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ABSTRACT

The Symmetric Galerkin Boundary Element Method is advantageous for the linear elastic fracture and crack-
growth analysis of solid structures, because only boundary and crack-surface elements are needed. However, for
engineering structures subjected to body forces such as rotational inertia and gravitational loads, additional domain
integral terms in the Galerkin boundary integral equation will necessitate meshing of the interior of the domain.
In this study, weakly-singular SGBEM for fracture analysis of three-dimensional structures considering rotational
inertia and gravitational forces are developed. By using divergence theorem or alternatively the radial integration
method, the domain integral terms caused by body forces are transformed into boundary integrals. And due to
the weak singularity of the formulated boundary integral equations, a simple Gauss-Legendre quadrature with a
few integral points is sufficient for numerically evaluating the SGBEM equations. Some numerical examples are
presented to verify this approach and results are compared with benchmark solutions.
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1 Introduction

The Symmetric Galerkin Boundary Element Method (SGBEM) [1–3] has gained increasing
popularity in fracture and crack-growth analysis of solid structures due to its attractive features
of symmetric coefficient matrices, weak-singularity, and that only boundary & crack-surface ele-
ments are needed. The papers by Bonnet et al. [3–5] are devoted to the formulation, numerical
evaluation and implementation of SGBEM. Atluri et al. [6–9] utilized a simple and straightfor-
ward methodology to develop regularized traction Boundary Integral Equations (tBIE) for two
and three-dimensional linear-elastic solids containing cracks, and also developed weakly-singular
SGBEMs for the fracture and fatigue analysis of various complex structures. However, for the
fracture mechanics problems such as turbine discs and turbine blades of aircraft engines, concrete
gravity dam, etc., SGBEM may lose its advantages, because evaluation of domain integral terms
resulting from body forces such as rotational inertia and gravitational loads leads to the meshing
of the interior of the domain. For this reason, a method to evaluate such domain integral terms
using only boundary meshes, is desired to efficiently analyze cracked structures considering body
forces with SGBEM.

For the conventional collocation boundary element method based on Somigliana’s identity for
the displacement vector, a few methods were developed for this purpose. Considering centrifugal
loads presented in rotating gas turbines, Cruse et al. [10,11] transformed domain integrals to
boundary integrals by utilizing the divergence theorem. By making use of the Galerkin vector
or the Green’s second identity, Danson [12] transformed the volume integral terms to boundary
integral terms, for three kinds of body forces, i.e., gravitational loads, the rotational inertia and
steady-state thermal loads. Gao [13] also developed a radial integration technique and applied it
to deal with various body forces. Brebbia et al. [14] developed the dual reciprocity method [15]
which converts the associated domain integrals into boundary integrals by using a series of basis
functions to approximate the body force fields. Brebbia et al. [16] extended the idea of dual
reciprocity and proposed another approach, multiple reciprocity method.

Different from the conventional collocation boundary element method [17–19] based on the
Somigliana’s identity, formulations of SGBEM [5,8,20] result in weak-form displacement Bound-
ary Integral Equations (dBIE) and weak-form traction Boundary Integral Equations (tBIE). As
a matter of fact, the domain integrals caused by body forces appear both in dBIE and tBIE.
Moreover, it is beneficial to use tBIE to derive weak-form equations on crack-surfaces, where
displacement discontinuities are to be solved as unknowns [5]. Thus, if SGBEM is utilized for
linear fracture analysis of cracked structures, while for domain integrals appearing in dBIE, one
may refer to the above-mentioned transformation techniques, the treatment for domain integral
terms appearing in tBIE needs further study.

This paper presents the weakly singular traction boundary integral equation for solids under-
going rotational inertia and gravitational Loads. By using the divergence theorem (div) or the
radial integration method (RIM), domain integrals induced by rotational inertia or gravitational
forces are transformed into boundary integrals correspondingly. The derived formulas show that
these transformed boundary integral terms have no influence upon the coefficient matrix of
SGBEM, but only affect the right-hand-side vector. The transformed boundary integral terms
derived by the divergence theorem and radial integration method, possessing 1/r singularity, is
weakly singular. Numerical examples demonstrate that only a few Gauss points are sufficient to
evaluate boundary integrals. The developed SGBEM with only weakly-singular boundary integrals
are thus applied to simulate various examples of 3D solids with/without considering rotational
inertia and gravitational loads.
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This paper is organized as follows. In Section 2, transformation from domain integrals
induced by gravitational and rotational inertia forces to the boundary integrals by div or RIM
respectively is carried out. Some numerical examples for solids undergoing rotational inertia or
gravitational loads are presented in Sections 3 and 4 with and without cracks correspondingly. In
Section 5, we complete this paper with some concluding remarks.

2 Weakly Singular Galerkin Boundary Integral Equations and Boundary Element Method with Rota-
tional Inertia and Gravitational Loads

Consider a linear elastic, homogenous and isotropic solid undergoing an infinitesimal elasto-
static deformation, as shown in Fig. 1. � is the solution domain of the problem with the
boundary ∂�. ξ represents the field point at a generic location in Cartesian coordinates. x is the
source point of the 3D Kervin’s solution [21] where a unit load in an arbitrary direction p is
applied. The displacement fundamental solution u∗pj in the j direction corresponding to this unit

load and other kernel functions G∗p
ij ,ϕ

∗p
ij ,H

∗
tbpq derived by u∗pj are listed in the appendix. One may

also refer to other forms of these kernel functions in [5,20].

