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Abstract: The widespread acceptance of machine learning, particularly of neural 
networks leads to great success in many areas, such as recommender systems, 
medical predictions, and recognition. It is becoming possible for any individual 
with a personal electronic device and Internet access to complete complex 
machine learning tasks using cloud servers. However, it must be taken into 
consideration that the data from clients may be exposed to cloud servers. Recent 
work to preserve data confidentiality has allowed for the outsourcing of services 
using homomorphic encryption schemes. But these architectures are based on 
honest but curious cloud servers, which are unable to tell whether cloud servers 
have completed the computation delegated to the cloud server. This paper 
proposes a verifiable neural network framework which focuses on solving the 
problem of data confidentiality and training integrity in machine learning. 
Specifically, we first leverage homomorphic encryption and extended diagonal 
packing method to realize a privacy-preserving neural network model efficiently, 
it enables the user training over encrypted data, thereby protecting the user’s 
private data. Then, considering the problem that malicious cloud servers are 
likely to return a wrong result for saving cost, we also integrate a training 
validation modular Proof-of-Learning, a strategy for verifying the correctness of 
computations performed during training. Moreover, we introduce practical 
byzantine fault tolerance to complete the verification progress without a 
verifiable center. Finally, we conduct a series of experiments to evaluate the 
performance of the proposed framework, the results show that our construction 
supports the verifiable training of PPNN based on HE without introducing much 
computational cost. 

Keywords: Homomorphic encryption; verifiable neural network; privacy-
preserving; secure computation 

1 Introduction 
As artificial intelligence enters the public field of vision, machine learning is playing an increasingly 

important role in the lives of people around the world. However, deep learning models typically require 
additional parameters for low tolerance levels and large models are trained on large datasets. For instance, 
the deep learning model ResNet-50 has 15 million parameters, and the dataset ImageNet has 14 million 
images. Training ResNet-50 on ImageNet using a single NVIDIA M40 GPU takes about two weeks. For 
a personal computer or a general server, this would be too computationally heavy to afford. 

The cloud environment provides a way to perform complex tasks without requiring local machines 
with powerful computing capabilities. Because of its flexibility and economy, the cloud computing 
paradigm is becoming more and more popular among enterprises and organizations. While driving these 
costs down, cloud technology is also giving rise to security threats. Since machine learning is outsourced 
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to a cloud server, the cloud server has access to the training data. It is difficult to prevent the cloud server 
from accessing the data and sharing it with others. In the case that the data owner (or the user) could not 
keep control of the data. Searchable encryption [1,2] is used to preserve the privacy data (such as medical 
data) on the cloud server. The technology is also applied to Internet of Things [3,4]. But it is insufficient 
to support the evaluation on encrypted data. Privacy-preserving machine learning (PPML) is proposed to 
solve the problem by completing the training on encrypted data or perturbed data. 

PPML relies on cryptographic techniques, such as Homomorphic Encryption (HE), Garbled Circuits 
(GC), and Differential Privacy (DP), which ensure that data is not exposed to cloud servers. But GC-
based solutions usually limit the number of participants and require frequent communication. Because 
data owner is not expected to carry out too much computation or be online for a long time, GC is not an 
ideal choice in real situations. DP reduces the availability of the model due to the introduction of 
perturbed data. Additive homomorphic encryption is used to realize PPML [5] but it is hard to accomplish 
the complex training progress. Therefore, we select HE as the technique to protect the privacy of sensitive 
data. 

We first use HE to encrypt data and send it to the cloud server. The cloud server can train the model 
without accessing the raw data. Since the parameters generated in the training phase are also encrypted, 
the cloud server learns nothing about the raw data and the model parameters. The diagonal method is not 
only used to improve efficiency in the prediction phase, but also is extended to the more general matrix to 
perform the training progress. 

However, this method is not able to ensure the integrity of the training. An undesired result is likely 
to be returned to the user as a result since a cloud server attempts to reduce computational cost. A 
verification algorithm that can be applied to machine learning is expected to arise. Jia et al. [6] designed a 
strategy Proof-of-Learning (PoL) to prove that cloud servers have performed the computational tasks 
assigned during the training phase. In their strategy, a prover is required to generate a proof that a verifier 
could verify the correctness of the computation performed during the training phase by the prover. This 
strategy can be applied to various machine learning models that use the gradient descent method to update 
their parameters. 

