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Abstract: The treatment of nonhealing and chronic cutaneous wounds still needs a clinical advancement to be effective.

Both mesenchymal stem cells (MSCs), obtained from different sources, and their secretome derived thereof (especially

exosomes) can activate signaling pathways related to promotion of cell migration, vascularization, collagen deposition,

and inflammatory response demonstrating prohealing, angiogenetic and anti-scarring capacities. On the other hand,

biodegradable biomimetic scaffolds can facilitate endogenous cell attachment and proliferation as well as extracellular

matrix production. In this Review, we revise the complex composites made by biomimetic scaffolds, mainly hydrogels,

and MSC-derived exosomes constructed for cutaneous wound healing. Studies demonstrate that there exists a

synergistic action of scaffolds with encapsulated exosomes, displaying a sustained release profiles to facilitate long-

lasting healing effects. It can be envisioned that dressings made by biomimetic hydrogels and MSC-derived exosomes

will be clinically applied in the near future for the effective treatment of nonhealing and chronic wounds.

Introduction

Wound healing is a complicated biological process that occurs
in three distinct yet overlapping phases including
inflammation, cell proliferation, and matrix remodeling,
which need the support of nutrition and oxygen provided by
blood vessels to cells participating in the healing process
(Falanga, 2005; Arwert et al., 2012; Hu et al., 2014; Rodrigues
et al., 2019). Fig. 1 provides the main events and cues
determining intercellular signaling pathways and growth
factors involved in the three phases of wound healing. In a
wound, damage to the skin activates platelets and the
formation of a clot. Platelets and epithelial cells at the margin
of the lesion release a wide range of growth factors and
chemo-attractants to recruit immune cells (neutrophils and
macrophages) giving rise to the inflammatory phase. In the
proliferative phase, macrophages acquire a M2 phenotype
and secrete growth factors to develop the granulation tissue
by the activation of fibroblasts and new vessels via
transforming growth factor‑β (TGF-β) and platelet-derived
growth factor (PDGF). Keratinocytes and activated fibroblasts

can also stimulate angiogenesis. Proliferating and migrating
keratinocytes are engaged in the re-epithelization and
reconstitution of epidermal appendages. It is the presence of
epidermal stem cells in different compartments of the skin such
as inter-follicular compartments and epidermal appendages
(sweat glands and hair follicles with their associated sebaceous
glands) that allows skin self-repair capabilities (Mathes et al.,
2014). In the remodeling phase, fibroblasts are stimulated by
TGF-β3 to convert into myofibroblasts, which deposit
extracellular matrix and determine wound contraction,
reducing the surface area of the wound that must be re-
epithelialized. Matrix remodelling is due to the secreton by
myofibroblasts of MMPs and their respective inhibitors (tissue
inhibitors of metalloproteinases, TIMPs). During time, the
collagen III found in granulation tissue is gradually decreased
and replaced with collagen I. In the last years, it has been
elucidated that multiple signaling pathways are major players
for regenerative wound healing, i.e., TGF-β, Notch, Hedgehog,
and Wnt/β-catenin (Choi et al., 2022). While TGF-β1 functions
as a fibrosis-stimulating factor, TGF-β3 regulates anti-scarring
activity (Shah et al., 1995; Soo et al., 2003). The Notch pathway
is involved in epidermal cell differentiation, maintenance of
skin homeostasis and promotion of angiogenesis (Okuyama
et al., 2008; Watt et al., 2008; Blanpain and Fuchs, 2009;
Gridley, 2010; Shi et al., 2015). The Hedgehog pathway plays a
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role in skin morphogenesis and angiogenesis, and modulates
dermal repair and wound vascularization during the healing
process (Asai et al., 2006; Le et al., 2008). Finally, the Wnt/β-
catenin pathway participates in multiple steps of the wound-
healing process, including the formation of skin appendages by
activation of stem cells residing within skin, the differentiation
and migration of keratinocytes, the migration of fibroblasts and
their transformation into myofibroblasts, and angiogenesis
(Houschyar et al., 2015; Shi et al., 2015).

