
 
 
Journal of Information Hiding and Privacy Protection 
DOI:10.32604/jihpp.2021.027385 

 

This work is licensed under a Creative Commons Attribution 4.0 International License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original 
work is properly cited. 

 

Article 
 
 

An Explanatory Strategy for Reducing the Risk of Privacy Leaks 
 

Mingting Liu1, Xiaozhang Liu1,*, Anli Yan1, Xiulai Li1,2, Gengquan Xie1 and Xin Tang3 

1Hainan University, Haikou, 570228, China 
2Hainan Hairui Zhong Chuang Technol Co., Ltd., Haikou, 570228, China 

3School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore 
*Corresponding Author: Xiaozhang Liu. Email: lxzh@hainanu.edu.cn 

Received: 16 January 2022; Accepted: 25 February 2022  

Abstract: As machine learning moves into high-risk and sensitive applications 
such as medical care, autonomous driving, and financial planning, how to 
interpret the predictions of the black-box model becomes the key to whether 
people can trust machine learning decisions. Interpretability relies on providing 
users with additional information or explanations to improve model transparency 
and help users understand model decisions. However, these information 
inevitably leads to the dataset or model into the risk of privacy leaks. We 
propose a strategy to reduce model privacy leakage for instance interpretability 
techniques. The following is the specific operation process. Firstly, the user 
inputs data into the model, and the model calculates the prediction confidence of 
the data provided by the user and gives the prediction results. Meanwhile, the 
model obtains the prediction confidence of the interpretation data set. Finally, the 
data with the smallest Euclidean distance between the confidence of the 
interpretation set and the prediction data as the explainable data. Experimental 
results show that The Euclidean distance between the confidence of 
interpretation data and the confidence of prediction data provided by this method 
is very small, which shows that the model's prediction of interpreted data is very 
similar to the model's prediction of user data. Finally, we demonstrate the 
accuracy of the explanatory data. We measure the matching degree between the 
real label and the predicted label of the interpreted data and the applicability to 
the network model. The results show that the interpretation method has high 
accuracy and wide applicability. 

Keywords: Machine learning; model data privacy risks; machine learning 
explanatory strategies 

1 Introduction 
     Machine learning has gradually been applied to face recognition systems, autonomous driving 
technology, medical analysis, criminal justice and other realistic sensitive tasks [1–3]. However, due to 
the inherent complexity of the black box model, there has always been a crisis of confidence. As a result, 
machine learning cannot be fully applied in real life, and its development is restricted by various aspects. 
Solving the problem of trust between artificial intelligence models and human beings has become a key 
factor in the development and extension of artificial intelligence. To solve this problem, one has to 
provide some additional information to explain the model so that one can understand the decisions made 
by the model [4–8]. 

Machine learning model complexity is correlated with accuracy. In general, the structure of the 
model is simple, and people can easily understand the model decision, but its poor fitting ability leads to 
low accuracy. The more complex the structure of the model, the more accurate the model. However, due 
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to the complexity of the model, its interpretability becomes more difficult. In order to improve the 
interpretability of machine learning, people have carried out multi-angle and multi-level research on the 
interpretability of models. For example, model-based interpretation provides users with some additional 
information, such as model information, training set information, gradient information, and so on, which 
is related to model decision-making to a certain extent. Unfortunately, providing users with interpretable 
information poses a threat to data privacy security while improving model transparency. For machine 
learning, Martin et al. combined machine learning methods with advanced privacy protection mechanisms 
[9], and used additional protection mechanisms to protect privacy. In order to protect the data privacy 
security of machine learning interpretability, more consideration will be given to designing an interpretive 
approach that does not compromise the data privacy of the model.  