Table 1: Comparison of representative privacy-preserving approaches and verification methods in deep 
neural networks 

Proposed Work Privacy Integrity Model Approach 

Abadi et al. [7]  training/inference no DNN DP 
Yu et al. [8]  training/inference no DNN DP 
Deepsecure [9] training/inference no DNN GC 
Nandakumar et al. [10]  training/inference no MLP HE 
NN-EMD [11] training/inference no MLP FE 
SecureML [12] training/inference no MLP MPC 
CryptoNN [13] training/inference no CNN FE 
Glyph [14] training/inference no MLP HE 
Madi et al. [15]  inference inference MLP HE 
vCNN [16] inference inference CNN zk-SNARKs 
VeriML [17] inference inference CNN zk-SNARKs 
VPPNN (our work) inference training MLP HE 

We combine the PPNN based on HE with PoL to complete the security and validation tasks. PoL 
makes us verify the correctness of computation performed during training. We summarize existing 
privacy-preserving neural network in Table 1. To the best of our knowledge, this is the first work to not 
only protect the privacy of the data but provide guarantees of the training integrity.  
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The remainder of this paper is organized as follows: In Section 2, we discuss related work. In 
Section 3, we give mathematical definitions and a brief description of the CKKS scheme. In Section 4, we 
give two system models to perform the verification tasks. In Section 5, we make a detailed description of 
our VPPNN algorithm. In Section 6, real datasets are used to train VPPNN and the results of the 
experiments are illustrated.  We conclude the paper in Section 7. 

2 Related Work 
Many investigations on security in the context of machine learning have concentrated on the 

confidentiality of data and the integrity of model predictions. Because of the inefficiency of homomorphic 
encryption, there are not so many approaches based on homomorphic encryption that ensure the privacy 
of the training data. We focus the work which realize the training utilizing homomorphic encryption. 

Hesamifard et al. [18] presented the first approach to training neural network models using fully 
homomorphic encryption. As a way to avoid the heavy computation cost of bootstrapping, the server 
requires the client to decrypt the ciphertext whose noise level is about to the budget and re-encrypt it to 
get refresh ciphertext used to continue to evaluate. The fact that multiple rounds of communication are 
required during computation does not meet our expectations for noninteractive computation. Nandakumar 
et al. [10] proposed a fully homomorphic deep learning method for training in a noninteractive way firstly. 
They used a solution by Crawford et al. [19] to get a low-precision approximation of required functions. 
Lou et al. [14] used the switching method between TFHE and CKKS proposed by [20] and transfer 
learning on DNN training to improve test accuracy and reduce the number of MACs between ciphertext 
and ciphertext in convolutional layers. 

For verifiable computation in machine learning, most work focus on prove the correctness of the 
result returned by the prediction model. Ghodsi et al. [21] proposed an interactive proof protocol 
requiring multiple interactions. The protocol reduces the cost of computation at the expense of lower 
accuracy. Madi et al. [15] used the homomorphic hash functions to verify the first few layers of a PPNN 
based on Lee et al. [16] proposed their efficient methods to give guarantees to the convolutional neural 
network (CNN) by means of zero-knowledge Succinct Non-Interactive Arguments of Knowledge (zk-
SNARKs). Zhao et al. [17] achieved outcome verifiability in support vector machine prediction services. 
These verifiable approaches are either unable to protect the data or provide a complete way to verify the 
correctness of the whole training computations. And in these papers, it is necessary to modify the 
algorithm for meeting the verifying requirement. 

3 Preliminaries 
3.1 Basic Notations 

We denote vectors in bold lowercase, e.g., 𝐱, denote matrixes in bold capital, e.g., A. For two vectors 
𝐚,𝐛, ⟨𝐚,𝐛⟩ denotes the dot product of 𝐚 and 𝐛. For a real number 𝑟, ⌊𝑟⌉ denotes the nearest integer to 𝑟, ⌊𝑟⌋ 
denotes the largest integer less than or equal to 𝑟, ⌈𝑟⌉ denotes the smallest integer greater than 𝑟. For a 
power-of-two integer 𝑀𝑀, let Φ𝑀(𝑋) be the 𝑀𝑀-th cyclotomic polynomial of degree 𝑁𝑁 = 𝜙(𝑀𝑀). Let ℛ = 
ℤ[𝑋]/(Φ𝑀)  be the ring of integer of ℚ[𝑋]/�Φ𝑀(𝑋)� . We denote ℛ𝑞 = ℛ/𝑞ℛ . We use 𝑥 ← 𝐷  to 
represent the sampling x from a distribution 𝐷. 

