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ABSTRACT

Degenerate versions of special polynomials and numbers applied to social problems, physics, and applied math-
ematics have been studied variously in recent years. Moreover, the (s-)Lah numbers have many other interesting
applications in analysis and combinatorics. In this paper, we divide two parts. We first introduce new types of
both degenerate incomplete and complete s-Bell polynomials respectively and investigate some properties of them
respectively. Second, we introduce the degenerate versions of complete and incomplete Lah-Bell polynomials as
multivariate forms for a new type of degenerate s-extended Lah-Bell polynomials and numbers respectively. We
investigate relations between these polynomials and degenerate incomplete and complete s-Bell polynomials, and
derive explicit formulas for these polynomials.
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1 Introduction

For nonnegative integers n, k, s such that n >k, the s-Lah number Lg(n, k) counts the number
of partitions of a set with n + s elements into k + s ordered blocks such that s distinguished
elements have to be in distinct ordered blocks [I1-5]. When s = 0, the Lah numbers appears
non-crossing partitions, Dyck paths as well as falling and rising factorials [6]. As multivariate
forms for ordinary Bell polynomials and Stirling numbers of the second kind, respectively, both
the complete and incomplete Bell polynomials play important role in combinatorics and number
theory. Recently, many mathematicians have been studying various degenerate versions of special
polynomials and numbers as well as enumerative combinatorics, probability theory, number theory,
etc. [7-17]. In [7], as an example considering the psychological burden of baseball hitters, it
well expresses the starting point of degenerate special polynomials and numbers being studied
by many scholars. Also, both the complete and incomplete Bell polynomials are multivariate
forms for Bell polynomials and Stirling numbers of the second kind, respectively. Beginning with
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Bell [18], these polynomials have been studied by many mathematicians [1,16,19,20]. Recently,
Kwon et al. [16] introduced the degenerate incomplete and complete s-Bell polynomials and Kim
et al. [20] introduced the incomplete and complete s-extended Lah-Bell polynomials, respectively.
With this in mind, we want to study the degenerate versions of complete and incomplete Lah-Bell
polynomials as multivariate forms for a new type of degenerate s-extended Lah-Bell polynomials
and numbers respectively. In Section 2, we consider new types of degenerate incomplete and
complete s-Bell polynomials respectively different from those introduced in [16] for our goal. We
study several properties and explicit formulas for them. In Section 3, we define both degenerate
incomplete and complete s-extended Lah-Bell polynomials associated with a new type of degener-
ate s-extended Lah-Bell polynomials respectively, and derive relations between these polynomials
and degenerate polynomials in the first part. We also investigate explicit formulas for degenerate
complete and incomplete s-extended Lah-Bell polynomials, respectively.

First, we introduce some definitions and properties we needed in this paper.
For a nonnegative integer s, the s-Stirling numbers Sés) (n,k) of the second kind are given by
the generating function

oo

1. " )
Ee“(e’— l)k:ZkS,(ls)(n—i—s,k—i—s)a, (see [15,16]). (1)
n=

When s =0, Séo) (n,k) = S»(n, k) are the Stirling numbers of the second kind which are the
number of ways to partition a set with n elements into k non-empty subsets.

From (8), it is to see that [15,16] the generating function of the s-Bell polynomials is

ad " t
Z bel® (X)—= @Dt 2
e n!

When x = 1, bel (1) = bel'® = Yo Sa(n+s,k+s) are called the s-bell numbers.

When s =0, bel,(lo) (x) = bel,(x) are the ordinary Bell polynomials.

Furthermore, the incomplete s-Bell polynomials.

Bysk+s(B1, B2, :v1,v2,--+) are given by the generating function

n

1/ NS Ay & t
E(Zﬂ[ﬁ) <Zvi+15) :ZBI’H—S,k-i—S(ﬁl:ﬂZ)'“:v15U2a"')Ea (See [16]) (3)
TN =1 ) ) n=k ’

i=0

When s = Oa Bﬂ+0,k+0(ﬂ1:132a s VLV, ) = Bn,k(ﬁlaﬂZa U aﬁn—k+1) are the incomplete Bell
polynomials. From (10), we obtain immediately that [16]

s nt (B B\ B\
B i BrBay v, ) = [W(ﬂ (5) <§> ] )

A(nk,s)
s! V1 5o 1%) S V3 53
X = = = cee ],
|:s0!51!52!---(0!> (1!) (2!) :|
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where A(n,k,s) denotes the set of all nonnegative integers (k;);>1 and (s;);>o such that

Zkizk, Zsizs and Zi(ki+si)=n.

i>1 i>0 i>1

The combinatorial meaning of the incomplete s-Bell polynomials is in the reference [18].

