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ABSTRACT

Water level predictions in the river, lake and delta play an important role in flood management. Every year Mekong
River delta of Vietnam is experiencing flood due to heavy monsoon rains and high tides. Land subsidence may
also aggravate flooding problems in this area. Therefore, accurate predictions of water levels in this region are very
important to forewarn the people and authorities for taking timely adequate remedial measures to prevent losses
of life and property. There are so many methods available to predict the water levels based on historical data but
nowadays Machine Learning (ML) methods are considered the best tool for accurate prediction. In this study, we
have used surface water level data of 18 water level measurement stations of the Mekong River delta from 2000
to 2018 to build novel time-series Bagging based hybrid ML models namely: Bagging (RF), Bagging (SOM) and
Bagging (M5P) to predict historical water levels in the study area. Performances of the Bagging-based hybrid models
were compared with Reduced Error Pruning Trees (REPT), which is a benchmark ML model. The data of 19 years
period was divided into 70:30 ratio for the modeling. The data of the period 1/2000 to 5/2013 (which is about 70%
of total data) was used for the training and for the period 5/2013 to 12/2018 (which is about 30% of total data)
was used for testing (validating) the models. Performance of the models was evaluated using standard statistical
measures: Coefficient of Determination (R2), Root Mean Square Error (RMSE) and Mean Absolute Error (MAE).
Results show that the performance of all the developed models is good (R2 > 0.9) for the prediction of water levels
in the study area. However, the Bagging-based hybrid models are slightly better than another model such as REPT.
Thus, these Bagging-based hybrid time series models can be used for predicting water levels at Mekong data.
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1 Introduction

Water level fluctuations are one of the common events on the earth, essentially because of the
climate characteristics [1,2]. A flood can occur if a large amount of precipitation flows through the
channels, overflowing the banks and submerging normal dry land [3,4]. Flood can be caused by
heavy rainfall, rapid snowmelt, or a storm surge flooding inland and coastal areas. Thus, prediction
of changes in water level of surface water bodies is one of the important tasks for water resources
and flood management. However, the process of predicting water levels has always been one of the
most complex issues in hydrology, which cannot be easily calculated by conventional methods such as
NS_TIDE and auto-regressive method, which was used for short prediction of water levels in the
Yangtze Estuary [5]. In addition, due to the lack of required information and the effect of many
hydrological parameters on each other, the results obtained by these methods are not accurate enough
and have high uncertainty. In the last two decades, artificial intelligent methods or Machine Learning
(ML) methods have been used by many researchers in hydrological prediction and other hydrology
studies [6–9]. The advantage of using these methods is the high and acceptable accuracy of results
in a short time. Among ML models, Artificial Neural Network (ANN) models have been used in
most cases for the short-term prediction. Neuro-fuzzy and neural network techniques were used for
predicting sea level in Darwin Harbor, Australia [10]. In another study, the Support Vector Machines
(SVM) model was used to predict water levels in the Lanyang River in Taiwan for short term (1 to 6
hrs) [11]. The SVM least squares method was also used in predicting medium- and long-term runoff
[12]. Nguyen et al. [13] applied ML models such as LASSO, Random Forests and SVM to forecast
daily water levels at Thakhek station on Mekong River. They concluded that SVM achieved feasible
results (mean absolute error: 0. 486 m while the acceptable error of a flood forecast model required by
the Mekong River Commission is between 0.5 and 0.75 m).

Nowadays, ensemble and hybrid models are being used in many fields including hydrology instead
of single models to take advantage of combined capabilities of individual single models. A hybrid
model ANFIS-SO which is a hybridization of Adaptive Neuro-Fuzzy Inference System (ANFIS) and
Sunflower Optimization (SO) was successfully used to predict Urmia lake water levels in Iran [14].
Ghorbani et al. [15] developed a new hybrid model namely MLP-FFA, which is a combination of
Multilayer Perceptron (MLP) and Firefly Algorithm (FFA), for prediction of water level in Lake
Egirdir, Turkey. Yaseen et al. [16] developed a new hybrid model namely MLP-WOA, which is a
combination of MLP and Whale Optimization Algorithm (WOA), for prediction of Van Lake water
level fluctuation with monthly scale, and stated that the novel model MLP-WOA is a promising tool
for the prediction of water level, and performance of this model was better than other ML models
such as Self-Organizing Map (SOM), Random Forest Regression (RFR), Decision Tree Regression
(DTR), Cascade-Correlation Neural Network Model (CCNNM), and classical MLP.