3.2 Homomorphic Encryption 
Homomorphic encryption is a cryptography technology that allows a user to evaluate on encrypted 

data without decrypting it and generate a result that matches the value evaluated on the raw data. To put it 
another way, the encryption algorithm is a homomorphism between the plaintext space and the ciphertext 
space. The slight difference is that the homomorphic encryption scheme adds noise to the plaintext for 
security. This technology allows the evaluator to perform calculations without knowing the decryption 
key or the original plaintext data, and the data owner can delegate the calculations to untrusted cloud 
servers. 
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Cheon et al. [22] presented a method to construct an FHE scheme supporting the arithmetic 
computation of approximate numbers in an encrypted state. Most HE schemes need to apply some noise 
to hide messages for security. Cheon et al. [22] assumed encrypted numbers have initial precision, and the 
noise generated during the homomorphic evaluation keeps smaller than the precision. The CKKS scheme 
considers the noise added to the plaintext to be a part of the error arising during homomorphic 
computations. Then the error would be reduced by rescaling, an evaluation that manages the magnitude of 
plaintext. By the way, the decryptor could gain an approximate value with definite precision. We could 
express the homomorphic encryption as follows: 
Eval(Enc(𝑚0) ,⋯ , Enc(𝑚𝑛)) = Enc(Eval(𝑚0,⋯ ,𝑚𝑛)) 

In the CKKS scheme, several complex numbers are allowed to encode a single element in the 
message space ℛ. This lets us view plaintext as a vector of complex numbers. All ciphertexts are viewed 
as an encrypted array of fixed-point numbers unless otherwise indicated. The ability to encode multiple 
numbers into a single ciphertext not only reduces the time take to encrypt messages, but also makes us 
have the ability to perform the computation more efficiently by Single Instruction Multiple Data (SIMD) 
structure. 

In this paper, we mainly consider four homomorphic operations: additions, multiplications, rotations 
and scale-multiplications. For packed ciphertext 𝒙𝟎,𝒙𝟏 , we let Add(𝒙𝟎,𝒙𝟏 )  or +  denote the 
homomorphic addition, let Mult(𝐱𝟎, 𝐱𝟏)  or ×  denote the homomorphic multiplication. We denote 
Rot(𝒙; 𝑖)  packed vector 𝑥  rotated to left direction by 𝑖  slots. We treat a ciphertext as a vector for 
convenience. That is, 𝒙 indicates a ciphertext encoded from a vector.  The relinearisation and rescale 
technologies are performed after homomorphic multiplication. Both technologies are ignored in next 
section for convenience. 

3.3 Diagonal Packing Method 
In the CKKS scheme, packing is used to encrypt multiple elements to a single ciphertext to speed up 

the matrix-vector multiplication. A naïve method to complete the linear transformation of 𝑥 is to pack 
each row of the matrix into one ciphertext and to compute the inner product between the ciphertext of the 
row and the vector 𝑥. Then, it is necessary to compute the multiplication of the inner product and a unit 
vector (only one element 1 and the others 0) to obtain the intermediate results. Finally, all intermediate 
results are rotated and summed to get the result. Fig. 1 gives an intuitive understanding. The left side 
describes the above row packing. The entries in a single color live in the same ciphertext. The entries in 
the vector x are filled with different colors to show how the vector is rotated. The blank entries mean the 
corresponding element is zero. 

 
Figure 1: Linear transformation with row packing and diagonal packing 

GAZELLE [23] proposed the diagonal packing method. We give a brief description of the diagonal 
packing method. As shown in Fig. 1 on the right, we multiply the packed diagonal component of the 
matrix with the rotated vector 𝑥 and sum intermediate results to get the result. For a 𝑀𝑀 × 𝑁𝑁 matrix, the 
diagonal packing method reduces the number of rotations from M × log2 𝑁𝑁 times to 𝑀𝑀 times and avoid 
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the multiplication between ciphertext and the unit vector. The multiplications and the rotations are heavy 
computations we need to consider. So the diagonal packing method is more efficient than the row packing 
method. 