Figure 1: A solution domain with source point x and field point ξ

The symmetric Galerkin formulations of displacement and traction Boundary Integral Equa-
tions (d & tBIE) for linear elastic solids can be found in [8]. The derivation of the conventional
boundary element method and SGBEM [5,8,20] generally ignored body forces. Here, the domain
integrals considering body forces are added in the equations:

− ∫
∂�

1
2δtp (x) up (x)dSx =− ∫

∂�
δtp (x) dSx

∫
�
fj (ξ)u∗pj (ξ −x) d�ξ

− ∫
∂�

δtp (x)dSx
∫
∂�
tj (ξ)u∗pj (ξ −x) dΓξ

− ∫
∂�

δtp (x)dSx
∫
∂�
Di (ξ)uj (ξ)G∗p

ij (ξ −x) dΓξ

− ∫
∂�

δtp (x)dSx
∫
∂�
uj (ξ)ni (ξ)ϕ

∗p
ij (ξ −x)dΓξ ,

(1)

∫
∂�

1
2δub (x) tb (x)dSx =− ∫

∂�
δub (x)na (x)dSx

∫
�
fj (ξ) σ

∗j
ab (ξ −x)d�ξ

− ∫
∂�
Dt (x) δub (x)dSx

∫
∂�
tj (ξ)G∗j

tb (ξ −x) dΓξ

+ ∫
∂�

δub (x)na (x)dSx
∫
∂�
tj (ξ)ϕ

∗j
ab (ξ −x) dΓξ

− ∫
∂�
Dt (x) δub (x)dSx

∫
∂�
Dp (ξ)uq (ξ)H∗

tbpq (ξ −x) dΓξ .

(2)

In the above two equations, if the domain integral or boundary integral is with respect to the
field point, the integral domain is denoted by �ξ or Γξ , respectively; otherwise for source point,
the integral domain is denoted by Sx. up (x) and tp (x) are the displacement and the traction at
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the source point, respectively. δ is the variational symbol which is used to import the Galerkin
weight function. fj (ξ) is the body force per unit volume. ni (ξ) is the component of outward unit
normal at a field point on the boundary. Dt is a surface tangential operator:

Dt (ξ)= nr (ξ) erst
∂

∂ξs
(3)

where erst is the permutation coefficient defined by e123 = e231 = e312 = 1; e321 = e213 = e132 =−1;
erst= 0 if any two of the indices are identical.

In this paper, the domain integral:

I = ∫
�
fj (ξ) σ

∗j
ab (ξ −x) d�ξ (4)

appearing in traction boundary integral Eq. (2) considering rotational inertia and gravitational
loads is transformed into weakly singular boundary integral, using the divergence theorem or the
radial integration method.

The radial integration method is introduced here briefly. For further details, one may refer
to [13]. Domain integral on the left-hand-side of Eq. (5) with a general function f (ξ) may be
written in Cartesian coordinate system (x1,x2,x3) or in spherical coordinate system (r, θ ,φ) with
the origin at the source point P shown in Fig. 2.

Figure 2: Cartesian and spherical coordinate systems

In the spherical coordinate system∫
�
f (ξ)d�= ∫ 2π

0

∫ π

0

∫ r(θ ,φ)

0 f (r, θ ,φ) r2dr sinθdθdφ = ∫ 2π
0

∫ π

0 F (θ ,φ) sin θdθdφ (5)

where

F (θ ,φ)= ∫ r(θ ,φ)

0 f (r, θ ,φ) r2dr. (6)

In the spherical coordinate system, the area of infinitesimal element dS on the spherical
surface can be expressed as

dS= r2 sin θdθdφ. (7)
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If the field point is on the boundary Γ of domain �, geometric projective transformation
can be established between the spherical surface infinitesimal element dS and the real boundary
surface infinitesimal element dΓ shown in Fig. 3.

dS= ri
r
nid�, (8)

where ni is the component of outward unit normal of field point on the real boundary surface
dΓ , ri is the Cartesian component of r, i.e.,

ri = ξi−xi. (9)

Figure 3: Spherical surface dS and real boundary dΓ

By some derivations, the domain integral can be rewritten as∫
�

f (ξ)dV =
∫

∂�

1
r2

∂r
∂n
F (r)d� (10)

where F (r) is evaluated by a radial integration of R2f (ξ) on the segment linking the source point
and the field point, i.e.,

F (r)=
∫ r

0
R2f (ξ)dR. (11)

∂r/∂n is the directional derivative at the field point on the boundary, which may be expressed
as

∂r
∂n

= r,ini (12)

where ( ),i denotes the partial differentiation with respect to the Cartesian component of field
point if not otherwise stated. And r,i can be expressed as

r,i = ∂r
∂ξi

= ri
r
=− ∂r

∂xi
. (13)
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Some useful formulas related to r (r �= 0) are listed as follows:

r=√
riri (14)

r,ir,i = 1 (15)

r,ij = 1
r

(
δij− r,ir,j

)
(16)

r,ii = 2
r

(17)

r,ijk =− 1
r2

(
r,iδjk+ r,jδik+ r,kδij− 3r,ir,jr,k

)
(18)

(
1
r

)
,i
=− 1

r2
r,i (19)

In Subsections 2.1 and 2.2, the domain integral terms with rotational inertia and gravitational
loads in tBIE are transformed into weakly singular boundary integral terms by two methods of
divergence theorem and radial integration method, respectively.

2.1 Transformation of Domain Integrals with Gravitational Loads to Boundary Integrals
Consider a solid body with a constant mass density ρ, and a constant gravitational field gi =

const. The body force will also be constant, where

fi = ρgi = const. (20)

In this section, the body force fj (ξ) in Eq. (4) is defined as gravitational force. The purpose
of this section is transforming the domain integral of Eq. (4) considering gravitational force into

the boundary integral. Note that σ
∗j
ab (ξ −x) in Eq. (4) is the stress field of Kelvin’s solution:

σ
∗j
ab (ξ −x)= 1

8π (1− ν) r2
[
(1− 2ν)

(
δabr,j − δajr,b− δbjr,a

)− 3r,ar,br,j
]

(21)

where ν is the Poisson’s ratio; δab is the Kronecker Delta.