Impaired wound healing, characterized by insufficient
angiogenesis and easy infection, is one of the most common
complications of diabetes, leading to chronic and nonhealing
ulcers, with a prevalence in Europe of 5.1%. Diabetic ulcers are
recalcitrant to healing due to many cellular and molecular
aberrations (Gary Sibbald and Woo, 2008). In diabetes
mellitus, the persistence of hyperglycemia causes peripheral
nerve injury and arterial disease. Sustained hyperglycemia and
induced oxidative stress impair cell migration, alter nitric oxide
production at the level of endothelial cells (Forstermann and
Munzel, 2006), as well as determine insufficient angiogenesis to
support the collagen synthesis necessary for mature
granulation and subsequent re-epithelialization. In addition,
high levels of blood glucose impair leukocyte function causing
an insufficient immune response, inciting infections and
difficulties in the healing of foot injuries and ulcers (Gary
Sibbald and Woo, 2008). Vascular and peripheral neuritis
complications and abnormal collagen lead to skin wounds that
are refractory and which often ulcerate. Also trauma and burns
can lead to scar formation and impaired wound healing
(Cerqueira et al., 2016). In recent years, skin substitutes
through the application of biomimetic scaffolds together with
stem cells and bioactive substrates have provided an emerging
therapeutic opportunity in the treatment of acute and chronic
cutaneous wounds (Conese et al., 2020).

Mesenchymal stem cells (MSCs) are multipotent adult
stem cells that can differentiate mainly into mesenchymal
cell lineages, including adipocytes, osteoblast, chondrocytes,
myoblasts, and endothelial cells, in different culture
conditions and morphogens/growth factors. MSCs can be

derived from diverse sources, such as bone marrow, adipose
tissue, umbilical cord, fetal membranes, synovia, gingival
tissue etc. (Lee et al., 2016). The main types investigated in
wound healing are MSCs derived from bone marrow (BM),
adipose tissue (AD) and umbilical cord (UC) (Riha et al.,
2021; Sivaraj et al., 2021). Although there exist subtle
variations in MSCs from different sources and in principle
they can be used equally in wound healing, AD-derived
MSCs (ADSCs) are the most easily accessible, can be
isolated at higher yield and in large quantities with minimal
patient morbidity, thus being the most favored cell type for
wound repair and regeneration (Hassan et al., 2014; Bertozzi et
al., 2017). A great number of animal studies have purported the
notion that MSCs display positive healing actions, bringing their
application to clinical trials (Huang et al., 2020). Especially with
hard-to-heal wounds, MSC treatment results in enhanced
angiogenesis, facilitated re-epithelialization, improved
granulation, and accelerated wound closure. The underlying
mechanisms of their therapeutic role is not completely
understood, however MSCs actively respond to biological signals
associated with inflammation, necrosis, and tissue injury
(Prockop and Oh, 2012). MSCs can home to injured skin,
operate direct differentiation into skin cells and are a reservoir
of trophic factors that can be secreted and act paracrinally
(Huang et al., 2020). Furthermore, in the harsh inflammatory
milieu of non-healing wounds, MSCs can respond to
inflammatory stimuli by becoming potently immunosuppressive
(Zhang et al., 2015d; Cuenca et al., 2018; Yu et al., 2019), thus
facilitating the transition from the inflammatory phase to the
proliferative phase. In recent years, it has become increasingly
clear that their engraftment in injury sites contribute little to
their therapeutic effects. In the harsh environment of the
wound, the contribution of MSC differentiation to diverse injury
models have been limited, including poor postimplant cell
survival, engraftment efficiency, and cell retention (Chen et al.,
2012). Instead, it is increasingly appreciated that their secretome
is the primary mechanism exerting multifaceted functions
including immunomodulation, angiogenesis, anti-apoptosis, anti-
scarring, chemoattraction and modulation of local stem and