 

Algorithm 1 Matrix-vector multiplication with diagonal packing 
Input: Encrypted Matrix 𝐀𝑀×𝑁 = �𝐚𝑗, 0 ≤ 𝑗 ≤ 𝑁𝑁 − 1�,𝐚𝐣 = 

�𝑎0𝑗,𝑎1(𝑗+1),⋯ ,𝑎(𝑀−1)((𝑗+𝑀−1)%𝑁)�, Input Vector 𝐱,, 
Output: 𝐲 
1: for 𝑖 = 0 to 𝑁𝑁 − 1do 
2:     𝐲𝑖 ← Mult (𝐚𝐢, Rot (𝐱; 𝑖)) 
3:     if 𝑖 = 0 then 
4:         𝐲 ← 𝐲𝑖 
5:     else 
6:         𝐲 ← 𝐲 + 𝐲𝑖 
7:     end if 
8: end for 
9: return 𝐲 

4 System Model 
In this section, we assume a distributed system where nodes are connected by a network. Each node 

corresponds to a cloud server. Fig. 2 illustrates our system architecture. The data owner chooses to 
outsource the training task to several cloud servers. The data owner is not willing to expose the training 
data and the model parameters to the cloud server due to privacy and interest considerations. It is also not 
expected that cloud server infers sensitive information through intermediate values. 

The distributed system may undergo Byzantine failures [24], i.e., completely arbitrary behaviors of 
some cloud servers involved. We assume most of computer services are honest but curious. That is, they 
faithfully follow our protocol, but they are interested in infer some secret information. For instance, the 
unencrypted parameters, the feature vector and target value of training samples. On the other hand, part of 
computer servers is malicious, these malicious servers can return corrupted result to the data owner for 
saving cost. We could call them Byzantine devices. The assumption is under practical consideration that 
most cloud servers’ providers are well-known company. They should not be motivated to return corrupted 
results because this hurts reputation. But a verify algorithm is still necessary for us. (Only if we can prove 
the server is malicious will the reputation of cloud servers’ providers is affected.) The retrain is the 
heaviest computation in the verification progress, which can be considered as part of the neural network 
training algorithm. So the main computational tasks in the verification procedure are assigned to other 
cloud servers. We need to delegate the verification algorithm to multiple servers due to the possibility of 
collusion between malicious servers. We adopted a method is like Byzantine Fault Tolerant (BFT) [25] to 
perform the whole verification progress. We assume the number of malicious servers will not exceed �𝑛

3
�, 

𝑛 is the number of cloud servers. 
Next, we give a description of the whole progress:  
 𝐶𝑆𝑖 performs the training task using stochastic gradient descent (SGD), generates a PoL and 

send it to 𝐷𝑂. 
 𝐷𝑂 receives the PoL and verifies the validity of the signature. After confirming the identity of 

the sender, 𝐷𝑂 multicasts a request to others node for verifying the PoL. 
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 𝐶𝑆𝑗 executes the request and send the result to 𝐷𝑂. 

 𝐷𝑂 checks the validity of the received result, the PoL validity is done if more than ⌊𝑛
3
⌋ different 

replicas are proved validity. 

 
Figure 2: Byzantine-tolerant Verifiable Privacy-Preserving Neural Network 

5 The Algorithms in VPPNN 
5.1 PPNN 

Artificial Neural Network or Neural Network is a kind of data-driven model that is hierarchical and 
non-linear architecture consisting of several layers, where each layer is composed of several neural units 
that receive the processed data from the previous layer and send data to the next layer. Each neural unit 
includes a linear transformation and a non-linear activation function. The basic structure of a neural unit 
is shown in Fig. 3. Such a structure makes it possible to extract abstract features from raw data through 
the non-linear function. The output of each node in the network applying a non-linear activation function 
to the weighted average of its inputs, which includes a bias term that always emits value 1. Similarly, 
each layer in the neural network consists of several units regards the results from the previous layer and 
send the performed data to the next layer. 

As mentioned above, the operations which make up of the forward propagation include linear 
transformations and active functions. It is a necessary condition that two kinds of operations on encrypted 
data are completed. 
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Figure 3: The neural unit model 

Feedforward neural network (FNN) is the quintessential learning model, which is the model we used 
in this paper. In this FNN, each layer of the neural network carries out a linear transformation of the input 
vector, and executes the activation function for each element of the resulting vector, which is then output 
as the input to the next layer. This is not only what the neural network needs to perform in the prediction 
phase, but also the crucial component of the training. This progress usually refers to as forward 
propagation. 