Thus, the constant gravity force fi can be taken outside the integral in Eq. (4). Then we get∫
�

ρgjσ
∗j
ab (ξ −x)d�ξ

= ρgj

∫
�

1
8π (1− ν) r2

[
(1− 2ν)

(
δabr,j− δajr,b− δbjr,a

)− 3r,ar,br,j
]
d�ξ . (22)
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2.1.1 Using Divergence Theorem to Transform Domain Integrals with Gravitational Forces
Substitution of Eq. (19) into Eq. (26), we have∫

�

ρgjσ
∗j
ab (ξ −x) d�ξ

=ρgj
1

8π (1− ν)

∫
�

[
2νδab

(
− 1
r2
r,j

)
+ 2 (1− ν) δaj

(
− 1
r2
r,b

)

+2 (1− ν) δbj

(
− 1
r2
r,a

)
− r,abj

]
d�ξ . (23)

Substituting Eq. (22) into Eq. (27), we have∫
�

ρgjσ
∗j
ab (ξ −x) d�ξ =

ρgj
1

8π (1− ν)

∫
�

[
2νδab

(
1
r

)
,j
+ 2 (1− ν) δaj

(
1
r

)
,b

+2 (1− ν) δbj

(
1
r

)
,a
− r,abj

]
d�ξ . (24)

Using divergence theorem and Eq. (16), we can get that∫
�

ρgjσ
∗j
ab (ξ −x) d�ξ =

ρgj
1

8π (1− ν)

∫
∂�

1
r

[
(2ν − 1) δabnj (ξ)+ 2 (1− ν) δajnb (ξ)

+2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]
d�ξ . (25)

Note that, a singularity of 1/r appears in the boundary integral of Eq. (29). This integral
is weakly-singular [8], thus Cauchy principal value integral [22] does not need to be taken into
account. The numerical integration method to evaluate this weakly-singular integral is stated
briefly in Section 2.3.3.

2.1.2 Using the Radial Integration Method to Transform Domain Integrals with Gravitational Forces
Using radial integration method, Eq. (26) can be rewritten as∫

�

ρgjσ
∗j
ab (ξ −x) d�ξ = ρgj

∫
∂�

∂r
∂n

1
r2
F (r)d�ξ (26)

where

F (r)=
∫ r

0
R2 1

8π (1− ν)R2

[
(1− 2ν)

(
δabR,j− δajR,b− δbjR,a

)− 3R,aR,bR,j
]
dR. (27)
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From Eq. (13) and Fig. 2, one can find that R,i is the cosine between r and coordinate axis
i, i.e., R,i = r,i. Thus, R,i can be taken out of this radial integral Eq. (31) directly. Substitution
of Eq. (31) into Eq. (30) gives∫

�

ρgjσ
∗j
ab (ξ −x) d�ξ

=ρgj

∫
∂�

1
8π (1− ν)

1
r

∂r
∂n

[
(1− 2ν)

(
δabr,j − δajr,b− δbjr,a

)− 3r,ar,br,j
]
d�ξ . (28)

Note that, when the field point approaches the source point, ∂r/∂n→ 0. Singularity of the
boundary integral in Eq. (32) therefore is weaker than that in Eq. (29).

2.2 Transform Domain Integrals with Rotational Inertia to Boundary Integrals
About an analytical expression of the rotational inertial force in detail, one may refer to [19].

Here we introduce it briefly. Consider a solid body of uniform mass density ρ rotating about one
axis with angular velocity ωi. For simplicity and without loss of the generality, we consider that
the axis of rotation passes through the origin of Cartesian coordinate system shown in Fig. 4.

Figure 4: The rotational axis passing through the origin of Cartesian coordinate system

By the D’Alembert’s principle, body force resulting from the rotational inertia is

f (ξ)=−ρω× (ω× ξ) . (29)

Eq. (33) may be written in index notation as

fj (ξ)=−ρejqkωqekpiωpξi = hjiξi (30)

where

hji =−ρejqkωqekpiωp. (31)

Note that hji is constant and can be described in a more straightforward way:

[
hji

] = ρ

⎡
⎣ω2

2 +ω2
3 −ω1ω2 −ω3ω1

−ω1ω2 ω2
3 +ω2

1 −ω2ω3
−ω3ω1 −ω2ω3 ω2

1 +ω2
2

⎤
⎦ . (32)
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Then this dynamic problem can be treated as an elastostatics problem. Using Eqs. (4), (25)
and (34), we get∫

�

hjiξiσ
∗j
ab (ξ −x)d�ξ

=
∫

�

hjiξi
1

8π (1− ν) r2
[
(1− 2ν)

(
δabr,j − δajr,b− δbjr,a

)− 3r,ar,br,j
]
d�ξ . (33)

2.2.1 Using Divergence Theorem to Transform Domain Integrals with Inertial Force
Similar to the derivation of Eq. (28), the inertial force domain integrals with the rotational

inertia can be written as∫
�

hjiξiσ
∗j
ab (ξ −x)d�ξ

=
∫

�

1
8π (1− ν) r2

hji

[
2νδabξi

(
1
r

)
,j
+ 2 (1− ν) δajξi

(
1
r

)
,b

+2 (1− ν) δbjξi

(
1
r

)
,a
− ξir,abj

]
d�ξ . (34)

Substituting Eqs. (39) and (40) into Eq. (38) and using Eq. (17),(
ξi
1
r

)
,j
= δij

1
r
+ ξi

(
1
r

)
,j

(35)

(
ξir,ab

)
,j = δijr,ab+ ξir,abj (36)

We get∫
�

hjiξiσ
∗j
ab (ξ −x)d�ξ

=
∫

�

hji
1

8π (1− ν)

[
2νδab

(
ξi
1
r

)
,j
− νδabδijr,kk

+ 2 (1− ν) δaj

(
ξi
1
r

)
,b
− (1− ν) δajδbir,kk

+2 (1− ν) δbj

(
ξi
1
r

)
,a
− (1− ν) δbjδair,kk+ δijr,ab−

(
ξir,ab

)
,j

]
d�ξ . (37)

Then using the divergence theorem, we get∫
�

hjiξiσ
∗j
ab (ξ −x)d�ξ

=
∫

∂�

1
8π (1− ν)

1
r

[
2νδabnj (ξ)hjiξi− νδabgiirr,mnm (ξ)
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+ 2 (1− ν) nb (ξ)haiξi+ 2 (1− ν) na (ξ)hbiξi

− (1− ν) rr,mnm (ξ) (hab+ hba)+ rhiir,anb (ξ)

− (
δab− r,ar,b

)
nj (ξ)hjiξi

]
d�ξ . (38)

Note that the boundary integrals in Eq. (42) have the property of 1/r weak-singularity.

