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Abstract: Microenvironment contains biophysical and biochemical elements to maintain survival, growth, proliferation,

and differentiation of cells. Any change can lead to cell response to the mechanical forces, which can be described by

elasticity. It is an indicator of a cell’s state since it plays an important role in many cellular processes. In many cases,

cell elasticity is measured by using discontinuous manner, which may not allow elucidating real-time activity of

individual live cells in physiological condition or cell response against microenvironmental changes. I argue that

measuring cell elasticity using continuously repetitive nanoindentation technique is important that should be

considered. As an example, I discuss mechanics of human embryonic kidney (HEK) cells in various conditions. In

resting cells, there is an activity of the cytoskeleton whose oscillation amplitude is strongly affected by the intracellular

calcium, and the collective activity of myosin motor proteins induces elasticity oscillation. Experimental results also

reveal that actin cytoskeleton and cell membrane determine cell mechanics.

Introduction

Cell mechanics is a factor that controls important cellular
functions, including cell polarization, migration, growth, and
proliferation, as well as trafficking inside the cytoplasm and
organization of organelles (Wu et al., 2018). It defines response
of cells to the mechanical forces exercised by the surrounding
microenvironment, including the extracellular matrix and other
cells. These forces exert continuously extensional, compressive,
and shear forces on cells in vivo (Lautenschlager et al., 2009).
The deformability of cells in response to mechanical forces
plays an important role in the homeostasis of adult organs and
tissues and the development of proper embryonic. The ability to
transport intracellular cargo, to resist deformation, and to
change shape during movement depends on the cytoskeleton,
which is an interconnected network of a variety of regulatory
cytoplasmic proteins, e.g., myosin motors (Wu et al., 2018) or
filamentous polymers including microtubules and actin
filaments. Cytoskeleton acts as biochemical and physical
interface for various cellular processes, involves in downstream
and upstream in a large variety of signaling pathways, and
determines elasticity and local behavior of cells (Fletcher and
Mullins, 2010; Schillers et al., 2010).

With the development of nanoindentation technique
based atomic force microscopy (AFM), cell elasticity can be

easily measured using discontinuous manner. This allowed
discriminating normal from cancerous cells (Lekka et al.,
1999; Cross et al., 2007), distinguishing either cells from
other materials (Weisenhorn et al., 1993) or gene-deficient
cells from intact ones (Goldmann et al., 1998), and
detecting changes in plasma membrane composition (Bui
and Nguyen, 2016) or tension (Herant et al., 2005).
Although lot of work has been carried out to characterize
cell elasticity, the origin of the elasticity fluctuation of
individual cells remains unclear. Recent studies introduced
an additional approach using repetitive indentation of cells
by an AFM probe, which allows following the activities of
cell elasticity of individual live cells. Here I suggest that this
approach should be considered since it allows real-time
monitoring of the dynamics of cell elasticity and cytoskeletal
as well as membrane activities with a high time resolution.

Cell Elasticity in Physiological Condition

Cell elasticity, an integrative parameter reflecting cell
mechanics, is not a constant in standard physiological
condition. It is oscillating and the oscillations are
spontaneous (self-induced) (Placais et al., 2009; Sanyour et
al., 2018). The magnitude of the elasticity oscillations is
different from cell to cell, cell type, or cell state and can
reach up to several times (Bui and Nguyen, 2020; Schillers
et al., 2010). These oscillations are generally powered by the
collectively working within assemblies of the molecular
motors (Julicher and Prost, 1995; Placais et al., 2009) and
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are related to various functions, such as contraction, cell length
oscillation, and movement of cell organelles (Schillers et al.,
2010). They may be potentially caused by the intracellular free
calcium oscillations, which play a pivotal role in fundamental
cell signaling processes (Atri et al., 1993; Berridge et al., 2003;
Uhlen and Fritz, 2010). The activity of myosin motors
dependent upon calcium is one of these processes. These
motors participate in the organization of the cytoskeleton,
which enables cells to sense their environment and to contract
(Woolner and Bement, 2009), and plays an important role in
polarity formation, cell migration, and cytokinesis (Sellers,
2000). They also regulate downstream biochemical signaling
pathways through phosphorylation and dephosphorylation of
the light chain (Watanabe et al., 2007). Especially, they actively
affect the elasticity of the cytoskeleton (Koenderink et al., 2009;
Martens and Radmacher, 2008; Sweeney and Houdusse, 2010),
whose function is to connect the cell biochemically and
biophysically to the external environment, maintain and
arrange the integrity of intracellular compartments, and
generate forces that enable the cell to change shape and move.
The cytoskeleton can offer these various functions since it is an
adaptive and a dynamic system, not a static structure. Its
components including regulatory motor proteins and
biopolymers are oscillating and cytoskeleton’s state primarily
determines cell elasticity (Fletcher and Mullins, 2010), one of
the most important mechanical properties of cells which are
often connected to their function and state.