In general, the aforementioned studies showed and proved the superiority of the hybrid models
compared with conventional models and single ML models in prediction of the water levels. Therefore,
in this study, we have developed and used novel time series Bagging based hybrid models namely
Bagging (RF), Bagging (SMO) and Bagging (M5P), which are a combination of the Bagging ensemble
technique and different base predictors like Random Forest (RF), Sequential Minimal Optimization
(SMO), and M5P for better prediction of the water levels at Mekong delta, Vietnam. Reduced Error
Pruning Trees (REPT) as a benchmark ML model was used to compare with novel Bagging based
hybrid models. The main difference and novelty of this study compared with previous works is that
it is the first time these novel hybrid models are developed and applied for prediction of historical
water levels, which can improve the accuracy of the water level prediction for better water resource
management. The daily surface water level data from 18 water level measurement stations located in the
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Mekang delta, Vietnam for the 19 years period (2000 to 2018) was used for the model’s study. Various
standard validation indicators such as Coefficient of Determination (R2), Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) were used to evaluate and compare prediction accuracy of
the models. The Weka software was used for processing the data and model development.

2 Materials and Methods

Methodology adopted in this study is presented in the flow chart in Fig. 1. In the first step, water
level data for the period 2000. 01. 01 to 2018. 12. 31 obtained from the 18 stations: An thuan, Ben
trai, Binh dai, Can tho, Cao lanh, Chau doc, Cho lach, Dai ngai, Hoa binh, Hung thanh, Long
look, My hoa, My tho, My thuan, Tan chau, Tra vinh, Vam kinh, Vam Nao located in Mekong
River delta (Vietnam) was used to construct training (70%) and testing (30%) datasets. In the second
step, the training dataset was used to train and construct the hybrid models namely Bagging (RF),
Bagging (SMO) SMO, Bagging (M5P), and REPT. In the hybrid models: Bagging (RF), Bagging
(SMO), and Bagging (M5P), the training dataset was firstly optimized by the Bagging; thereafter, the
optimal training dataset was used for prediction using base predictors namely RF, SMO, and M5P,
respectively. In the final step, the performance of the hybrid models was validated and compared using
tesing dataset and three statistical validation indicators: R2, RMSE, and MAE.

Figure 1: Methodology of water level prediction models
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2.1 Methods Used
2.1.1 Bagging

In the Bagging method, a subset of the main data set is given to each of the predictors. That is,
each predictor observes a portion of the data set and must build its model based on the same portion
of the data provided (i.e., the entire database is not given to each of the predictors) [17]. The Bagging
tree stands for Bootstrap aggregating (Bagging) [18,19], which is described in this section. The Bagging
algorithm consists of a set of basic models and operates in the following order [20]. Receiving training
set D with size N (number of samples of training data), as many as K new training set Di, with size
n < N, is produced, which is the result of uniform sampling and replacement of the original set D. As
we know, this type of sampling is known as Bootstrap sample. K different models are trained using
K subsets and finally form a final model. This final model is obtained in regression by averaging the
results of the models and in the classification by voting between the models. The Bagging tree is actually
the Bagging algorithm whose basic models are based on decision trees [21].

Input:

Sequence of N examples D < (x1, y1), . . . , (xN, yN) > with labels yie Y = (1, . . . ,L)

Distribution D over the N example

Integer K specifying number of iterations

Weak Learning algorithm Weak Learn (tree)

Do k = 1, 2, . . . , K

• Choose bootstrapped sample Di (n sample) by randomly from D.
• Call Weak Learn k with Di and receive the hypothesis (tree) ht.
• Add ht to the ensemble.

End

Test: Simple Majority Voting–Given unlabeled instance x

• Evaluate the ensemble (h1, . . . , hk) on x.
• Choose the class that receives the highest total vote as the final classification.