2.2.2 Using Radial Integration method to Transform Domain Integrals with Inertial Force
Using radial integration method, Eq. (37) may be rewritten as∫

�

hjiξiσ
∗j
ab (ξ −x) d�ξ =

∫
∂�

1
r2

∂r
∂n
F (r)d�ξ (39)

F (r)=
∫ r

0
R2hjiξi

1
8π (1− ν)R2

[
(1− 2ν)

(
δabR,j− δajR,b− δbjR,a

)− 3R,aR,bR,j
]
dR. (40)

As is mentioned above, R,j can be taken outside the integral directly. Note that, F (r) is the
radial integral about the field point ξ . Substitution of Eq. (9) into Eq. (44) gives

F (r)= hji
1

8π (1− ν)

[
(1− 2ν)

(
δabr,j− δajr,b− δbjr,a

)− 3r,ar,br,j
] ∫ r

0
R

(
R,i+ xi

R

)
dR. (41)

Note that, for radial integral F (r), source point x is constant. We can directly compute this
radial integral. Substitution of Eq. (45) into Eq. (43) gives∫

�

hjiξiσ
∗j
ab (ξ −x) d�ξ

=
∫

∂�

1
16π (1− ν)

1
r

∂r
∂n
hji (ξi+xi)

[
(1− 2ν)

(
δabr,j− δbjr,a− δajr,b

)− 3r,ar,br,j
]
d�ξ . (42)

Eq. (46) is the boundary integral form with the rotational inertia force obtained by the radial
integration method.

2.3 Weakly-Singular SGBEM with Numerical Implementation
We have obtained weakly singular boundary integrals transformed from domain integrals con-

sidering rotational inertia and gravitational loads by the divergence theorem or radial integration
method. In this section, the displacement and traction boundary integral equations considering
crack surfaces and rotational inertia and gravitational loads are given. Then numerical evaluation
of weakly singular double layer surface integrals by using quadrilateral elements is introduced
briefly.

2.3.1 Traction and Displacement BIEs Considering Rotational Inertia and Gravitational Loads by
Divergence Theorem

Consider a crack embedded in the domain � shown in Fig. 5. The crack surfaces are denoted
as S+C and S−C which are geometrically coincident. The outward normal direction of S+

C is opposite

to that of S−C . With the assumption that the traction acting on crack surfaces satisfies that t+j +
t−j = 0, the boundary of the domain � can be defined as

∂�= Su+St+SC (43)
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where Su is the part of boundary where displacement is known and St is the part of boundary
where traction is known. The displacement discontinuity on crack surfaces may be defined as

�u= u+
(
x+

)− u−
(
x−

)
(44)

where u+
(
x+

)
is the displacement of point x+ on S+C ; u

− (
x−

)
is the displacement of point x−

on S−C ; Δu must be zero around the crack front. Points x+ and x− are geometrically coincident.

Figure 5: Displacement discontinuity in domain �

If the weak-form traction boundary integral equation is applied on St, we may get that

1
2

∫
St

δub (x) tb (x)dSx

+ ∫
St

δub (x)na (x) dSx

∫
Su+St

ρgj
1

8π (1− ν)

1
r

[
(2ν − 1) δabnj (ξ)

+2 (1− ν) δajnb (ξ)+ 2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]
d�ξ

+ ∫
St

δub (x)na (x) dSx

∫
Su+St

1
8π (1− ν)

1
r

[
2νδabnj (ξ)hjiξi− νδabhiirr,mnm (ξ)

+2 (1− ν)nb (ξ)haiξi+ 2 (1− ν) na (ξ)hbiξi
− (1− ν) rr,mnm (ξ) (hab+ hba)+ rhiir,anb (ξ)− (

δab− r,ar,b
)
nj (ξ)hjiξi

]
d�ξ

=− ∫
St
Dtδub (x)dSx

∫
Su+St tj (ξ)G∗j

tb (ξ −x)d�ξ

+ ∫
St

δub (x)na (x) dSx
∫
Su+St tj (ξ)ϕ

∗j
ab (ξ −x) d�ξ

− ∫
St
Dtδub (x)dSx

∫
Su+St Dpuq (ξ)H∗

tbpq (ξ −x)d�ξ

− ∫
St
Dtδub (x)dSx

∫
Sc
Dp�uq (ξ)H∗

tbpq (ξ −x) d�ξ .

(45)

And if the weak-form traction boundary integral equation is applied on the crack surfaces
Sc, we may get that
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∫
Sc

δ�ub (x) tb (x)dSx

+
∫
Sc

δ�ub (x)na (x)dSx

∫
Su+St

ρgj
1

8π (1− ν)

1
r

[
(2ν − 1) δabnj (ξ)

+2 (1− ν) δajnb (ξ)+ 2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]
d�ξ

+ ∫
Sc

δ�ub (x)na (x) dSx

∫
Su+St

1
8π (1− ν)

1
r

[
2νδabnj (ξ)hjiξi

−νδabhiirr,mnm (ξ)+ 2 (1− ν) nb (ξ)haiξi+ 2 (1− ν) na (ξ)hbiξi
− (1− ν) rr,mnm (ξ) (hab+ hba)+ rhiir,anb (ξ)− (

δab− r,ar,b
)
nj (ξ)hjiξi

]
d�ξ

=− ∫
Sc
Dtδ�ub (x)d�x

∫
Su+St tj (ξ)G∗j

tb (ξ −x) d�ξ

+ ∫
Sc

δ�ub (x)na (x) dSx
∫
Su+St tj (ξ)ϕ

∗j
ab (ξ −x) d�ξ

− ∫
Sc
Dtδ�ub (x)dSx

∫
Su+St Dpuq (ξ)H∗

tbpq (ξ −x) d�ξ

− ∫
Sc
Dtδ�ub (x)dSx

∫
Sc
Dp�uq (ξ)H∗

tbpq (ξ −x)d�ξ .