In complex cell systems, the simplest case of dynamic
processes is oscillations whose emergence is subtle because of
its dependence on the dynamic properties of the collective
behaviors and interacting components. This means that the
emergence of oscillations is common in cell biology (Kruse
and Julicher, 2005). These spontaneous oscillations can be
easily observed by applying repetitive indentation of cells by an
AFM tip to measure the cell elasticity. This approach allows us
to follow dynamics of the elasticity and subsequently of the
cytoskeletal activity of individual live cells with high time
resolution (Bui and Nguyen, 2018, 2020). However, this
approach was not applied in most of studies on the cell
mechanics leading to a false positive (overestimated) or false
negative (underestimated) value of cell elasticity. For example,
if the nanoindentation measurement is carried out in less than
two minutes on an individual cell as commonly reported, the
elasticity of that cell, in case a spherical AFM probe is used
with an applied force of 200 pN, can be from 150 Pa to 400
Pa as shown in Fig. 1 depending on the time point of the
measurement (Bui and Nguyen, 2020). This may also be a

factor that contributes to the variation in the reported values
of the cell elasticity (Wu et al., 2018).

Cell Elasticity in Perturbed Condition

Cell elasticity is defined not only by intracellular processes in
standard condition, but also by microenvironmental factors
like biophysical and biochemical surrounding in perturbed
condition. Therefore, it can serve as an integrative
parameter to characterize cell states and represent a variable
of life. In physiological condition, variabilities of biophysical
and biochemical processes result in a certain elasticity range
while in perturbed condition, exogenous or endogenous
variables can affect cell behavior and frequently induce
changes in cell elasticity (Schillers, 2019). One of the factors
that directly contributes to elasticity changes is motor
protein myosins. It is proved that inhibiting crosslinking
between actin filaments and nonmuscle myosin II by
blebbistatin to disrupt the actin cytoskeleton induces a
significant decrease in cell elasticity (Schiele et al., 2015).
Another factor is calcium ions, which play a crucial role in
cytoskeleton organization (Ho et al., 1999). Increasing or
decreasing intracellular calcium concentration by ionomycin
or BAPTA-AM (a membrane-permeable calcium chelator)
leads to cell stiffening or softening. Actin cytoskeleton is
also an important factor defining cell elasticity and when
actin filaments are disaggregated by cytochalasin or
latrunculin, a distinct decrease in the cell elasticity has been
observed (Rotsch and Radmacher, 2000).
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FIGURE 1. Real-time monitoring of elasticity of an individual live
HEK cell in its standard physiological living microenvironment
reveals an elasticity fluctuation. Each data point is the result
obtained from a single force-indentation cycle. Adapted from Bui
and Nguyen (2020).
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FIGURE 2. Time course of changes in
elasticity of individual HEK cells while
disrupting actin cytoskeleton by
cytochalasin D (A) and depleting the
membrane cholesterol by methyl-β-
cyclodextrin (B). Arrows point to the
time points the drugs were added
during repetitive nanoindentation
measurement. Adapted from Bui and
Nguyen (2020).
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Together with cytoskeleton, cell membrane also has a
major impact on determining cell elasticity. It is the
outermost layer that envelopes cell cytoplasm and plays a
pivotal role in protecting the cell from extracellular
microenvironment. It supports and maintains the cell shape
and controls substances in and out of cells. Changes in cell
membrane composition also affect cell elasticity (Bui and
Nguyen, 2016; Byfield et al., 2004). These changes can be
easily obtained with a conventional nanoindentation
technique. However, the dynamics of cytoskeleton and real-
time response of cells against sudden changes in physiological
environments can be observed only when a repetitive
nanoindentation is applied as shown in Fig. 2 (Bui and
Nguyen, 2020). Thus, this approach can serve as an add-in
technique in the measurement of cell elasticity by AFM.

Conclusion

The technique of real-time monitoring of cell elasticity
following time using repetitive nanoindentation of cells
should be considered as a valuable complement for the
conventional approach to evaluate the cell elasticity. This
additional approach allows us to follow dynamics of the
cytoskeletal activity, subtle changes of cell membrane, and
subsequently dynamics of cell elasticity under various
conditions with high time resolution. This discloses elasticity
fluctuation in HEK cells which was driven by activity of
Ca2+-dependent motor proteins. This also shows that the
collective activity of the motor proteins defines cell dynamics,
reflecting changes of the biochemical and biophysical
microenvironment. The cell elasticity reflects not only the
status of the membrane and cytoskeleton, which are
determined by both passive and active components, but also
the system behaviour rather than the specific characteristic of
individual components since the cytoskeleton’s state is the
result of a complex regulatory machinery. Thus, this time-
resolved elasticity measurement approach provides deep
insights into the activity of cell mechanics in response to
changes of the physiological microenvironment and its
underlying mechanisms. Eventually, applying this technique
in combination with an appropriate setting of parameters,
especially the applied force to the AFM cantilever and
temperature of the living microenvironment of cells, for the
measurement may help us to avoid false positive or false
negative evaluation of cell elasticity.
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