Since the CKKS scheme only supports the evaluation of polynomial functions, the evaluation of 
usual activation functions such as the Sigmoid function, the Tanh function, the Rectified Linear Unit, and 
so on, remains to be the biggest obstacle for evaluation. A polynomial is required to approximate the 
activation function. The Taylor polynomials that are used to approximate the activation function easily 
come to our minds. But it is necessary for obtaining the desired accuracy to arise the degree of Taylor 
polynomials. With certainty, too many multiplications make bootstrapping necessary which greatly 
hinders the implementation of the HE scheme. So the Taylor polynomial is not a good candidate for 
approximation because it is a local approximation near a certain point. 

So, we use the least squares approximation method to substitute the Sigmoid function. That is, to 
solve the following problem: 

𝐴𝑟𝑙𝑙𝑚𝑖𝑛��𝑓(𝑥) − 𝜎(𝑥)�2
𝐼

 

The function 𝜎(𝑥) is Sigmoid function, 𝐼 is the required interval. We can obtain polynomials 𝑓3(𝑥) 
and 𝑓7(𝑥): 
𝑓3(𝑥) = 0.5 + 0.15012𝑥 − 0.00159301𝑥3, where 𝑥 ∈ [−8,8] 
𝑓7(𝑥) = 0.5 + 0.21687𝑥 − 8.19154 × 10−3𝑥3 + 1.65833 × 10−4𝑥5

−1.19562 × 10−6𝑥7, where 𝑥 ∈ [−8,8]
 

Besides the forward propagation, the backpropagation is another component in the neural network 
training. Backpropagation could be viewed as the reverse process of feedforward. It is necessary to 
compute linear transformations and partial derivatives of the loss with respect to parameters. The loss 
function and its derivative are easy to approximate by the above method. So we concentrate on how the 
linear transformations are accomplished in the backpropagation. 

The GAZELLE [23] did not provide a method to complete the matrix-vector multiplication when the 
number of rows in the matrix are more than the number columns. So we propose a similar approach to solve 
the problem with diagonal packing. The main difference is that it is necessary to padding the vector 𝒙 before 
the linear transformation. For example, 𝑀𝑀 = 8, 𝑁𝑁 = 2, 𝒙 = [1, 2] , what we do is obtain a new 𝑀𝑀 -
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dimensional vector 𝒙′ = [1, 2, 1, 2, 1, 2, 1, 2]. The number of operations performed is the same as the number 
of ciphertexts corresponding to the matrix. The procedure of this evaluation is shown in Algorithm 3 and Fig. 4. 
Our research targets secure neural network training. We set the number of hidden layer neurons to a power of 2 
for simplicity. Similarly, we fill the number of neurons in the input layer to a power of 2. When performing 
operations related to matrix 𝐴𝑀×𝑁, we think that both M and N are powers of 2. 

In the backpropagation the matrix transpose is necessary. The goal is to transpose matrix 𝐴𝑀×𝑁 into 
matrix 𝐵𝑁×𝑀. Fortunately, the two kinds of matrix have similar structure because of the same packing 
method. What we need is merging several original “short” vectors into a “long” vector. As shown in Fig. 
4 on the right, 𝐴 consists of 𝑀𝑀 ciphertexts, while 𝐵 consists of 𝑁𝑁 ciphertexts. The only thing we need to 
do is combine the ⌈M/N⌉ ciphertexts in A to one ciphertext in 𝐵 and repeat 𝑁𝑁 times because of the similar 
structures in two matrixes. There is no multiplication consumed in this progress. It makes us reduce the 
times of bootstrapping or use smaller parameters. The procedures of matrix transpose are shown in 
Algorithm 2. 

    
Figure 4: Linear Transformation and Transpose in the backpropagation  

Algorithm 2 Transpose with diagonal packing 

Input: Encrypted Matrix 𝐀𝑀×𝑁 = �𝐚𝑗, 0 ≤ 𝑗 ≤ 𝑁𝑁 − 1�,𝐚𝑗 = 

�𝑎0𝑗,𝑎1(𝑗+1),⋯ ,𝑎(𝑀−1)((𝑗+𝑀−1)%𝑁, 0,⋯ ,0��,, 
Output: 𝐁𝑁×𝑀 = {𝐛𝑖, 0 ≤ 𝑖 ≤ 𝑀𝑀 − 1},𝐛𝑖 = {𝑎𝑖0,𝑎𝑖1,⋯ ,𝑎𝑖𝑀 ,⋯ ,𝑎((𝑖 − 1)%𝑀𝑀)𝑁𝑁} 
1: for 𝑖 = 0 to 𝑀𝑀 − 1 do 