(46)

Finally, the weak-form displacement boundary integral equation is applied on the prescribed
displacement boundary surfaces Su, we may get that

−1
2

∫
Su

δtp (x)up (x)dSx

+ ∫
Su

δtp (x)dSx

∫
Su+St

1+ ν

4πE

[
∂r
∂n

ρgp− 1
2 (1− ν)

ρgjnj (ξ) r,p

]
d�ξ

+ ∫
Su

δtp (x)dSx

∫
Su+St

1+ ν

4πE

[
hpiξir,jnj (ξ)− rhpini (ξ)

− 1
2 (1− ν)

r,pnj (ξ)hjiξi+ 1
2 (1− ν)

rnp (ξ)hjj

]
d�ξ

=− ∫
Su

δtp (x)dSx
∫
Su+St tj (ξ)u∗pj (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Su+St Diuj (ξ)G∗p

ij (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Su+St uj (ξ)ni (ξ)ϕ

∗p
ij (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Sc
Di�uj (ξ)G∗p

ij (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Sc

�uj (ξ)ni (ξ)ϕ
∗p
ij (x, ξ)d�ξ .

(47)

Eqs. (49)–(51) are the weakly-singular traction and displacement boundary integral equations
considering rotational inertia and gravitational loads obtained by using divergence theorem. E
and ν are Young’s modulus and Poisson’s ratio of the isotropic solid, respectively. Then we may
discretize boundary surfaces ∂� into boundary elements. Traction field functions can be written
in terms of nodal shape functions as ti = tmi N

m at Su, ti = tmi N
m at St; similarly displacement field

functions can be written as ui = umi N
m at Su, ui = umi N

m at St, where an overline denotes that
the nodal variables are known. In this way, the discretized traction and displacement SGBEM
equations are obtained, and we denote this method as SGBEM-div in this paper.
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2.3.2 Traction and Displacement BIEs Considering Rotational Inertia and Gravitational Loads by the
Radial Integration Method

Similar to Eqs. (49)–(51), the weakly-singular traction and displace BIE considering rotational
inertia and gravitational loads by radial integration method can be written as follows:

1
2

∫
St

δub (x) tb (x)dSx

+ ∫
St

δub (x)na (x) dSx

∫
Su+St

ρgj
1

8π (1− ν)

1
r

∂r
∂n

[
(1− 2ν)

(
δabr,j

−δajr,b− δbjr,a
)− 3r,ar,br,j

]
d�ξ

+ ∫
St

δub (x)na (x) dSx

∫
Su+St

1
16π (1− ν)

1
r

∂r
∂n
hji (ξi+xi)

[
(1− 2ν)

(
δabr,j

−δbjr,a− δajr,b
)− 3r,ar,br,j

]
d�ξ

=− ∫
St
Dtδub (x)d�x

∫
Su+St tj (ξ)G∗j

tb (ξ −x) d�ξ

+ ∫
St

δwb (x)na (x)dSx
∫
Su+St tj (ξ)ϕ

∗j
ab (ξ −x)d�ξ

− ∫
St
Dtδub (x)dSx

∫
Su+St Dpuq (ξ)H∗

tbpq (ξ −x)d�ξ

− ∫
St
Dtδub (x)dSx

∫
Sc
Dp�uq (ξ)H∗

tbpq (ξ −x) d�ξ .

(48)

1
2

∫
Sc

δub (x) tb (x)dSx

+ ∫
Sc

δub (x)na (x)dSx

∫
Su+St

ρgj
1

8π (1− ν)

1
r

∂r
∂n

[
(1− 2ν)

(
δabr,j

−δajr,b− δbjr,a
)− 3r,ar,br,j

]
dΓξ

+ ∫
Sc

δub (x)na (x)dSx

∫
Su+St

1
16π (1− ν)

1
r

∂r
∂n
hji (ξi+xi)

[
(1− 2ν)

(
δabr,j

−δbjr,a− δajr,b
)− 3r,ar,br,j

]
dΓξ

=− ∫
Sc
Dtδub (x) dΓx

∫
Su+St tj (ξ)G∗j

tb (ξ −x) dΓξ

+ ∫
Sc

δwb (x)na (x) dSx
∫
Su+St tj (ξ)ϕ

∗j
ab (ξ −x) dΓξ

− ∫
Sc
Dtδub (x) dSx

∫
Su+St Dpuq (ξ)H∗

tbpq (ξ −x) dΓξ

− ∫
Sc
Dtδub (x) dSx

∫
Sc
DpΔuq (ξ)H∗

tbpq (ξ −x)dΓξ .

(49)

−1
2

∫
Su

δtp (x)up (x) dSx

+ ∫
Su

δtp (x)dSx
∫
Su+St

1+ ν

16πE (1− ν)

∂r
∂n

[
(3− 4ν)ρgp (ξ)+ r,pr,jρgj (ξ)

]
d�ξ

+ ∫
Su

δtp (x)dSx
∫
Su+St

1+ ν

24πE (1− ν)
r,mnm (ξ)

[
(3− 4ν) δpj

+r,pr,j
]
hji

(
ξi+ 1

2
xi

)
d�ξ

=− ∫
Su

δtp (x)dSx
∫
Su+St tj (ξ)u∗pj (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Su+St Diuj (ξ)G∗p

ij (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Su+St uj (ξ)ni (ξ)ϕ

∗p
ij (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Sc
Di�uj (ξ)G∗p

ij (x, ξ)d�ξ

− ∫
Su

δtp (x)dSx
∫
Sc

�uj (ξ)ni (ξ)ϕ
∗p
ij (x, ξ)d�ξ .