Among the inputs in the success of cumulative learning methods is the discussion of the diversity
of basic models as well as the accuracy of each model. As it is clear, if the basic models are not diverse
or so-called diverse, their combination is useless [22]. In the Bagging method, the use of different sets
from the original data set guarantees the diversity condition. On the other hand, a model can use
changes to its training dataset when it is unstable. Unstable means that small changes in the input
(training set) lead to large changes in the output of the model.

2.1.2 Random Forest (RF)

RF is a supervised learning algorithm used for both classification and regression [23]. In other
words, it is a modern type of tree-based method, which includes a multitude of classification and
regression trees. Also, one of the suitable non-parametric methods for modeling continuous and
discrete data is the DT method [24]. For example, a forest is made of trees, which means more resilient
forest. Similarly, the random tree algorithm makes decision trees on data samples, then predicts each of
them, and finally selects the best solution by voting. This is a group method that is better than a single
DT, because by averaging the result, it reduces over-fitting [25,26]. Each class is h (x, �k) for each input
instance, where x is an input instance and � tutorials are for the k tree. The �s are independent of each
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other but with the same distribution. For each sample x, each tree provides a prediction for sample x,
and finally the category with the highest number of tree votes on input x is selected as sample. This
process is called random forest [27]. RF algorithm can increase the prediction accuracy of individual
tree. In the individual tree, instability occurs with small changes in the training set that interfere with
the accuracy of the prediction in the experimental sample. But the grouping of a RF algorithm adapts
to change and eliminates instability [28]. In general, each tree is formed in 3 ways: (1) If “N” is the
number of states in the data set. The “N” mode is randomly sampled by inserting the original data; (2)
If there is a variable “M” and “m” is considered smaller than “M”. In each “m” node, the variable is
randomly selected from “M” and the best separation on this “m” variable is used to separate the node.
That “m” is considered a fixed variable; and (3) Each tree grows as large as possible and there is no
pruning [29].

2.1.3 Sequential Minimal Optimization (SMO)

SMO algorithm has the ability to be solved without any additional matrix repository and using
numeric optimization sections [30]. In fact, SMO breaks down quadratic programming subjects into
quadratic programming subtasks using Osuna’s theory to certify convergence [31,32]. The SMO
algorithm is dedicated to selecting α pairs for optimization. There are various methods to select these
ingredients to optimize. Hence, there is not “false” method to create this election, howbeit, the order
of these options can variate the rate of SMO convergence [33]. In general, the SMO model has two
important characteristics: An analytical method for solving the problem of both Lagrange coefficients,
and an innovative method for selecting optimization coefficients [34].

y1 �= y2 → α1 − α2 = k (1)

y1 = y2 → α1 + α2 = k (2)

where y specifies the target, α is the Lagrange coefficient, and k represents the negative value of the
constraints [35].

2.1.4 M5P

It should be explained at the outset that the decision tree for constructing predictions creates a
tree-like structure in that it first begins its work by using all the instructional samples and selects the
variable that performs the best prediction model. Tree branches are the result of a test performed by
the algorithm on intermediate nodes at each stage [36]. Predictions also appear on tree leaves [37].
M5P tree model has the ability to predict numerically continuous variables from numerical traits and
the predicted results appear as multivariate linear regression models on tree leaves [38]. The criterion
of division in a node is based on the selection of the standard deviation of the output values that
reach that node as a measure of error. By testing each attribute (parameter) in the node, the expected
reduction in error is calculated. The reduction in standard deviation is calculated by Eq. (1) [39]:

SDR = m/ |T | ∗ β (i) ∗
[
sd (T) −

∑∣∣Tj/T
∣∣ ∗ sd

(
Tj

)]
(3)

where SDR is the standard deviation reduction. T represents the series of instances that reach the
node, m is the number of instances that have no missing values for this attribute, β(i) is a correction
factor, and TL and TR are sets that result from division on this attribute. Tree pruning means removing
extra nodes to prevent the tree from over-fitting into the training data. The final step in building tree
models is smoothing to compensate for the inconsistencies that inevitably occur between adjacent
linear models in pruned tree leaves [40].
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2.1.5 Reduced Error Pruning Trees (REPT)