Take the example-based explanations proposed by Koh Liang et al., for example, the method 
provides the data points that have the greatest influence on the decision as explanatory information [10], 
while the training data has privacy information, but the model should not disclose the model data privacy. 
This method is not related to the model structure, but intuitively discloses the information of the model 
data set, which makes the model have data privacy risk. Shokri et al. have shown that this interpretation 
can be easily used for data privacy attacks [11]. Model interpretability is the key to build a bridge of trust 
between AI and people. However, if these explanations lead to model privacy disclosure, the development 
of model interpretability will be limited and the development of artificial intelligence will also be 
hindered. However, the research on artificial intelligence can explain privacy security is in a preliminary 
exploration stage and has not yet formed a research system. How to balance the sensitive relationship 
between model transparency and privacy security is an urgent problem to be solved. To solve this 
problem, we propose a new interpretation strategy, which reduces the risk of privacy disclosure while 
providing explanatory information. 

In this paper, inspired by the example-based explanations, we study a data-based explanation. Unlike 
the example-based explanations, we reduce the transparency of the model while reducing the privacy risk 
of the explainable strategy. Our interpretation strategy focuses on the user's own query data. The main 
contributions of this paper can be summarized as follows: 

 We propose a new data-based interpretation method, which provides explanatory information for 
the model to help users understand model decisions and reduce data privacy disclosure at the same 
time. 

 We evaluate the effectiveness and correctness of this strategy according to the similarity degree of 
model prediction confidence and the label matching degree between interpretation data and user 
data as evaluation criteria.    

 We test a variety of classification network models to prove the effectiveness of this interpretation 
strategy and to verify the universality of the model. 

2 Related Work 
In recent years, the research on the interpretability of artificial intelligence has attracted extensive 

attention from academia and enterprises [7]. In view of the development of interpretable artificial 
intelligence, multi-angle and multi-level interpretation methods have emerged at present [12–15]. For 
example, rule-based interpretation [16,17], activation maximization interpretation technology [18–20], 
gradient-based interpretation method [21–24], agnostic model interpretation [25] and other interpretation 
methods keep emerging. 

Koh et al. [10] assumed that some point in the training set was y , and obtained model Ω  by using 
training set ( )A y A∈  and model 'Ω  by using training set '( ')A y A∉ , and compared the difference of 
prediction effect between model Ω  and model 'Ω  on point x  to judge the contribution degree of training 
point y  to decision making of point x . Koh et al.’s [10] explanation method of black box model is the 
first to explain the model based on data, which provides a new research perspective for the explicable 
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model. However, the research progress of this perspective has been slow in recent years. In addition, there 
are privacy risks associated with this approach, as confirmed by Shokri et al. [11]. They designed a 
membership inference attack and a data reconstruction attack against the explanation model. The attacker 
accessed the model through continuous query, continuously obtained the data of the training set, repeated 
query with the feedback explanation information, constructed the graph structure, and finally realized the 
data set reconstruction. Although example-based explanations provide a new research perspective for 
interpretable models, it inevitably brings model data privacy risks. Shokri et al. [11] first focused on the 
privacy risks of the interpretability of the black box model in their study. This potential threat limits the 
development of interpretability. The researchers’ ignorance of the privacy risks of interpreting 
information for the model provided an advantage for our study. 

At present, machine learning is gradually applied to many sensitive fields, and people need to rely on 
the interpretable choice trust model of machine learning because of the particularity of the scene. 
Although research on interpretable machine learning has blossomed, as far as we know, No one studying 
interpretability has focused on model privacy risks, and after Koh, very few people have made models 
interpretable from a data point of view.  

In our research, we continued to use the perspective of example-based explanations to seek the 
explanatory method of the model from the data. In addition, we also consider the model data privacy risks 
on this basis. Through this study, we propose a new machine learning explanation approach for black-box 
models. 

3 Methodology 
Our study aims to ensure model transparency while providing explanatory information for the model 

to balance the sensitive relationship between model transparency and privacy risk. In order to achieve the 
research objectives of this study, this study was carried out in three stages (see Fig. 1). First, we use 
transfer learning to train ResNet152 network model to obtain the best performance model. Secondly, we 
design an explanation algorithm based on our proposed explanatory strategy, and apply the model 
obtained in the first part to the algorithm. User’s data and explanatory data are input into the model, the 
model outputs decision information, and the algorithm filters interpretation information according to the 
output calculation results. Finally, in the evaluation phase, we evaluate the model performance as well as 
the confidence similarity, tag matching and fitness of the interpretation information provided based on the 
user interpretable algorithm. 

