations (6)

• multi-fraction
spectral width
and difference
Using Equations
(8) and (9)

Preprocessed images
of insulating paper

Texture feature
calculation

Figure 7: Schematic for fractal dimension-based aging assessment of the insulating paper

Step 1: randomly collect 16 images of insulating paper samples in each aging stage, and
separate them into two groups with a ratio of 3:1, one includes 12 training images and another
includes 4 testing images. For the insulating papers treated with accelerated thermal aging in six
stages, a total of 96 images, including 72 training images and 24 test images, to ensure each
training and testing image is properly labelled.

Step 2: calculate the fractal texture features of each image according to the calculation method
of the box dimension and the multifractal spectrum introduced in Sections 4.1 and 4.2, where the
box dimension D is calculated with the differential box-counting method.

Step 3: take the fractal dimension D, the singular index α, and the multi-fraction spectral
f (α) as input variables of ELM, while using the aging time as the output variable (Considering
the aging time is linear while the variation of DP value is nonlinear, the authors use the aging
time as the output). Then input the test image, and use the calculated fractal texture feature as
the input value to predict the aging time of the image.

Generally speaking, traditional neural network learning algorithms (such as BP algorithm)
need to artificially set a large number of network training parameters, and it is easy to generate
local optimal solutions. The extreme learning machine only needs to set the number of hidden
layer nodes of the network, and does not need to adjust the input weights of the network and
the bias of hidden elements during the execution of the algorithm, and generates the only optimal
solution, so the learning speed of ELM is faster. At the same time, its excellent generalization
ability can also solve the overfitting phenomenon that common classifiers are prone to when the
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data sample size is small. In this paper, the number of input layer, hidden layer, and output layer
are set as three, six, and one, respectively. The classification results are shown in Fig. 8.
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Figure 8: Aging state classification results of ELM. (a) Test result using box dimension as input,
(b) Test result using singular index and multi-fraction spectral as inputs, (c) Training results using
D, α, and f (α), (d) Test result using D, α, and f (α)

According to the classification results in Figs. 8a and 8b, it can be seen that if the box
dimension is used as the single input, the classification accuracy is relatively low, even if two
features of the multifractal spectrum are taken as the inputs, the test accuracy still lower than
90%. This indicates that either using box dimension or multifractal spectrum alone cannot well
characterize the aging state of insulating paper, since the box dimension focuses on the overall
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texture complexity of the image, and the multifractal spectrum focuses on the local texture
complexity of the image. Therefore, combining the two to describe the features of the image will
often have better results. The classification results in Figs. 8c and 8d prove that, after combining
the box dimension and multifractal spectrum as inputs, either the training accuracy or the test
accuracy exceeds 90%, and the classification effect is satisfactory. Therefore, the fractal texture
characteristics of the image, especially the combination of the box dimension and the multifractal
spectrum can effectively characterize the image texture of the insulating paper, which can be
applied for judging the aging time of the insulating paper.

6 Conclusion

The aging and degradation of insulating paper can change the surface of the paper. Such
change can be reflected in the texture complexity of surface roughness, which is very similar to
the judgment of the degree of wear of the object in machining. Therefore, the fractal dimension
theory is adopted in this paper to describe the complexity of the insulating paper’s surface texture.
Considering the influence of the surrounding environment, the collected images are pre-processed
before extracting the texture complexity of the insulating paper. From the test results, it can be
found that the box dimension in describing the texture complexity of insulating paper can reflect
the texture complexity of the overall image at a single scale, but easy to ignore the influence of the
local texture features of the image on the overall image texture complexity. While the multifractal
spectrum can affect the image with different probabilities. The subset of the measure is used to
obtain the fractal dimension, which can effectively describe the local texture features in the image.
The classification result of using a complementary with the box dimension and the multifractal
spectrum is better than that of using single box dimension or the multifractal spectrum features.
Classification test with accelerated aging insulating paper samples proves the effectiveness of using
fractal dimension theory for aging state assessment of the insulating paper.
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