REPT model consists of two algorithms namely Reduced Error Pruning (REP) and the Decision
Tree (DT). In this method, the reason why both REP and DT algorithms are used is that DT is used to
facilitate the modeling process using training data when the output of the decision tree is high [41,42].
Also, the reason for using REPT algorithm is reduction of variance and decision tree error. On the
other hand, to reduce the variance, the REPT algorithm forms a decision and regression tree using
the division standard/criterion [43]. In general, the use of decision trees is a very specific method for
classification topics due to its simple structure. Another way to simplify DT is to reduce the use of tree
pruning, which can reduce the error due to variance [44]. REPT model after pruning trees is looking for
the lowest text and the most accurate subset. The performance of this model is relying on information
obtained from decline of variance and diminution of error pruning methods [45]. Therefore, there are
two methods for pruning trees before and after pruning. When the instances that reach a node are
less than the instructional data, that node is not split. As a result, the generalization error increases.
Because the development of the tree stops when the algorithm is constructed, this proceeding is named
before pruning [46]. But in the next stage after pruning, all the leaves of the trees develop and increase
and there is no error in the educational process. But sub-trees are found for pruning. So, each subset
of trees is replaced by a leaf. Because the specimens that are under the tree are trained as soon as a
leaf leads to an error, prune the sub-tree and use the leaves. But otherwise, they must be kept under
the tree [47].

2.1.6 Validation Indicators

To evaluate performance of the models used, their accuracy and validity are measured by matching
the measured and estimated values of output data [48–50]. Accuracy of the models is estimated based
on the training data and for model validation testing data is used [51]. Performance of the models was
evaluated using standard statistical criteria such as R2, RMSE and MAE [52,53]. The R2 indicates the
probability of correlation between the two data sets. This coefficient actually expresses the approximate
results of the desired parameter in the future based on a defined mathematical model that is consistent
with the available data [54–56]. The R2 indicates the explanatory power of the model. It indicates what
percentage of the changes in the dependent variable are explained by the independent variables [57,58].
A method of estimating the amount of error is the difference between the estimated values and what is
estimated. RMSE is almost everywhere positive (not zero) for two reasons: first, because it is random,
and second, because the estimator does not count information that can produce more accurate
estimates [59]. So, this index, which always has a negative value, the closer it is to zero, the lower
the error rate. RMSE includes estimator variance and bias [60,61]. For a non-bias estimator, RMSE
is the variance of the estimator [62,63]. Like variance, RMSE has the same units of measurement
as squares of estimated values [64,65]. Compared to the standard deviation of the second root from
RMSE, presents the root mean square error or the root mean standard deviation (square root mean
square error) [66]. Due to various environmental factors commonly known as noise, the measurement
operation on each variable may be associated with an error that results in an inaccurate measurement
operation. Generally, in the report of precise and formal works, the amount of measurement error is
written together with the measured value of the relevant parameter. By reducing the ambient noise,
calibrating the instruments used, repeating the test process and measuring the parameters several
times, the amount of error can be significantly reduced, but it can never be reduced to zero [67].
Therefore, the MAE method is used. The method for estimating the error rate is the average difference
between the predicted value and the actual value in all test cases [68,69]. This error is the average
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prediction error [70]. The formulas of the methods described below are listed as equations [71–73]:

RMSE =
√(∑

(Ksi − Koi)
2
)

/N (4)

MAE = 1/N
∑

|Ksi − Koi| (5)

R2 =
(∑ (

Koi − K̄o

) (
Ksi − K̄s

))2

/
(∑ (

Koi − K̄o

) ∑ (
Ksi − K̄s

))2

(6)

where N is the total number of data, Ksi is the predicted water level data, Koi is the measured water level
data, K̄o is the average value of the measured water level data, K̄s is the average value of the predicted
water level data.