The complete s-Bell polynomials Bff)(xl,xz,--- > ¥1,)2,---) are given by the generation
function
. —_— —_— S oo DECEEY — R
exp(;ﬁzﬁ>(2(;vl+1 i!) —2}:{3,1 (B1, B2, vi,v2,eo0) s (see [18)), &)
= 1= n=

where exp(r) =e'.

When s =0, B,SO) (B1,B2,+-:v1,v2,-++) = Bu(B1, B2, -+, Bn) are the complete Bell polynomials.

Let n, k, s be nonnegative integers with n > k. It is well known that [2] an explicit formula
and the generating function of s-Lah Bell L;(n, k) are given by, respectively

n (n+2s—1

and

L\ 1\ & "
E(:) <:) ankLs(n,k)m- (6)

When s=0, Lo(n,k) = L(n, k) are the unsigned Lah-numbers.

Kim et al. [2] introduced the s-extended Lah-Bell polynomials Lb, s(x) given by the generating
function

ot 1 2s 0 tn
e 1 : = ZO Lbn,s(x) ﬁ (7)
n=

When x =1, Lb, (1) = Lb,s = ZZ=0 Ly(n,k) (m > 0) are called the s-extended Lah-Bell
numbers. When s=0, Lb, o(x)= Lb,(x) are the Lah-Bell polynomials.

For X € R, the degenerate exponential function is defined by

SW=0+F and a0 =Y (D, (see [3—11]). ®
n=0 ’

where (x)p, =1 and (X)) =x(x —2)(x—=21)--- (x — (n—1)X).
The degenerate fully Bell polynomials are given by

er(x(ex (0 = 1) = Y Bels (0=, (see 1], 9)

n=0
When A — 0, Bel,; (x) = bel,(x).
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In addition, the partially degenerate Bell polynomials are given by

(e () — 1)) =ZBeln’;\(x)%, (see [12]). (10)
n=0 ’

When A — 0, Bel,; (x) = bel,(x).

2 A New Type of Degenerate Complete and Incomplete s-Bell Polynomials

In this section, we introduce new types of degenerate complete s-Bell polynomials and degen-
erate incomplete s-Bell polynomials different from (9) and (10), respectively. We also give some
identities and explicit formulas for these polynomials.

For our goal, we introduce a new type of the degenerate extended s-Bell polynomials
defined by

e (x(e! = 1)1 = el (9. (11)
n=0

When x =1, bel,; = bel, (1) are called the degenerate extended s-Bell numbers.
When lim; ¢ e, (x(e' — 1))e; (1) = exp(x(e’ — 1)) exp(r) =Y 2 beln,s(x)%.

When s =0, bel,(x) = bel,;(x) are the degenerate Bell polynomials.

Theorem 2.1. For n, s e NUO, we have

belysp(¥) =) (I’;) (Dt ()n-maSa(m. )x*.

m=0 k=0

Proof. From (1), (8) and (11), we observe that

Y bels, (x)t—n, = ex(x(e — 1)e} (1) (12)
n=0 -

> 1

=2 M 5 =1 o
k=0

=2 X Y Sa0mb)— > () i
k=0 m=k j=0

oo m o o0
=2 2 WD S20m ) — 3 (5); F
m=0 k=0

_ =0

n

- Z ( Z Z (;) (D 5. (9)n—mS2(m, k)xk) ’%

n=0 “m=0k=0

By comparing with the coefficients of both side of (12), we get the desired result.
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Theorem 2.2. For n, s NUO, we have

X k—m
k 1 -1
beln.sn () = Z Z Z (Z) <m)mn_h (i %xk .

k=0 h=0 m=0

Proof. From (8) and (11), we observe that

Y belys, (X):;n, =ex(x(e' = 1)e; (1) (13)
n=0 )

=Y e~ e
k=0 ’

[ "
DO
J: h=0 ’

00 k 00
= Z(Dk,kx"ki! ZO (Z) =Dy
k=0 m=

J=0

00 oo n k k—m n
- Z <Z Z Z (Z) <:;>m”h(s)h,x —(1)1(,;\(/;1) xk) !

_‘.
n=0 "k=0h=0m=0 -
By comparing with the coefficients of both side of (13), we get the desired result.