2:     for 𝑗 = 0 to 𝑁
𝑀
− 1 do 

3:         if 𝑗 = 0 then 
4:             𝐛𝑖 ← 𝐚𝐍−𝐌+𝐢 
5:         else 
6:             𝐛𝑖 ← 𝐛𝐢 + Rot �𝐚𝑖+(𝑗−1)𝑀;−𝑗𝑀𝑀� 
7:         end if 
8:     end for 
9:     𝐛𝑖 = Rot (𝐛𝑖;𝑀𝑀− 𝑖) 
10: end for 
11: return 𝐁 = {𝐛𝑖} 

 

Algorithm 3 Matrix-vector multiplication with diagonal packing in backpropagation 
 

Input: Encrypted Matrix 𝐁𝑁×𝑀 = {𝐛𝑖, 0 ≤ 𝑖 ≤ 𝑖 ≤ 𝑀𝑀 − 1},  𝐛𝑖 = 

�𝑏0𝑖,𝑎1(𝑖+1),⋯ ,𝑎(𝑁−1)((𝑗+𝑁−1)%𝑀)�, the N-dimensional Input Vector 𝐱 = 
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{𝑥0,𝑥1,⋯ , 𝑥𝑀−1, 0,⋯ ,0},, 
 

Output: 𝐲 

1: for 𝑖 = 0 to �log2 𝑁
𝑀
�𝐝𝐨 

2:     𝐱 ← 𝐱 + Rot �𝐱;−2𝑖� 
3: end for 
4: for 𝑖 = 0 to 𝑀𝑀 − 1𝐝𝐨 
5:     𝐲𝑖 ← Mult (𝐛𝑖, Rot (𝐱; 𝑖) 
6:     if 𝑖 = 0 then 
7:         y ← 𝐲𝑖 
8:     else 
9:         𝐲 ← 𝐲 + 𝐲𝑖 
10:    end if 
11: end for 
12: return 𝐲 

Table 2 shows the number of homomorphic evaluations for linear transformation and matrix 
transpose. The matrix 𝐴𝑀×𝑁 corresponds to the parameter matrix of one layer of the neural network. It is 
oblivious that the number of rotations and scalar-multiplications is reduced by a large margin in the linear 
transformation. Diagonal method improves the efficiency of the matrix transposition more significantly.  
The improvement makes a positive effect on efficiency when applying a more complex model. 

Table 2: Computational complexity of linear transformation and matrix transpose 

5.2 A PoL on the PPNN 
Just like in the previous introduction, the data owner needs to delegate an untrusted cloud server to 

compute a function 𝑓(𝒙) and sends some data 𝒙 that needs to be dealt with. But the data owner has no 
efficient way to prove the integrity of computations on authenticated data. Verifiable computation allows 
the client to delegate a cloud server to verify the correctness of the computation. The PoL proposed by Jia 
et al. [1] provides a great tool to complete the above task. The prover needs to generate a PoL in the 
training phase, as shown in Algorithm 4. The verifier executes the Algorithm 5, and the verification is 
passed if success is returned. 

In the verification mechanism, 𝒯 reveals to 𝒱 some information during training as its PoL. The PoL 
includes: 

• 𝕎: the values of the weights encrypted by HE at periodic intervals during training. 
• 𝕀: the corresponding indices of the data points from the training set which are used to compute 

Packing method Evaluation Add Rot Mult Scalar-Mult 

Diagonal packing 
LT in FF 𝑁𝑁 − 1 𝑁𝑁 − 1 𝑁𝑁 1 
LT in BP 𝑀𝑀 − 1 𝑀𝑀 − 1 𝑀𝑀 1 
transpose 𝑁𝑁 −𝑀𝑀 𝑁𝑁 −𝑀𝑀 0 0 

Row packing 
LT in FF 𝑀𝑀 − 1 𝑀𝑀⌈𝑙𝑙𝑙𝑙𝑙𝑙 𝑁𝑁 ⌉ 𝑀𝑀 𝑀𝑀 
LT in BP 𝑁𝑁 − 1 𝑁𝑁⌈𝑙𝑙𝑙𝑙𝑙𝑙𝑀𝑀⌉ 𝑁𝑁 𝑁𝑁 
transpose 𝑀𝑀𝑁𝑁 −𝑀𝑀 𝑀𝑀𝑁𝑁 −𝑀𝑀 0 𝑀𝑀𝑁𝑁 
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said weights. 
• ℍ: the signature of 𝕀 with the prover’s private key. 
• 𝕐: the hyper-parameters. 
The main idea of PoL is that the verifier can verify the correctness of the entire computational 

process by only recomputing the largest update due to the difficulty of inverting gradient descent. As 
illustrated by Jia et al. [6], any estimation error introduced by an adversary wishing to recreate a proof at a 
smaller computational cost would be easier to detect for these large model updates. They give the 
correctness analysis [6] of the gradient descent mechanism from the perspective of entropy growth. 