2.2 Data Used
In this study, the data of daily water level was collected from 18 stations located in the Mekong

River delta where floods are one of ruinous normal risks in the region, which has an incredible force
and potential to hurt characteristic territories and people [74,75]. Water in this delta is descending from
the rivers originating from Tibetan plateau and flowing into South Vietnam Sea through distributary
channels of Mekong Delta. The study area is a part of the Mekong Delta in the provinces of An Giang,
Dong Thap, Can Tho, Tien Giang, Ben Tre, Vinh Long, Tra Vinh and Soc Trang (Vietnam) (Fig. 2).
The study area is flat (0–2 m) and covers an area of over 30000 km2. Crops here are mainly wet rice
and fruit trees and are currently affected by drought and saltwater intrusion. The Mekong River flow
at lower reaches in the delta comes mainly from upstream snow melting and rainfall which fluctuates
mainly due to seasonal changes. Water levels in the area are also affected by local rainfall and tides
near coast. The climate in this area has two basic seasons: the rainy season from May to September
and the dry season from October to March. The average daytime temperature is 32 degrees, at night 24
degree (http://hikersbay.com/climate/vietnam/mekongdelta?lang=vi). The water level in the study area
depends mainly on the water volume of the Mekong River Basin. According to monitoring data from
18 water level measurement stations during 19 years, the area fluctuates in typical water level with an
annual repeating cycle with the highest water level rising in January and December, the lowest water
level in June-July. The land cover changes in the Mekong River basin also cause changes in the runoff
pattern and morphology of the area thus impacting water level fluctuation in the study area.

For this study, the surface water level data of the Mekong Delta, Vietnam for 19 years period
(01/01/2000–31/12/2018) was used in the modeling. This data was collected from the National Centre
for Hydro-Meteorological Forecasting, Vietnam from 18 stations located in 18 tributaries namely An
thuan, Ben trai, Binh dai, Can tho, Cao lanh, Chau doc, Cho lach, Dai ngai, Hoa binh, Hung thanh,
Long look, My hoa, My tho, My thuan, Tan chau, Tra vinh, Vam kinh, Vam Nao (Fig. 2). Table 1
shows the statistical analysis of the daily water level data. Maximum water level (5.04 m) was recorded
at the Tan Chau station whereas the minimum water level (−0.51 m) at the Vam Kinh station. For
training the model, data from 1/2000 to 5/2013 was used and for testing/validating the models from
5/2013 to 12/2018 was used, which is about 70% and 30%, respectively, of total water level data. This
training/testing ratio (70/30) selected was based on our experience and published literature [76,77]. In
this study, we have developed and used the time series models; thus, the date-time (day, month and
year) was used as input variables, and the output is the daily water level.

http://hikersbay.com/climate/vietnam/mekongdelta?lang=vi
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Figure 2: Location of 18 surface water level measurement stations

Table 1: Data used in this study

Stations Lat. Log. Max (cm) Min (cm) Standard
deviation
(cm)

Mean
(cm)

Median
(cm)

Skewness
(cm)

An thuan 9°59'00" 106°36'00" 72 −48 22.871 8.482 8 0.06
Ben trai 9°53'04" 106°31'16" 68 −45 22.265 8.618 8 0.065
Binh dai 10°12'08" 106°42'20" 71 −44 21.995 12.212 12 0.018
Can tho 10°02'00" 105°47'30" 140 −29 30.845 46.837 45 0.248
Cao lanh 10°24'40" 105°38'40" 249 −17 48.616 87.079 78 0.678
Chau doc 10°42'20" 105°07'30" 489 −4 104.492 149.919 110 1.023
Cho lach 10°16'40" 106°07'30" 110 −37 26.233 33.198 33 0.057

(Continued)
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Table 1 (continued)

Stations Lat. Log. Max (cm) Min (cm) Standard
deviation
(cm)

Mean
(cm)

Median
(cm)

Skewness
(cm)

Dai ngai 9°47'30" 106°02'00" 89 −40 23.147 20.634 20 0.08
Hoa binh 10°17'30" 106°35'30" 63 −48 22.013 9.361 10 −0.044
Hung
thanh

10°39'40" 105°46'40" 354 −8 66.677 103.918 82 1.197

Long
xuyen

10°22'40" 105°27'00" 256 −13 55.379 97.622 85 0.613

My hoa 10°13'20" 106°20'40" 82 −47 24.452 15.722 16 −0.004
My tho 10°21'00" 106°22'00" 89 −42 24.186 19.502 20 −0.003
My thuan 10°6'00" 105°54'00" 145 −37 31.866 42.322 41 0.343
Tan chau 10°50'00" 105°11'00" 504 0 120.325 169.351 125 0.843
Tra vinh 9°58'40" 106°21'00" 84 −46 24.279 17.272 17 0.02
Vam kinh 10°16'00" 106°45'00" 156 −51 25.624 1.792 1 1.051
Vam nao 10°34'30" 105°21'24" 371 1 81.684 129.495 101 0.862