First, we define a new type of the degenerate complete Bell polynomials B:(B1,B2,- -, Bn)
associated with the degenerate Bell polynomials bel, ; (x) by

o0 [h o0 ln

ex(Zﬁhﬂ:ZW;(m,ﬁz,--- B (14)
h=1 n=0

and a new type of the degenerate incomplete Bell polynomials WnA (B> B2, -+, Bu—iy1) associated

with some degenerate Stirling numbers defined by

n

1 [ee] I\ k o]
H(l)k,k(hZﬁhQ = Zk Wi (BL. B a,3n—k+l)%, (n>k>0). (15)
=1 n=

Theorem 2.3. For n> k>0, we have

W (B1,Bas- -+ Bn) = 1

Wi B, B2 B =D (DkaBuk(Br, B+ Buiy1) if n=1.

k=1

In particular, we have W(x,x,---,x) = bel, ;. (x).
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Proof. From (3), (4) and (14), we have

o0 n o0 h o0 1 [ele) hN\ k
> Wi B Ba. ,ﬁn% =€A(Zﬁh%) =1 +Z<1>kw(2ﬂh%) (16)
n=0 ’ h=1 ’ k=1 " M=l ’

n

o0 o [
=14+ s Y Bui(Br.Bo. Bn—ter1)

k=1 n=k

=1 + Z (Z(l)k,ABn,k(,Bbﬁb Tt 7:811—]{—{—1)) !

_'.
n=1 “k=I n
Therefore, by comparing with coefficients of both sides of (16), we have the desired result.

In particular, from (16), we have

X h

- " t - "
2(:) Waex, . x)—=e (xz ﬁ> =en(x(e' — 1) = Zobeln,x(x)a- (17)

h=1

Thus, by comparing with coefficients of both sides of (17), we have
Wnk(x,x,...,x) = bely (x).

In next theorem, we obtain a new type of degenerate Stirling numbers of second kind
(D S2(n, k).

Theorem 2.4. For n> k>0, we have

Wi (B, Bas- - ) =1
W;(ﬁ]:ﬂz;..-,ﬂn)zzWr)l:k(ﬂl,lgz’... ’:Bn—k-f—l) if n>1.
k=1

In particular, we get W, (1,1,...,1) = (1)x;,S2(n, k).

Proof. From (8), (14) and (15), we observe that

o0

00 n © h 1 > N\
ZO W,i‘(ﬂl:,BZa"' ’ﬂn)% :ex(;ﬂh%) Z;E(l)kx(;ﬂh%> (18)

n

o0 o0
t
=1+ ZZ W;?,k(ﬂlaﬁza e an—k—i—l)E

k=1n=k

n

oo n
t

n=1 k=1

Therefore, by comparing with coefficients of both sides of (18), we have what we want.
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In addition, from (18), we get

o0 1 o
2 WL L 1) =Dz = D = e Y S201.k).
n=k n=k

Thus, we have ij(l, L, D)= aS2n,k).

Next, for A € R, we consider a new type of degenerate incomplete s-Bell polynomials
defined by

1 (& M\F & MN\°
Wiy hews (Bl Base e 1V v, 0) = k—!(Z(l)k,Aﬂhh—!> (Z(l)m,/\vmﬂﬁ) : (19)
h=1

m=0
From (4) and (19), we have the following explicit formula
For n> k>0, we have
W,i\_*_x,k_,_s(,glaﬂb"' : Ula”Z"“) (20)

n

o
t
= Buskers((Dea B D Bar - (Doawr, (D1, )
n=k )

nt B\ Drabr )
= 2 [kl!kzz-..< T ) ( 2! ) ]

A(nk,)\)

! MWoavi \ [/ Davm "
x
solsy!e-- 0! 1! ’

where A(n,k,s) denote the set of all nonnegative integers (k;);>1 and (s;);>1 such that

Zkizk, Zsizs and Zi(ki+si)=n

i>1 i>0 i>1

Naturally, we define a new type of the degenerate complete s-Bell polynomials by

[e'e] th o0 m s
WM (B1, Bay - v, 02,0 ) =€ <hZ ,Bhﬁ) ( Z()(Dm,kvm+l %> , 21
=1 m=

where L €R and n, ke N with n> k.
We note that

lim WO*By, o, v1,v2,---) = BY (B, Bay -+ 1 V1,12, -).
A— 00

From (19) and (21), we note that
WI/ES),)\(/QDIB29 VL, V2,0 ’) = ZZ:O W;);_A'_S,k_i_s(ﬂl::BZ) iV, V2,0 )
Theorem 2.5. For n, k, s> 0 with n> k, we have

Wi sws(LL s L) = (D Sa(n k)es (1),
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Proof. From (1), (8) and (19), we have

[l’l
Z ks (L L L) = (22)
1 /& A M\ °
=E(};<1)k,%) (n;mm,%)

= <1>H—(e —Des (1) = Z(l)msz(n ke (0).
n=k

Therefore, by comparing with coefficients of both side of (22), we obtain the desired result.
In Theorem 2.5, we obtain a new type of degenerate s-extended Stirling number of second.