FIGURE 1. The three phases of skin wound healing after an injury. Cellular interplays are shown as black arrows. See text for details.
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progenitor cells (Gnecchi et al., 2008; Singer and Caplan, 2011;
Maxson et al., 2012; Khosrotehrani, 2013; Liang et al., 2014).
The interest in MSCs and wound healing has been pointed out
by their property of sensing the environment and creating an
orchestrated network of molecules to promote the tissue repair/
regeneration process. MSCs can secrete pro-angiogenic factors
that can promote vascularisation in the wound area and
formation of granulation tissue, among which vascular
endothelial growth factor (VEGF), hepatocyte growth factors
(HGF), PDGF, and basic fibroblast growth factor (bFGF) are of
extreme importance (Chen et al., 2008; Yoon et al., 2010; An et
al., 2015). MSCs can promote re-epithelization at the wound site
via the secretion of epidermal growth factor (EGF) and
keratinocyte growth factor (KGF) (Gnecchi et al., 2008). MSCs
are anti-inflammatory, thanks to the secretion of indoleamine-2,
3-dioxygenase (IDO), prostaglandin E2 (PGE2) and tumor
necrosis factor-α (TNF-α)-stimulated gene 6 (TSG-6), thereby
modulating both innate and adaptive immune responses
impeding scarring in favor of regeneration (Nemeth et al., 2009;
Singer and Caplan, 2011; Ylostalo et al., 2012).

MSC secretome
MSC secretome, represented roughly by conditioned medium
(CM), is enriched in extracellular vesicles (EVs), membrane-
surrounded structures released by cells that play important
roles in the intercellular transmission of biological signals to
regulate immunomodulatory and tissue repair processes. EVs
released by MSCs are comprised of apoptotic bodies (1,000–
5,000 nm), microparticles (or ectosomes, up to 1,000 nm),
and exosomes (EXO, 30–150 nm) (Chen et al., 2017).
Exosomes are considered the main contributor to stem cells
efficacy (An et al., 2021). Indeed, exosomes display
therapeutic effects on tissue injuries, which could be
attributed to the transfer of membrane and cytosolic proteins,
lipids and RNAs between cells (Raposo and Stoorvogel, 2013).

MSCs as well as their secretions (CM, extracellular vesicles,
and EXO) have been shown to enhance wound healing and
facilitate skin regeneration, as well as diabetic skin wound
healing. MSC-conditioned medium has a potent healing effect
on skin wounds (Chen et al., 2008; Yew et al., 2011; Shrestha
et al., 2013; Li et al., 2017). The addition of EXO to the
healing wound has been shown to promote proliferation and
migration of related cells, enhance angiogenesis, re-
epithelization, and regulating immune responses, highlighting
exosomes as a promising approach to achieve a cell-free
alternative to stem cell therapy (Zhang et al., 2015a; Zhang et
al., 2015c; Cerqueira et al., 2016; Hu et al., 2016; Lee et al.,
2016; Liang et al., 2016; Rani and Ritter, 2016; Phinney and
Pittenger, 2017; Hu et al., 2018; Dalirfardouei et al., 2019;
Ahangar et al., 2020; Manchon et al., 2021). Multiple studies
have clarified that EXO can direct macrophage differentiation
from pro-inflammatory M1 to anti-inflammatory M2
phenotype (He et al., 2019), induce fibroblast proliferation and
migration for the first extracellular matrix (ECM) deposition
(Zhang et al., 2015c; Ferreira et al., 2017; Choi et al., 2018),
endothelial cell proliferation and migration to induce
angiogenesis (Shabbir et al., 2015), keratinocyte proliferation
and migration for re-epithelization (Ferreira et al., 2017), and
to induce remodeling by ECM degradation and deposition by
modulation of myofibroblasts with reduction of scar formation

(Fang et al., 2016; Hu et al., 2016). Fig. 2 displays the main
mechanisms by which MSCs and EXO determine healing at
the wound injury site. The advantages of using EV-mediated
cell-free therapies is of greater stability and storability, no risk
of ectopic tissue formation and having a lower possibility of
immune rejection as compared to MSC-based cell therapies
(Merino-Gonzalez et al., 2016).