3 Results and Discussion

Validation of the models was done using different statistical indicators namely RMSE, MAE and
R2 on both training and testing dataset. While the validation of the models on training dataset indicates
the goodness of fit of the models with the data used, on the other hand the validation of the models
on testing dataset indicates the predictive capability of the models. In this study, hyper-parameters of
each model has been selected by trial-error process to train the models as shown in Table 2. Validation
and comparison results of the models are presented in Fig. 3 and Table 3.

Table 2: Information of hyper-parameters used for each model of this study

No. Hyper-parameters Models

RBFT Bagging (RF) Bagging (SMO) Bagging (M5P)

1 Batch size 100 100 100 100
2 Debug False False False False
3 Do not check capabilities False False False False
4 Num decimal places 2 2 2 3
5 Ridge 0.01 - - -
6 Num function 2 - - -
7 Num threads 1 - - -
8 Pool size 1 - - -
9 Scale optimization option - - - -
10 Seed 1 1 1 1
11 Tolerance 1.0E−6 - - -
12 Bag size percent - 100 100 100
13 Use CGD False - - -

(Continued)
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Table 2 (continued)

No. Hyper-parameters Models

RBFT Bagging (RF) Bagging (SMO) Bagging (M5P)

14 Break Ties Randomly - - - -
15 Calc out of bag - False False False
16 Compute

Attibutrlmportance
- - - -

17 max Depth - - - -
18 num Execution slots - 1 1 1
19 Store out of bag

predictions
- False Flase Flase

20 num lterations - 10 100 10
21 Output out of bag

complexity statistics
- False False False

22 Print classifiers - False False False

Figure 3: R2 analysis of the models using (a) training and (b) testing datasets
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Table 3: RMSE, MAE analysis of the models using dataset

Models REPT Bagging (RF) Bagging (SMO) Bagging (M5P)

RMSE
(cm)

MAE
(cm)

R2 RMSE
(cm)

MAE
(cm)

R2 RMSE
(cm)

MAE
(cm)

R2 RMSE
(cm)

MAE
(cm)

R2

Training

An thuan 5.676 4.351 0.938 6.034 4.570 0.980 5.665 4.335 0.939 5.550 4.268 0.941
Ben trai 5.348 4.156 0.942 5.929 4.484 0.981 5.455 4.160 0.940 5.359 4.111 0.942
Binh dai 5.216 3.994 0.943 5.833 4.495 0.981 5.338 4.123 0.941 5.236 4.065 0.943
Can tho 4.810 3.705 0.976 6.839 5.413 0.991 4.778 3.651 0.977 4.704 3.609 0.977
Cao lanh 4.678 3.603 0.992 7.127 5.525 0.996 4.509 3.395 0.993 4.446 3.396 0.993
Chau doc 4.119 3.209 0.999 6.382 4.974 0.991 3.601 2.618 0.990 4.451 3.526 0.998
Cho lach 5.731 4.465 0.954 6.668 5.150 0.985 5.376 4.209 0.958 5.468 4.225 0.958
Dai ngai 5.452 4.233 0.945 6.075 4.765 0.981 5.502 4.274 0.944 5.493 4.282 0.944
Hoa binh 5.890 4.591 0.923 6.127 4.707 0.976 6.001 4.674 0.924 6.006 4.683 0.924
Hung
thanh