Algorithm 4 Generating a PoL 
Require: Encrypted dataset 𝐸(𝐷), Hyper-parameters 𝕐 
Require: 𝐸, 𝑆, 𝑙𝑙 { the number of epochs, the number of steps per epoch, the length of 
checkpointing interval } 
Require: 𝜆,𝐻{the given distribution, a hash function} 
1: Init: 𝕎← {}, 𝕀 ← {},ℍ ← {} 
2: if 𝑊0 then 
3:     𝑊0 ← 𝜒 
4: end if 
5: for 𝑖 ← 0,⋯ ,𝐸 − 1 do 
6:     𝐼 ← getpatches (𝐸(𝐷), 𝑆) 
7:     for 𝑗 ← 0,⋯ , 𝑆 − 1 do 
8:         𝑡 ← 𝑒 ⋅ 𝑆 + 𝑠 
9:         𝑊𝑡+1 ← 𝑆𝐺𝐷(𝑊𝑡,𝐸(𝐷)[𝐼𝑠],𝑌𝑡) 
10:       𝕀 ← 𝕀 ⋅ add (𝐼𝑡) 
11:       ℍ ← ℍ ⋅ add �𝐻(𝐷[𝐼𝑡])� 
12:       if t mod k = 0 then 
13:             𝕎←𝕎 ⋅ add (𝑊𝑡) 
14:       else 
15:             𝕎←𝕎 ⋅ add (𝑛𝑖𝑙𝑙) 
16:       end if 
17:    end for 
18: end for 
19: 𝒫 ← (𝕎, 𝕀,ℍ,𝕐) 
20: return 𝒫,𝐻(𝒫, 𝑠𝑘𝒯) 

A point to note is that the cloud computer is unable to sort the set of updates and comparison the 
ciphertext and the plaintext due to having no access to the private key of HE. So it is necessary to perform 
several rounds of interactions with the date owner. In the verification process, there are two parts that 
need to be compared:  

1. Before the retraining, we firstly need to compare the difference of parameters.  
2. After the retraining is completed, the training result needs to be compared with slack parameter to 

determine whether the verifying result is passed.  
In these two steps, the user only needs to decrypt the ciphertext to obtain the plaintext, and send the 
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compared result to the server. Normal electronic devices are also fully capable of performing the 
computation. Although data owner needs to perform part of verification work, it has a minimal impact on 
the personal computer in the entire verification procedure. We think the cost of verification algorithm is 
acceptable. Because this process does not involve overly complex interactions, for convenience, we treat 
it as an algorithm. 

Algorithm 5 Verifying a PoL 
Require: 𝒫,𝐸(𝐷),𝑄, 𝛿{the PoLs, the encrypted dataset, query budget, the limitation 
of tolerance} 
1: 𝕎, 𝕀,ℍ,𝕐 ← 𝒫 
2: if InitializationVerification (𝑊0) = FAIL then 
3:     return FAIL 
4: end if 
5: 𝑖 ← 0{the number of current epoch} 
6: incre ← {} 

7: for 𝑗 ← 0,⋯ , �𝑇−1
𝑙
� do 

8:     if 𝑗 ≠ 0 ∧ 𝑗 mod 𝑙𝑙 ≠ 0 then 
9:         increi ← increi.add �𝑑1(𝑊𝑡 −𝑊𝑡−𝑘)� 
10:    end if 

11:    𝑖′ = �𝑗
𝑆
� 

12:    if 𝑖′ = 𝑖 + 1 then 
13:        𝐷𝑂 compute incre  𝑖 ← sorting (increi) 
14:        incre ← incre.add (increi) 
15:    end if 
16: end for 
17: for 𝑘 ← 1,⋯ ,𝐸 do 
18:     𝒱 executes Retrain (increi) 
19:     if Retrain (idx) = FAIL then 
20:          return FAIL 
21:     end if 
22: end for 
23: return Success 

In Algorithm 5, the InitializationVerification could prevent adversarial prover forging a PoL by the 
PoL generated by other honest trainers. For specific analysis, please refer to [6]. Generally, machine 
learning models are initialized by sampling randomly from a particular distribution. We can use the 
Kolmogorov-Smirnov (KS) test to check if the parameters are sampled from the particular distribution. 
The KS test [6] is a statistical test to check whether samples come from a specific distribution. In our 
scheme, since our distributed learning does not come from multiple data sources, the parameters can be 
given by the data owner together with the dataset.  