 
Figure 1: An overview of interpretable methods based on user data 
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3.1 Machine Learning Models 

Example-based explanations return the data point with the largest contribution to the user training set 
by calculating the contribution degree of the training set to the model. This method is the first to provide 
explanation for machine learning models from a data set perspective, independent of the internal structure 
of the model. Our study provides interpretability for the model based on data sets. Before the research, a 
high-precision classification model was needed, so I chose to use Pytorch framework for transfer learning 
and training to compare the training of multiple models. In the model selection, we choose Resnet152 
training model with better classification effect, in order to obtain high precision and low loss 
classification network. Due to the verification results required by the experiment, we choose the model 
training method with less cost. 

Our goal is to obtain well-classified models. According to the current research results, we choose the 
ResNet model with the best effect for training. ResNet was proposed by Kaiming He et al. in order to 
reduce the training difficulty of deep neural network learning framework [26]. The complexity of neural 
network determines the accuracy of the model, but with the increase of network layers of deep neural 
network, network degradation will occur. In order to optimize the training of the network, the ResNet 
does not let the network directly fit the original mapping, but fits the residual mapping. More specifically, 
ResNet are the addition of fast connections to the forward network that allow raw data to skip layers. The 
proposed ResNet alleviates the training difficulty of the network. With the same network, the complexity 
and the number of parameters will be reduced when the residual network is added. The loss function is 
also called the objective function. The loss function we use is nn.CrossentRoPyLoss () in Pytorch as the 
loss function. Reasons for using this loss function This loss function is very effective when doing 
classification tasks. The loss function combines softmax-log-nllLoss. The specific process is as follows:  

1) Softmax will constrain the value to the interval [0,1].  
2) Take logarithms of the results after Softmax to ensure the monotonicity of the function.  
3) NLLLoss corresponds the logarithmic result to the label and calculates the mean value by 

removing the sign. 

3.2 Interpretable Algorithm Based on User Query Data 
Unlike the example-based explanation, to reduce the data privacy risk of the model, the strategy 

proposed in this paper explanatory data from different sources. Due to different data sources, the search 
rules (influence functions [10]) for explaining information are no longer applicable. In the strategy 
proposed by us, the contribution degree is not sought, but the data that the search model makes similar 
decisions on user data are calculated. 

3.2.1 Source of Explanatory Information 
There are two parts to the strategy of explaining the source of information: 1) We need to set a 

default explanation dataset to search for explanation data when the user first queries and the amount of 
data is insufficient. 2) When the number of historical query data of the current user saved by the model is 
enough, the explanatory information is searched from the historical query data set of the user. In this 
paper, the rules for finding explanatory information in the two datasets are consistent. 

3.2.2 Explanatory Information Generation Rules 
Given two explanatory datasets A  and B . In which, { }0 1,  ,... ,= tA x x x  ( t  is constant) is the default 

explanation dataset; User history dataset B  is an empty dataset under the initial conditions. We 
collectively refer to A  and B  as explanatory datasets, and explanatory data is also generated from A  and 
B . 

The user’s current query dataset is { }1 2, ,.. ,.,y= ∈mD y my N . The query model is Ω . After the 
explanation dataset A  or B  and user’s dataset D are input into the model, the model outputs the 
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confidence scores of classification decision and category decision (see formula (1)): 
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where iα  means that in this decision, the model has the confidence of iα  to classify the target data into 
categories. 