Theorem 2.6. For n> k>0, we have

n
, (Dpyby+- by 1K
W}’Eé)’k(ﬂlalg27"':vlavzv"'):n!(Z Z Z bi'b;'b];c'

k=0 by +2by+---+kbg=k ¢ +cat-+cs=n—k

BN (B2\" B\ T Deinver,
i 20 k! cileal--oe! )
Proof. By using (8), we observe that

o] h o] 1 o] I\ k
(g ) = X Do ( ) 03
h=1 ) k=0 T N =1 ’
o h
_1+(1)1A1'<Z/3hh,)+( )2A2,<Z,3h;,) +W3ag (Zﬂhh,)

=1+ (D), )»_ﬂl“‘ ((1)1 A_@+( )25 —ﬂ—l)l

11! 11 2! 2' 11!
B3 12828, R
((1mﬁ§+< 251+ Wiz )0+

_i Z (1)b1+bz+~~~+bk,kk! & by & b2”' @ bkf
- bbbt \11) \2 k) kU

k=0 by +2by+--+kby=k

and

(;am,wmﬂ%)ez > cl'cz' (H(l)c,m,ﬂ) (24)

Jj=0 c1t+crt-tes=j
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From (23) and (24), we get

(Z,Bh_> > ((l)m,xvmﬂl%) (25)
1) = !
Sy (Dpy -ty ikt (BN B2\
(Y % > S () (%)

k=0b; +2b2+~-~+kbk=k c1+er+-+es=n—k

...... B Tl Daaven, |
k! cilea!-- el n’

On the other hand, from (21), we have

o h n
eA(Zﬁ;%)(Z(l)mva—) Z N IRTTRE (26)
2Py |

m=0

Thus, by comparing with coefficients of (25) and (26), we have what we want.

Next, we consider the extended degenerate complete s-Bell polynomials defined by the
generating function

m

o0 th o0 t Ky o0 tn
ex (z§ :,311E)< » (1>m,wm+%) =) :W,ES)’A(Z|,31,,32,"'3Vlavza"')ﬁ- 27
h=1 | : :

m=0 n=0

Theorem 2.7. For n> k>0, we have

W/ES)’)\(Z |ﬁ1aﬁ2a"':vlsv2’ )_ZZ n+g~k+q(131aﬁ2"":v15v2>"')'

When z=1, we get
W],Es)’)\(l|ﬁl,,82,“‘:VI,UZ,“‘):Zngﬂqkk+v(ﬁl,/32,“‘:VI,V2,"').

Proof. From (19) and (27), we have

n

o
Y WOz B, o v v, ) (28)

n!
n=0

oy (i (Zﬁhh'> (me,wmﬁg)
k=0

m=0

n

o o0 t
Z Z n+sk+s(ﬁl,,32,‘ 1)1,1)2’...)a
k=0 n=k
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- (é))n t}’l
:Z(Z VI/Il-‘rSk-}-s(ﬂl)ﬂZ;"‘:U],l)z’---)>;‘
n=0 k=0 !

Thus, by comparing with coefficients of both sides of (28), we have what we want.

Theorem 2.8. For n, k, s> 0 with n> k, we have

WOz | 1,1, 11,1, ) = bely 5 (2).

Proof. From (27), we observe that

] o0 m\ S
e (ZZZZ_!><Z(1)WI,)\;?) (29)
I=1 m=0

t}’l
_ZZ kW;st kts (l)k,)\’(l)k,)n'”:(1)0,)»7(1)1,)\9"');-
n=0 k=0 |
On the other hand, from (11), we get
ad [ Wl N
ex<Z Z )(Z(l)m)»_> =e(z(e' = 1) ek(t)_Zbeln“(z) (30)

ll’

m=0
Thus, from (29) and (30), we get the desired result.