(50)
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By the same discretization procedure mentioned above for Eqs. (52)–(54), the SGBEM equa-
tions obtained by radial integration method can be obtained, and we denote this as SGBEM-RIM
in this paper.

It can be seen that, for Eqs. (49), (50) using the divergence theorem, there exists 1/r singu-
larity in boundary integral terms containing rotational inertia and gravitational loads; while for
Eqs. (52), (53) using the radial integration method, there exists 1/r · ∂r/∂n in boundary integral
terms containing rotational inertia and gravitational loads. As is mentioned above, when the field
point approaches the source point, ∂r/∂n→ 0. In other words, by the radial integration method,
the obtained boundary integral terms may have weaker singularity compared with those obtained
by the divergence theorem.

2.3.3 Numerical Evaluation of Weakly-Singular Double Surface Integrals Using Quadrilateral Elements
In this paper, 8-noded quadrilateral isoparametric elements are selected for the numerical

implementation, and quarter-point singular quadrilateral elements with two mid-side nodes shifted
towards the crack front as shown in Fig. 6 are adopted at the crack front. For the numerical
evaluation of double surface integrals by quadrilateral isoparametric elements in detail, one may
refer to [3], here it is introduced briefly.

Figure 6: A quarter-point singular quadrilateral element

As shown in Fig. 7, there are four quadrilateral elements A, B, C, D. In the computation
of the double layer surface (Sx & Γξ ) integrals, two elements will form a pair. One appears in
the Sx, while the other appears in Γξ . There exist four kinds of cases: coincident elements, e.g.,
Ax & Aξ ; adjacent elements sharing one edge, e.g., Ax & Bξ sharing edge pq; adjacent elements
sharing one vertex, e.g., Ax & Cξ sharing vertex p; distinct elements, e.g., Ax & Dξ . Numerical
integral for a pair of distinct elements do not need special treatment. But for the first three cases,
a coordinate transformation is used for numerical integration, which can introduce a Jacobian
exploited to cancel singularity of the boundary integral.
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Figure 7: Cases of pairs of quadrilateral elements

For a pair of distinct elements, standard isoparametric coordinate transformation is used
together with the standard Gauss-Legendre quadrature. As an example, the double layer sur-
face integral considering gravitational loads obtained by the divergence theorem in Eq. (49) is
considered at here.

I = ∫
St

δub (x)na (x)dSx
∫
Su+St ρgj

1
8π (1− ν)

1
r

[
(2ν − 1) δabnj (ξ)

+2 (1− ν) δajnb (ξ)+ 2 (1− ν) δbjna (ξ)+ r,ar,bnj (ξ)
]
d�ξ .

(51)

For simplicity, we rewrite it as

I = ∫
S dSx

∫
S B (x, ξ)d�ξ =

∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 B

′
[
x

(
x
′
1,x

′
2

)
, ξ

(
ξ
′
1, ξ

′
2

)]
dx

′
1dx

′
2dξ

′
1dξ

′
2 (52)

where x
′
1,x

′
2, ξ

′
1, ξ

′
2 are isoparametric coordinates corresponding to Cartesian coordinates

x1,x2, ξ1, ξ2. It should be noted that, in Eq. (56), B′
[
x

(
x
′
1,x

′
2

)
, ξ

(
ξ
′
1, ξ

′
2

)]
includes the Jacobians

of the coordinate transformation.

For cases of coincident elements, adjacent elements sharing one edge, adjacent elements
sharing one vertex, further coordinate transformations are given in below to cancel the singularity
caused by 1/r appearing in Eq. (56).

For a pair of coincident elements, local isoparametric coordinates are shown in Fig. 8. The
boundary integral domain is partitioned into 8 subdomains. For each case we may implement a
further transformation of variables listed in Table 1.

Figure 8: Isoparametric coordinates for a pair of coincident elements
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Table 1: Transformation of variables for a pair of coincident elements

Case x′1 x′2 ξ ′1 ξ ′2
1 v3 v4 v1+ v3 v2+ v4
2 v3 v2+ v4 v1+ v3 v4
3 v1+ v3 v2+ v4 v3 v4
4 v1+ v3 v4 v3 v2+ v4
5 v4 v3 v2+ v4 v1+ v3
6 v2+ v4 v3 v4 v1+ v3
7 v2+ v4 v1+ v3 v4 v3
8 v4 v1+ v3 v2+ v4 v3

In Table 1, v1, v2, v3, v4 are defined as follows:

v1 =w1
v2 =w1w2
v3 =w3 (1−w1)

v4 =w4 (1−w1w2)

with

0≤w1 ≤ 1
0≤w2 ≤ 1
0≤w3 ≤ 1
0≤w4 ≤ 1

. (53)

The Jacobian for such a variable transformation can be used to cancel the singularity in
Eq. (56):

J =w1 (1−w1) (1−w1w2) . (54)

For a pair of coincident elements, Eq. (56) can be rewritten as

I =∑8
case=1

∫ 1
0

∫ 1
0

∫ 1
0

∫ 1
0 B

′
[
x

(
x
′
1,x

′
2

)
, ξ

(
ξ
′
1, ξ

′
2

)]
w1 (1−w1) (1−w1w2)dw1dw2dw3dw4. (55)

For a pair of common-edge elements, local isoparametric coordinates are shown in Fig. 9.