The essence of this method is to find the data point in the explanation dataset where the model 
decision confidence score is most similar to the user’s current query data decision. Euclidean distance was 
chosen to calculate the similarity (see formula (2)): 
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where x represents the list of category confidence scores obtained in the model for data decisions. This 
formula represents the Euclidean distance between the classification decision score of the interpreted data 
and the classification decision score of the user's input data, and we use the distance to indicate the degree 
of similarity between the two 

Based on the interpretability method of user data, the target model is obtained through transfer 
learning and training, and the user queries the data into the model to obtain various confidence scores. 
Similarly, various confidence scores of datasets A  or B  are obtained, Euclidean distances of the two 
confidence scores are calculated, and explanation data is selected from A  or B  according to the minimum 
distance and returned to the user. The query data in this query is stored in dataset B for the next query to 
provide explanation information. The data pipeline is shown in Fig. 2. 

 
Figure 2: The data pipeline of the method 

 
Algorithm 1: Based on user query data interpretability strategy 
Initial conditions:  Classification model Ω  

                              Initial interpretation dataset A  

Input:  User dataset D  

            The user needs to explain the number of data: k 

Output:  Explanation information B  
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1:  for iy in D do 

2:        ( ) = Ωyi iCScore y  

3:        if Num( B ) < k 

4:              ( ) = ΩACScore A  

                   // Calculate the Euclidean distance 

5:              ( )  ,  = A DSim Distance CScore CScore  

6:               Save D  into B  

7:        else 

8:              ( ) = ΩB BCScore  

9:              ( )  ,  = DBSim Distance CScore CScore  

10:             Save D  into B  

11:      ( ) = kmin SimR  

12:  Return R  

Here, Num( B ) represents the number of data of each category in data set B . ( ) = Ωy yCScore  
represents the confidence scores of each class after data y  is input into the model. Sim  represents the 
confidence score distance between the current forecast picture and each data point in the interpretation set, 
and kmin  represents the k data point closest to the confidence score of the current forecast picture. After 
each image is predicted, k data points with the smallest Euclidean distance will be saved into 
interpretation information set R  according to user requirements. We can see the explanation information 
in R . The query data of the same user will be stored in dataset B  with the data and labels after each query. 

In this paper, in order to more intuitively observe the explanatory information of our strategy 
selection, we choose the dichotomy model. 

4 Experimental Design and Implementation  
4.1 Experimental Dataset 

In the selection of data sets, we tend to use the small data sets commonly used in classification 
models—cat and dog datasets and MNIST dataset. The dataset, which was made public on Kaggle in 
2013, includes training sets and test sets. There are 25,000 pictures of cats and 12,500 pictures of dogs in 
the training set. Test set cat and dog mix 12,500 data. The MNIST dataset contains a total of 60,000 
images and labels in the training set and 10,000 images and labels in the test set. 

In this paper, in order to save time and cost, we select part of the data of the training set as the 
training set and test set of the transfer learning training model. We selected 2,806 images from the 
training set, including 1,403 for each dog and cat, 532 for the test set, 266 for dogs and cats. Set the test 
set of the original data set to the original data set for our experimental tests. 

In order to compare the experimental results, we also train the handwritten digital classification 
model for MNIST data sets, and apply this model to our interpretation method. We selected about 1/5 of 
the data in the training set for transfer learning to train the model, and about 1/10 of the data in the test set 
as the default interpretation set. 

4.2 Evaluation Indicators 
4.2.1 Model Performance 

In providing interpretability for machine learning models, one of the key issues that needs to be 
addressed is the dependence of model performance on interpretive performance. This is important 
because whether it's post-hoc explanation or ante-hoc explanation, users will see it as a system, and the 
explanatory we provide is essentially tied to the model, and users will make trust judgments about the 
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model based on the explanatory information provided. That is, when we use our model interpretability, 
we first require good performance from the model. We help us select the classification model with the 
best classification effect according to the simplest accuracy and loss value of model performance 
evaluation as performance indicators. We test multiple classification networks through transfer learning 
and select the model with the best performance. 