3.268 2.447 0.998 4.896 3.835 0.999 2.056 2.977 0.989 3.188 2.400 0.998

Long
xuyen

4.122 3.171 0.995 7.030 5.611 0.997 3.968 2.994 0.995 3.879 2.973 0.996

My hoa 5.986 4.656 0.941 6.707 5.090 0.981 5.800 4.608 0.941 5.986 4.625 0.941
My tho 5.695 4.421 0.945 6.512 5.096 0.982 5.606 4.307 0.947 5.595 4.316 0.948
My thuan 5.286 4.079 0.975 6.683 5.254 0.990 5.035 3.974 0.976 5.064 3.933 0.977
Tan chau 4.582 3.499 0.999 7.037 5.368 0.991 3.786 2.655 0.997 4.788 3.644 0.999
Tra vinh 5.407 4.150 0.948 6.675 5.049 0.982 5.428 4.141 0.948 5.340 4.103 0.949
Vam kinh 5.820 4.295 0.954 5.675 4.332 0.985 5.877 4.294 0.954 5.805 4.243 0.955
Vam nao 4.278 3.267 0.998 6.787 5.334 0.999 3.881 2.867 0.998 3.751 2.819 0.998

Testing

An thuan 6.290 4.741 0.924 3.286 2.468 0.930 5.748 4.248 0.933 5.688 4.268 0.938
Ben trai 6.300 4.740 0.917 3.173 2.400 0.927 5.502 4.079 0.937 5.358 4.023 0.939
Binh dai 5.925 4.602 0.925 3.102 2.354 0.928 5.669 4.274 0.937 5.376 4.056 0.939
Can tho 6.589 5.101 0.951 3.106 2.382 0.952 5.040 3.809 0.971 4.971 3.813 0.972
Cao lanh 6.811 5.025 0.970 3.228 2.457 0.968 5.847 4.106 0.978 5.710 4.076 0.979
Chau doc 5.306 4.148 0.996 3.520 2.656 0.994 4.008 3.001 0.998 4.722 3.662 0.997
Cho lach 6.562 5.059 0.931 3.396 2.606 0.932 5.116 4.706 0.945 5.724 4.345 0.947
Dai ngai 6.414 4.971 0.921 3.250 2.491 0.930 5.345 4.067 0.946 5.272 4.010 0.946
Hoa binh 6.380 4.913 0.917 3.473 2.649 0.924 5.827 4.476 0.935 5.593 4.277 0.936
Hung
thanh

4.132 3.142 0.994 2.708 1.898 0.992 3.064 2.132 0.997 3.307 2.475 0.996

Long
xuyen

5.670 4.470 0.986 3.050 2.333 0.980 4.566 3.442 0.991 4.574 3.509 0.991

My hoa 7.176 5.447 0.909 3.502 2.669 0.922 6.527 4.701 0.928 6.402 4.597 0.928
My tho 6.860 5.273 0.916 3.362 2.573 0.925 6.284 4.857 0.933 6.088 4.671 0.933
My thuan 6.444 4.971 0.946 3.321 2.550 0.944 5.659 4.340 0.961 5.545 4.235 0.960
Tan chau 5.876 4.590 0.997 3.897 2.883 0.995 4.432 3.359 0.998 5.035 3.854 0.998
Tra vinh 6.558 5.061 0.921 3.242 2.447 0.921 5.914 4.450 0.937 5.807 4.429 0.938
Vam kinh 6.042 4.592 0.919 3.453 2.479 0.929 6.065 4.613 0.928 5.491 4.164 0.933
Vam nao 5.921 4.645 0.992 3.268 2.501 0.990 4.250 3.220 0.996 4.301 3.301 0.996
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In the case of training dataset (Fig. 3a and Table 3), it can be observed that in the case of REPT
model, the R2 values vary from 0.923 to 0.999, the RMSE values differ from 3.268 to 5.986 cm, and the
MAE values are from 2.447 to 4.656 cm, for the different stations. With Bagging (RF), the R2 values
range from 0.976 to 0.999, the RMSE values differ from 4.896 to 7.127 cm, and the MAE values are
from 3.835 to 5.611 cm, for the different stations. Regarding Bagging (SMO), the R2 values differ from
0.924 to 0.998, the RMSE values differ from 2.056 to 6.001 cm, and the MAE values are from 2.618
to 4.674 cm, for the different stations. For Bagging (M5P), the R2 values are from 0.924 to 0.999, the
RMSE values differ from 3.118 to 6.006 cm, and the MAE values are from 2.4 to 4.683 cm, for the
different stations. From these results, we can see that in all stations, all models have a great goodness
of fit with the data used as the R2 values are higher than 0.9 and the RMSE and MAE values are
smaller than standard deviation of these indicators (Table 3).