Algorithm 6 Retrain 
 

Require: 𝒫,𝑓,𝐸(𝐷),𝑄, 𝛿, idx 
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1: for 𝑖 ← 1,⋯ ,𝑄 do 
2:     𝑡 = incre [[𝑖 − 1]] 
3:     VerifySignature �𝐻𝑡,𝐸(𝐷[𝐼𝑡])� 
4:     𝑊𝑡

′ ← 𝑊𝑡 
5:    for 𝑖 ← 0,⋯ ,𝑘 − 1 do 
6:         𝑆𝐺𝐷(𝑊𝑡+𝑖

′ ,𝐸(𝐷[𝐼𝑡+𝑖]),𝑀𝑀𝑡+𝑖) 
7:         𝐷𝑂 compute 𝑑2(𝑊𝑡+𝑘

′ ,𝑊𝑡+𝑘) 
8:         𝐶𝑆 send 𝑑2(𝑊𝑡+𝑘

′ ,𝑊𝑡+𝑘) to 𝐷𝑂. 
9:     end for 
10:   if 𝑑2(𝑊𝑡+𝑘

′ ,𝑊𝑡+𝑘) ≤ 𝛿 then 
11:       return FAIL 
12:   end if 
13: end for 
14: return Success 

6 Security Analysis 
Cloud servers only have access to encrypted data and parameters. It avoids data leakage caused by 

reconstruction attack or membership inference attack. The confidentiality of data and models completely 
depends on the security of the CKKS encryption scheme. But as mentioned in [26], the decryption results 
must not be published, or shared with anybody not completely trusted. 

Next, we discuss how to determine the validity of the verification process. In our assumption the 
number of malicious servers will not exceed ⌊𝑛

3
⌋, it validates successfully when more than ⌊𝑛

3
⌋ verification 

results performed are valid. But it is so expensive that verifying cost is more than training. For saving cost, 
we could use the PoF as a seed and generate a random number to select the cloud servers that performing 
the verifying algorithm. For instance, we select 11 cloud servers as verifying servers when 𝑛 = 100. 
When the results of most validation servers are consistent, the validation result is correct with 0.896 
probability. 

7 Experiments 
Tests were done on Intel Core i5-10400F CPU, running at 2.90 GHz. The machine has 16 GB of 

main memory. 
We worked with the cyclotomic ring ℤ[𝑋]/𝑋𝑀 + 1 with 𝑀𝑀 = 215. It also allows to set the 𝑀𝑀 as a 

smaller integer such as 𝑀𝑀 = 210, which makes operations speed up more than twenty times. A smaller 𝑀𝑀 
makes homomorphic operations run faster but has a lower level which gives rise to more bootstrapping 
operations. 

We constructed a neural network that consist of three hiding layers. Student Performance Data Set is 
used to train and test the VPPNN model. The evolution of test accuracy over multiple epochs is shown in 
Fig. 5 on the left. 

In the verification procedure, we set the query budget Q as 1. It means that we only need to check the 
largest update only once. But the time spent on verifying mainly depends on initialization verification. 
The checkpointing interval is a hyperparameter of the proposed PoL method and is related to the storage 
cost. Its reciprocal can be viewed as the frequency of checking in the proof algorithm. As shown in Fig. 5 
on the right, ratio of verifying cost to training cost is no more than 0.4. It is an efficient verification 
algorithm. 
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 Figure 5: Classification accuracy and the ratio of verifying cost to training cost 

8 Conclusion 
In this paper, we present a privacy-preserving neural network framework using homomorphic 

encryption, which preserves the confidentiality of the training data and the parameters under several 
malicious cloud servers. We extend the diagonal packing method so that it can be used in the neural 
network training process. It reduces the number of multiplications and rotations so as to improves the 
efficiency of neural network. By combining PPML with PoL, we provide a guarantee that the 
computations assigned to each computer server are performed completely. This is our first attempt at 
protecting the confidentiality of the data and ensuring training integrity. 
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