4.2.2 Confidence Score Similarity 
As is known to all, the machine learning classification model makes decisions about the 

classification results of predicted data according to the confidence scores of each category predicted by 
the model. In other words, the model predicts the probability of the data being classified into each 
category. If we can find a piece of data that is very similar to how likely it is to be classified into 
categories, we can provide a sample explanation to the user. Therefore, in this study, we need to look for 
data points that are very similar to the forecast data. The confidence score similarity is obtained as the 
evaluation standard. The higher the confidence score similarity is, the higher the model similarity is to the 
decision process of interpreting data and predicting data. 

4.2.3 The Matching Rate of Explanatory Data Label and Query Data Label 
After obtaining the confidence score similarity between the explanatory data and the predicted data, 

we need to evaluate whether the explanatory information selected based on this similarity is deceptive. In 
order to prove the correctness of the explanatory information provided by this method, we calculate the 
consistency between the real labels of the explanatory data and the predicted labels of the predicted data. 
This data reflects whether the explanatory information provided by the model is consistent with the 
category of the predicted data. Specifically, if users predict dogs, the model will provide a picture of a 
dog as the explanatory data, which will increase users’ trust in the model. Therefore, this data is used to 
evaluate interpretation methods. 

4.2.4 Explain the Generality of the Method 
This interpretation method is not directly related to the internal structure of the model, but closely 

related to the results of the model decision. We assume that this method can be applied to other 
classification models. This indicator is used to evaluate whether the interpretation method works well in 
other classification networks. In this experiment, the image dichotomy model is used as the experimental 
model, and we try to prove the universality of this method to other models, not to a particular model. We 
replace the machine learning model of other network structures to obtain the comparison of confidence 
score similarity and the change of tag matching rate to prove the universality of this method. 

5 Experiments 
5.1 Model Performance 

In the existing classification model network, we use transfer learning to test the popular 
classification network. The specific performance is shown in Table 1. The optimal network training 
classification model ResNet152 is selected by accuracy and loss rate and is used in other aspects of this 
paper. Accuracy: 0.9850, Loss value: 0.0424. Through the test experiment of cat and dog datasets, we 
directly selected ResNet152 network model for training of MNIST dataset. The accuracy is 0.9896, and 
the loss value is 0.0408. 

Table 1: Model performance evaluation 

Dataset Model Accuracy Loss 

Cat and dog 

AlexNet 0.9643 0.1045 
VGG19 0.9737 0.0439 
ResNet101 0.9831 0.0426 
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DenseNet161 0.9793 0.0399 
ResNet152 0.9850 0.0424 
InceptionV3 0.9756 0.0941 

MNIST ResNet152 0.9896 0.0408 

5.2 Confidence Score Similarity 
The algorithm needs to calculate the Euclidean distance between the category confidence score of 

the explained data and the predicted confidence score of the predicted data according to the model, and 
the smallest distance is the highest similarity. According to the algorithm, we tested 12,500 data on cat 
and dog datasets and obtained the highest similarity between the confidence scores of the predicted data 
and the interpreted data. The results show (Fig. 3) that the Euclidean distance between the predicted 
confidence score of almost 99% of the interpreted data and the predicted confidence score of the query 
data is between [0,1]. However, the explanatory and predictive data of different models are not all very 
similar, which proves that the explanatory provided is related to the decision logic of the model itself. As 
a comparison, we tested 10,000 images of the five classification model and the ten classification model on 
the MNIST dataset, and the results showed that although the five classification distance was between [0,2] 
and the ten classification distance was between [0.5,5] with the increase of classification complexity, the 
distance gradually increased. But the results are still good. 

 

 
Figure 3: (a) Bi-classification model of cat and dog classification (b) MNIST five-classification model 
and (c) MNIST ten-classification model. The Euclidean distance between prediction data and 
interpretation data classification confidence score 

5.3 Label Matching Rate 
Fig. 4 is an example of the explainable method proposed in this study. Among 12,500 test data, we 

calculated the matching degree between the interpretation data label with the highest similarity and the 

(a) 

(c) 

(b) 
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prediction label of the test data, as well as the matching degree between the real label and the prediction 
label of the K interpretation data with the highest similarity respectively (see Table 2). It is worth noting 
that despite multiple interpretation data, the match is still substantial. Moreover, since the calculation of 
confidence depends on the prediction of the model, factors leading to these differences include the error 
rate of the model itself. 