Figure 9: Local isoparametric coordinates for a pair of common-edge elements

This boundary integral domain is partitioned into 6 subdomains. For each case we may
implement a transformation of variables listed in Table 2.
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Table 2: A transformation of variables and Jacobians for common-edge elements

Case x′1 x′2 ξ ′1 ξ ′2 Jacobians

1 v4 v2 v1+ v4 v3 J1
2 v5 v1 v5+ v2 v3 J2
3 v5 v3 v5+ v2 v1 J2
4 v1+ v4 v2 v4 v3 J1
5 v5+ v2 v1 v5 v3 J2
6 v5+ v2 v3 v5 v1 J2

In Table 2, v1, v2, v3, v4, v5 and J1,J2 are defined as follows:

v1 =w1
v2 =w1w2
v3 =w1w3
v4 =w4 (1−w1)

v5 =w4 (1−w1w2)

with

0≤w1 ≤ 1
0≤w2 ≤ 1
0≤w3 ≤ 1
0≤w4 ≤ 1

. (56)

Jacobians of the variable transformation are

J1 =w2
1 (1−w1)

J2 =w2
1 (1−w1w2)

. (57)

For a pair of elements with a common vertex, local isoparametric coordinates is shown in
Fig. 10.

Figure 10: Isoparametric coordinates for a pair of elements with a common vertex

This boundary integral domain is partitioned into 4 subdomains. For each case, a transfor-
mation of variables listed in Table 3 is implemented.
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Table 3: The transformation of variables for a pair of elements with a common vertex

Case x
′
1 x

′
2 ξ ′1 ξ ′2

1 v1 v2 v3 v4
2 v2 v1 v3 v4
3 v2 v3 v1 v4
4 v2 v3 v4 v1

Variables v1, v2, v3, v4 are defined as follows:

v1 =w1
v2 =w1w2
v3 =w1w3
v4 =w1w4

with

0≤w1 ≤ 1
0≤w2 ≤ 1
0≤w3 ≤ 1
0≤w4 ≤ 1

. (58)

The Jacobian of the variable transformation can be used to cancel the singularity in Eq. (56):

J3 =w3
1. (59)

3 Numerical Examples without Cracks

In this section and the next section some examples without or with crack are implemented
respectively to verify SGBEM-div or SGBEM-RIM developed in Section 2.

3.1 Numerical Test of the Effect of the Number of Integration Points
In this section, the double surface integral term in Eq. (55), for a pair of coincident square

elements, is evaluated using the quadrature method given in Section 2.3.3, considering the problem
of a cube of two kinds of meshes undergoing gravity given in Section 3.2. Fig. 11 shows the
logarithmic value of the absolute value of relative errors for the numerical integration of both
a pair of square elements and a pair of distorted elements. The error is very small when the
number of Gauss integration points is larger than 6. Thus, 8 gauss points are used for the eval-
uation of double layer surface integrals in the following examples except for the cube undergoing
gravitational loads in Section 3.2.

The effect of the number of integration points is shown in Fig. 12, where the relative error
is defined as follows: relative error = [I (n)− I (48)] /I (48)× 100%, where I(n) is evaluated double
surface integral with n Gauss points.
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Figure 11: Relative errors for the evaluated weakly-singular boundary integral
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3.2 A Cube Undergoing Gravitational Loads
We consider a cube with dimensions of 10 mm× 10 mm× 10 mm [13], which is discretized

into 96 quadratic boundary elements with 290 boundary nodes. Two kinds of meshes of the cube
is presented in Fig. 12. The surface z= 0 is completely fixed. The elastic constants are chosen to
be the Young’s modulus E = 1000Mpa and the Poisson’s ratio ν = 0.

Figure 12: Mesh of a cube (a) elements being square, (b) elements being distorted

The gravitational force ρg3 =−10 Mpa/mm is considered. And the analytical solution for the
vertical displacement is

uz = ρg3
E

z
(
L− z

2

)
. (60)

Because the analytical solution is only quadratic with respect to z coordinate, 3 Gauss points
are used for the evaluation of vertical displacements along the direction z shown in Table 4. The
computational results of both square and distorted elements are in excellent agreement with the
exact solution.

Table 4: Vertical displacements of cube undergoing gravitational loads

Mesh z/mm 2.5 5 7.5 10

Exact –0.218750 –0.375000 –0.468750 –0.500000

Square elements SGBEM-div –0.218726 –0.374955 –0.468712 –0.499952

SGBEM-RIM –0.218726 –3.74973 –0.468741 –0.499966

Distorted elements SGBEM-div –0.218718 –0.374947 –0.468705 –0.499971

SGBEM-RIM –0.218727 –0.374977 –0.468732 –0.499943
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3.3 A Rotating Disk
In the second example, a disk with inner radius of 0.1m and outer radius of 0.2 m, rotating

at a constant angular speed ω = 10000 rpm (Fig. 13), is considered. The thickness of this disk is
t = 0.02m. The elastic constants are chosen to be the Young’s modulus E = 7000Mpa and the
Poisson’s ratio ν = 0.3; density ρ = 2800 kg/m3. All the boundary surface of this disk is free from
traction. The distribution of displacement in a rotating elastic disk

uR= 3+ ν

8
ρω2

[(
R2
i +R2

o

)
(1− ν)+R2

i R
2
o (1+ ν)

1
R2 −

1− ν2

3+ ν
R2

]
R
E

(61)

can be found in [23] where R is the radial coordinate, E the Young’s modulus and ν the Poisson’s
ratio. The boundary of the disk is discretized with 3 elements in radial direction, 16 elements
in circumferential direction, and 1 element in axial direction (Fig. 14). 4 nodes on the x-y plane
highlighted in Fig. 14 are fixed in z direction; 2 nodes on the x-z plane are fixed in y direction;
and 2 nodes on the y-z plane are fixed in x direction.