In the case of testing dataset (Fig. 3b and Table 3), it can be seen that the R2 values vary from
0.909 to 0.997, the RMSE values differ from 4.123 to 7.176 cm, and the MAE values are from 3.142
to 5.447 cm, for the different stations in the case of REPT model. For Bagging (RF), the R2 values
differ from 0.921 to 0.995, the RMSE values differ from 2.708 to 3.897 cm, and the MAE values are
from 1.898 to 2.883 cm, for the different stations. With Bagging (SMO), the R2 values range from
0.928 to 0.998, the RMSE values differ from 3.064 to 6.527 cm, and the MAE values are from 2.132 to
4.857 cm, for the different stations. Regarding Bagging (M5P), the R2 values are from 0.928 to 0.998,
the RMSE values differ from 3.307 to 6.402 cm, and the MAE values are from 2.475 to 4.671 cm, for the
different stations. Based on these results, it can be seen that all models have good predictive capability
for prediction of water level in all stations as R2 values are higher than 0.92 and the RMSE and MAE
values are smaller than standard deviation of these indicators (Table 3). As an example, Figs. 4 and 5
shows the actual water level and predicted water level values using different hybrid models at the An
Thuan station. Fig. 6 shows the R2 plots of the hybrid models at the AnThuan station.

Figure 4: Values of water level predicted from the Bagging (M5P) using training dataset
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Figure 5: Values of water level predicted from the Bagging (M5P) using testing dataset

Figure 6: R2 plots of the models at the An Thuan station: (a) REPT, (b) Bagging (RF), (c) Bagging
(SMO), and (d) Bagging (M5P)
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In general, the performance of all the models developed and used in this study is good for the
prediction of water level in the study area. However, it can be observed that performance of the Bagging
based hybrid models is slightly better than REPT based on the comparison of the R2, RMSE and MAE
values on both training and testing datasets.

Good performance of the Bagging based hybrid models used in this study can be explained that
in these hybrid models, the original training dataset was optimized during the training process by
using ensemble like Bagging. Optimal training datasets generated were then used in training different
classifiers. Finally, a vote is taken among these classifiers, and the class with the highest number of
votes is considered the final class for the final classification [78–80]. On the other hand, one of the
main advantages of Bagging algorithm is that from among the samples, the mentioned algorithm can
select important samples, important samples are samples that increase the diversity in the data set.
Using a balanced distribution of weak and hard data, which makes the data set, difficult instances are
identified by out-of-bag handlers, so that when a sample is considered “hard” it is incorrectly classified
by the ensemble. This hard data is always added to the next data set while easy data has little chance
of getting into the dataset [20,81–83]. Performance of the Bagging based hybrid models developed
in this study is slightly better than other ML models such as LASSO (R2 = 0.911), Random Forest
(R2 = 0.936) and SVM (R2 = 0.935) carried out by Nguyen et al. [13] on Mekong River.

4 Concluding Remarks

In this study, we have developed and applied novel time-series Bagging-based hybrid models:
Bagging (RF), Bagging (SMO), Bagging (M5P), and REPT to predict the daily historical water level
data in the southern part of the Mekong delta, Vietnam. In total 4851 surface water level data were
collected from the 18 water level measurement stations during 19 years period (1/2000–5/2018) for the
models development. Data of 13 years and 5 months period (1/2000–5/2013) was used for training the
models and data of 5 years 7 months period for testing the models, which is about 70% and 30% of
total data collected during 19 years period. Results indicated that all the studied models performed
well in predicting historical water levels but Bagging-based hybrid models are slightly better than
another benchmark ML model namely REPT. Thus, Bagging-based hybrid models are promising
tools, which can be used for accurate prediction of water levels. These models can also be used for the
prediction or forecasting future water levels by adding meteorological data as an input parameter. In
this study, local variations due to cyclonic rains have not been considered in the model studies. Model
development is continuous process. New hybrid models may continue to be developed considering
local geo-environmental and climate change effects for the further improvement in the performance
of predictive models.
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