 
Figure 4: A comparison of the two examples. The left column is the picture currently predicted by the 
user, and the right two columns are the explanatory picture provided by this interpretation method and the 
Euclidean distance with the confidence score of the corresponding predicted picture 

Table 2: Top k data matching tables 

k Label matching rate 
1 96.62% 
2 95.82% 
3 93.31% 
4 89.50% 

5.4 Explain the Generality of the Method 
We refer to different models for testing. Table 3 shows in detail the changes of the optimal similarity 

and tag matching rate obtained for different models. We test and calculate the mean, variance and 
standard deviation of the optimal similarity, and the results show that the similarity of the confidence 
scores of different models is very superior, and the difference of the model will make the similarity 
change very little. In addition, compared with Table 1, we can also observe that the influence of the 
superiority of the model itself on the tag matching degree is related. 

To prove that our method is applicable to more models, we not only test different network models, 
but also experiment with classification complexity. After selecting the best ResNet152 network, we 
compare the binary model, the five-class model and the ten-class model respectively. It can be seen from 
Table 4 that despite the higher model complexity, our method can still achieve a high matching degree of 
more than 89%. However, with the increase of classification complexity, the Euclidean distance of its 
confidence score gradually increases, and the corresponding tag matching degree also gradually decreases, 
but the results are still in line with expectations. 
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Table 3: The optimal interpretation data similarity and label matching are obtained by different models 

Model 
The Euclidean distance of the 

confidence fraction Label matching 
rate (k = 2) 

Mean Var Std 
Binary model 0.2490 0.6897 0.8305 89.00% 
ResNet101 0.1289 0.0255 0.1597 95.18% 
DenseNet161 0.1463 0.0615 0.2480 93.84% 
VGG19 0.2275 0.4253 0.6522 94.42% 
ResNet152 0.1573 0.0792 0.2814 95.82% 
InceptionV3 0.1870 0.0407 0.2016 94.14% 

Table 4: The optimal interpretation data similarity and label matching are obtained by different 
classification complexity models 

Model (ResNet152) 
The Euclidean distance of the 

confidence fraction Label matching 
rate (k=2) 

Mean Var Std 
Binary classification model 0.1573 0.0792 0.2814 95.82% 
Five classification model 0.9806 0.2691 0.5187 93.45% 
Ten classification model 2.4477 0.9329 0.9658 89.22% 

6 Conclusion 
We propose an interpretable strategy that based on data that does not exposes model data privacy for 

the black box model. The method first trains a classification model with good performance, and then 
makes a predicted confidence score for the data according to the model. Finally, the explanation 
information is filtered according to the confidence score similarity as the rule of explanation information 
generation. We also conducted additional tests on the MNIST data set by training the five-classification 
model and the ten-classification model for comparative tests on the MNIST data. Experimental results 
show that this method has good performance. The mean, variance and standard deviation of the optimal 
similarity were 0.1573, 0.0792 and 0.2814, respectively, and the matching degree between the prediction 
data label and the optimal interpretation information label was 96.62%. In addition, we also test the 
confidence fraction similarity and tag matching degree of other network models. The optimal similarity of 
explanatory data provided by this method is excellent regardless of model performance. In addition, 
although classification complexity affects the matching degree of interpretation information to a certain 
extent, the effect is small. It is undeniable that tag matching degree depends on model performance and 
classification complexity. All in all, the explanatory information provided by this study for the black box 
model can not only help users understand the classification of the model, but more importantly, the 
explanatory information provided by this method does not involve model data privacy, thus avoiding the 
disclosure of model data privacy by explanatory information. In the future, we will optimize this method 
to reduce the impact of classification complexity on its results as much as possible. In addition, we will 
pay more attention to the defects of preference in the research of machine learning interpretable methods 
to achieve a more comprehensive interpretable information extraction method. 
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