Figure 13: A rotating disk

Figure 14: SGBEM dense mesh of the rotating disk

Table 5 shows the computed radial displacements with the mesh shown in Fig. 14. “Exact”
denotes exact solutions by the Eq. (61). For each point, “Maximum error” of SGBEM-div and
SGBEM-RIM is computed with the exact solution as the reference. As can be seen, computational
results by SGBEM-div and SGBEM-RIM are in excellent agreement with the exact solutions.
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Table 5: Radial displacements by SGBEM-div and -RIM (10−3 m)

R/m 0.1 0.13 0.16 0.2

Exact 1.52431 1.43744 1.39697 1.33788

SGBEM-div 1.52349 1.43717 1.39624 1.33735

SGBEM-RIM 1.52352 1.43720 1.39628 1.33738

Maximum error –0.0538% –0.0188% –0.0523% –0.0396%

4 Numerical Examples with Cracks

In this section, numerical examples with cracked solids considering body forces are given. In
each example, after obtaining the displacement discontinuities for the quarter-point node using
the developed SGBEM method, displacement extrapolation is used to calculate the stress intensity
factors.

4.1 A Cuboid Hanging under Its Own Weight with a Through-Thickness Crack
Consider a solid cuboid with a crack of length 2a (see Fig. 15) under gravitational loads [24],

where l = 4, b= 1, h= 0.5l, a= 0.1, t= 0.2, ρg =−10. The elastic constants are chosen to be
E = 1000 and ν = 0.

Figure 15: A cracked cuboid hanging under its own weight

Computed stress intensity factors are presented in Table 6, in which “Error” means the rela-
tive error between SGBEM–div and FEM solution. For this through-thickness crack, KI results
computed by SGBEM-RIM are in better agreement with the FEM solution.
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Table 6: KI for the problem shown in Fig. 15

x = 0.1 x = –0.1

y/t 0.3 0.5 0.7 0.3 0.5 0.7

SGBEM-div 11.4655 11.4744 11.4654 11.4655 11.4744 11.4655

Error 1.64% 1.72% 1.64% 1.64% 1.72% 1.64%

SGBEM-RIM 11.2705 11.2658 11.2705 11.2705 11.2658 11.2705

FEM 11.28 11.28 11.28 11.28 11.28 11.28

4.2 A Rotating Disk with a through-Thickness Crack
A rotating disk with a through-thickness crack (a = 0.03 m) is computed shown in Fig. 16.

The rotating disk is identical to the disk in Section 3.3. Again, excellent agreement between the
computed SGBEM results and FEM results are shown in Tables 7 and 8.

Figure 16: SGBEM mesh of a cracked rotating disk

Table 7: KI of through-thickness crack on rotating disk (MPa
√
m)

z/t 0.25 0.5 0.75

SGBEM-div 36.497 36.540 36.494

FEM 36.150 36.303 36.150

Error 0.96% 0.65% 0.95%

Table 8: KI of through-thickness crack on rotating disks (MPa
√
m)

z/t 0.25 0.5 0.75

SGBEM-RIM 36.498 36.541 36.495

FEM 36.150 36.303 36.150

Error 0.96% 0.66% 0.95%
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4.3 A Rotating Disk with Semi-Elliptic Surface Cracks
This section gives a series of results for a cracked disk in Fig. 17 with various semi-elliptic

surface cracks, shown in Fig. 18. All the parameters of this disk are identical to that of disk in
Section 3, except for the semi-elliptic cracks. Various semi-elliptic cracks with a fixed depth (a =
0.004 m), and various semi-elliptic cracks with a fixed length/depth ratio (b/a = 2), are computed
using both SGBEM-div and SGBEM-RIM.

Figure 17: A disk with a semi-elliptic surface crack

Figure 18: Various semi-elliptic cracks with a fixed depth (a = 0.004 m), and various semi-elliptic
cracks with a fixed length/depth ratio (b/a = 2)

For simplicity, we give the stress intensity factor KI at point P, i.e., the deepest point of
various semi-elliptic cracks, as shown in Figs. 19, and 20. These results can be used for the
benchmark solutions for future studies.
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Figure 19: KI at the deepest point of semi-elliptic cracks with a fixed depth (a = 0.004 m)
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Figure 20: KI at the deepest point of semi-elliptic cracks with a fixed length/depth ratio (b/a = 2)

5 Conclusions

In this paper, weakly-singular SGBEM for fracture analysis of three-dimensional structures
considering rotational inertia and gravitational forces is developed. By using the divergence theo-
rem (div) or the radial integration method (RIM), rotational inertia or gravitational forces induced
domain integrals are transformed into boundary integrals. The derived boundary integral terms
with the gravitational and inertial forces are weakly-singular, which only influence the SGBEM
right-hand-side vector.

Several numerical examples of solids with and without cracks undergoing body forces are
studied. The calculated stress intensity factors and displacements show high accuracy compared
with reference solutions. The test of numerical integration also shows that only a small number
of quadrature points are needed.

The symmetric Galerkin boundary element method considering gravity and inertia loads
presented in this paper appears promising in the fracture analysis of structural components
with body forces, such as dams and rotating machineries. Furthermore, with some effort, the
methodology given in this study can also be extended to deal with domain integrals for SGBEM
with thermoelastic problems, which will be given in a subsequent work.
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Appendix

Kernel functions listed here are utilized in the numerical implementation of the SGBEM. Ker-
nel functions (A1)–(A3) appear in the displacement boundary integral equation; kernel functions
(A2)–(A4) appear in the traction boundary integral equation. μ is the shear modulus.

u∗pi (x, ξ)= 1
16πμ(1−υ) r

[
(3− 4υ) δip+ r,ir,p

]
(A1)

G∗p
ij (x, ξ)= 1

8π (1−υ) r

[
(1− 2υ) eipj+ eikjr,kr,p

]
(A2)

ϕ
∗p
ij (x, ξ)= δpj

1
4πr2

r,i (A3)

H∗
ijpq (x, ξ)= μ

8π (1−υ) r

[
4υδiqδjp− δipδjq− 2υδijδpq+ δijr,pr,q+ δpqr,ir,j− 2δipr,jr,q− δjqr,ir,p

]
(A4)
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