3 Degenerate s-Extended Complete and Incomplete Lah-Bell Polynomials

In this section, we introduce a new type of the degenerate Lah-Bell polynomials different
from Kim-Kim’s in [8] and define both the s-extended complete and incomplete degenerate Lah-
Bell polynomials associated with a new type of the degenerate Lah-Bell polynomials. We also
demonstrate some interesting properties related to these polynomials and explicit formulas for
them.

We consider a new type of the degenerate Lah-Bell polynomials Lb,(x) given by the
generating function

t > "
e <x:> = 2_:0 Lbyj (). (31)

When x=1, Lb,;(1)=Lb,, (n=>0) are called the degenerate Lah-Bell numbers (see Figs. |
and 2).

When A — 0, Lby;(x) = Lby(x).

In view of the ordinary Bell polynomials, the degenerate 2s-extended Lah-Bell polynomials
are defined by the generating function

D Lbyasa(x) = ei( 1 L t)eism. (32)

n=k
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When x =1, Lbyosy = Lby s, (1) are called the degenerate extended 2s-extended Lah-Bell
numbers numbers. When s =0, the degenerate complete s-extended Lah-Bell polynomials are the
degenerate Lah-Bell polynomials.

Next, we introduce the degenerate complete Lah-Bell polynomials LW,? (x1,x2,---,Xxy) defined
by the generating function
00 00 o
() = LB o B (33)
h=1 n=0

We note that
> " Sy t > "
X;)LW,?(x,x, N, ,x)n—! =ey (X; tl> =ey (xl_—t> = XE)Lbn,A(x)a. (34)
n= = n=

From (31), we have LW (x,--- ,x) = Lby;(x) and LW*(1,1,---,1) = Lby.
From (20) and (34), we get

S LW B ) (33)

n=0

ﬁ

o0 o0

ln

=€A<Zh!ﬂha) =D WaUBL2 Byt Br)—.
h=1 n=0

By (14), (15), (35) and Theorem 2.3, we obtain the following theorem.

Theorem 3.1. For n> k>0, we have
LW (B1, B2+ »xn) =1 and
LW (1, B2+ 5 Bn) = Wiy (11 B1,2! Ba, -+ ,nl B)
n
= WiaBux (1112 Bo -+ (n =k + 1! Bu_is).
k=1

Naturally, we can define a new type of the degenerate incomplete Lah-Bell polynomials
LWnA, «(B1> B2, -+, Bu—i+1) are defined by the generating function

n

1 > A t
E(Dk,x(ZﬂiM’) = ;LWik(ﬂl,ﬂz, k) (12 k2 0), (36)
h=1 n=

Note that when A — 0, LWnk (1, 1,---,1) = Lb, are the Lah-bell numbers.
From (15) and (36), we observe that

LW} (BroBase > Bukr) = Wi (1L BL 2! Ba -, (n— k4 D! By i) (37)
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Theorem 3.2. For n> k>0, we have

LW (B1, B2+ > Bn) =1,

n
LWy (B1. B ) =Y LW, (B Bane++  Buokrt) if n> 1.
k=1

Proof.
From (8), (36) and (37), we observe that
00 " 00 < 00 k
L+ ) LW (BB ) =€A<Zﬁhth> =1 +ZE(1)k,x<Zﬁhth) (38)
n=1 ’ h=1 k=1 " h=1

o0 o0 N tn
=143 Y LW (B Pa o Bukr)

k=1 n=k

o0 n
tn
=1+ (ZLW,ikwl,ﬂz,--- ,ﬂn_kﬂ)a).
n=1 “k=1

Therefore, by comparing with coefficients of both side of (38), we get the desired identity.

We define the degenerate s-extended incomplete Lah-Bell polynomials

LW2+2S k42s(B1s B2, w1, v2, -+ +) by the generating function
1 oo k , o0 2s o0 7
—(Dgx Bt Dmpvme1 ™) =Y LW o o (Bl Bar- v, v2, ) —. (39)
ke h=1 0 k ’ n
= m= n=

When s = 0, the degenerate incomplete s-extended Lah-Bell polynomials are the degenerate
incomplete Lah-Bell polynomials.

From (19) and Theorem 2.5, we get easily the following explicit formula.

Theorem 3.3. For n> k>0, we have
LW2+253k+25(/31: :82: iV, V2,0 )

A .
= n+2S’k+2S(1!/3152!ﬂ23'"'0!1)151!”2,“')

_ n! ki p ko R
B Z [kl!,kz!---'Bl P2 SO!sl!---vl "2 ’

A(n,k,2r)

where A(n,k,2s) denote the set of all nonnegative integers {k;};>1 and {s;};>0 such that

Zki:k’ ZS,'=2S and Zi(k,-—l—si):n.

i>1 i>0 i>1

We also define the degenerate s-extended complete Lah-Bell polynomials
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LW,§25')’A(2|/31,,82, ---:v[,V2,---) by the generating function

00 00 2s 00 L
h s .
ex (ZZ,Bht ) ( Z(l)m,xvmﬂfm) =Y LW ElBr. Bra- v va, ) (40)
h=1 m=0 n=0
Theorem 3.4. For n> k>0, we have
111
LW g g (6 XX, ST - ) = Lby s ().
When x =1, we have
111

Lw, +28‘k+2s‘(1’ 1’1"" : 6?5 ) =Lbn,2s,x-

Proof. From (32) and (39), we have

111 | ad 28
ZL o )= (2 ) (+ me—) @

=eX(1i ) ‘(1) —ZLbnm(x)

Therefore, by comparing with coefficients of both side of (41), we get the desired result.
From (19), (39) and (40), we note that

n
LW}’$2S),A(Z|51’525 R PRIPRE ) = ZZkLW +2s, k+2g(ﬁ1’ﬁ25 VL,V )

Z +25k+25(1 ﬁ1a2'182: O!Vlsl!UZa"'),

for n>k=>0.
Theorem 3.5. For n>k >0 and s> 0, we have
LW (B1, B, - i, v2,--0)
2s

. (Db byttt r (BOPT(B2)D2 - (Br)
=n! <Z Z Z abas +bk]'b2'bk' H(l)ci,k‘)c,ﬂrl)'

k=0 b1+2by+---+kbj=k ci+cr+-+cr=n—k

Proof. From (17), we have

00 00 1 00 k
(o) =S i) @)
h=1 k=0 C N h=1
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1 o0 1 00 2 1 00 3
:1+<1>1,xﬁ<;ﬂhzh)+<1>2,A5(Zﬂhr”) +(1)3,A§(;ﬂ;1zh) +
—1 h=1 —1
1
:1+((Dl,kﬁﬁl)t‘F((I)IA_132+(1)2A_/31)
1 1 1 3\ A
+ (1)1,x1—!,33+(1)2,12—!2,31,32+(1)3,15,31 -

=y Yy S TR (B (B

by!'by!-
k=0 by-+2by+--+kbp=k

and

00 2 00
( Z(l)m,kvm+l tm) = Z Z (1_[(1)0, kvc,+1) (43)
m=0

J=0 c1ter+-tea=j

y (42) and (43), we have

o n [ele) 00 2s
ZLW,EZS“(l 1B1, B2y - iV, v2, ) = = ek(Z,Bh[h) ( Z(l)m,kvmﬂt’") (44)
n=0 n: h=1 m=0
[ 1 bi(goyb2 ... (B Yok 25 n
:”!Z(Z Z Z o402+ +bbk,?2ﬂ'1) (bﬁ?) (Bk) H(l)cf,kvci+1>t—,-
n=0 “k=0 bj+2by+--+kbi=k ci+cr+-+cps=n—k 102 Ok i=1 n.

Therefore, by comparing with coefficients of both side of (44), we get the desired result.
Remark. We recall the degenerate Lah-Bell numbers Lb,; as follows (31):

(1—t> Z bnk_

In the following figures (x-axis =t, y-axis = ek(ﬁ)) in which the simulation program uses
Fortran language, We can see the change Lb,; depending on A.
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Figure 1: Degenerate Lah-Bell numbers when A = 0.1 and A = 0.5, respectively
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Figure 2: Degenerate Lah-Bell numbers when A = 1.0 and A = 2.0, respectively

4 Conclusion

In this paper, we introduced both the degenerate s-extended incomplete and complete Lah-
Bell polynomials associated with a new type of degenerate s-extended Lah-Bell polynomials. We
demonstrated some combinatorial identities between these polynomials and polynomials intro-
duced in Section 2, and explicit formulas for them respectively. In addition, we obtained new
types of the degenerate Stirling numbers and s-extended Stirling numbers of the second kind in
Theorem 2.4 and 2.5, respectively.

Special polynomials have been applied not only in mathematics and physics, but also in
various fields of application [1,3,6,9,17,18,22-27]. In recent years, one of our research areas
has been to explore some special numbers and polynomials and their degenerate versions, and
to discover their arithmetical and combinatorial properties and some of their applications. We
intend to study various degenerate polynomial and numbers using several means such as function
generation, combinatorial methods, umbral calculus, differential equations, and probability theory.
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