Biomaterials and MSC/EXO
In order to improve survival of transplanted MSCs, a
supportive microenvironment is pivotal to maximize cell
viability (Kamoun et al., 2017). Biomaterial-based wound
dressings have been thought to accelerate cell attachment
and proliferation of various cell types and interact with the
released growth factors enhancing their bioavailability
(Tartarini and Mele, 2015). Four main approaches that have
been envisioned include: (i) sheets of cells secreting ECM
(Yu et al., 2018); (ii) pre-made porous scaffolds of synthetic,
natural, and biodegradable biomaterial; (iii) decellularized
ECM scaffolds, and (iv) cells entrapped in hydrogels
(Chaudhari et al., 2016). To this end, many smart “skin
substitutes”, made with varied combinations of synthetic
and/or biologic substances, were used in order to perform
many of skin’s functions and to treat deep dermal and full
thickness injuries of various etiologies. These skin dressings
were combined with MSCs to foster skin healing and
include epidermal, dermal, and dermoepidermal (composite)
skin substitutes, made by collagen and hyaluronic acid, i.e.,
the major components of the ECM (Hu et al., 2014). Other
skin substitute are comprised of biocompatible and
biodegradable synthetic polymers, such as polycaprolactone,
polylactic acid, polyglycolic acid, poly(vinyl alcohol), poly
(ethylene glycol), and polyurethanes, as well polysaccharides,
such as chitosan and its derivatives (Moura et al., 2013). The
current available commercial tissue-engineered products for
wound healing comprise acellular products mainly made of
collagen, hyaluronic acid, elastin or fibrin (Ho et al., 2017),
among which Integra� (a bilayer made of bovine collagen
and shark chondroitin sulfate with a silicone membrane,
acting as a temporary barrier) was the first to be approved by
U.S. Food and Drug Administration (FDA) to regenerate
dermis (Savoji et al., 2018). These skin substitutes may tailor
tissue-engineered products to the required patient groups,
except Integra� that can be applied for a wide range of
treatments including full-thickness burns, chronic ulcer and
full-thickness nonthermal skin wound management, among
others (Bello et al., 2001; Portincasa et al., 2018).

A wealth of preclinical studies has demonstrated that
stem cell therapy combined with biomaterials improved
wound healing capacity and regeneration to skin injury by
accelerating healing time, by which the correction time was
shortened from 7–28 days to 7–14 days with only MSCs
and MSCs combined with biomaterials, respectively (Riha et
al., 2021). These composites were made of nanfibrous
scaffolds, gels and hydrogels, and were evaluated together
with BM-MSCs, UC-MSCs, or ADSCs in mouse models
representing burns, full-thickness excisional wounds, and
nonhealing diabetic ulcers (Altman et al., 2009; Chung et al.,
2016; Alapure et al., 2018; Xu et al., 2018; Tang et al., 2019;
Chen et al., 2020; Lu et al., 2020). Although a tremendous
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progress has been made over the past few decades to develop
skin substitutes for the management of acute and chronic
wounds, most commercially used skin substitutes are
manufactured from autologous adult cells (keratinocytes and
fibroblast). Indeed, there are no existing commercial skin
constructs available in the market that are constructed using
both MSCs and biomaterials. The main challenges to be faced
ahead include characterization, optimization, and delivery of
treatment of stem cells composites (Savoji et al., 2018), and
also unresolved drawbacks such as wound contraction and
impaired vascularization should be further considered (Ho et
al., 2017). Moreover, it is not well known if different types of
wounds would be better healed with a specific type of MSCs;
in other words, which of MSCs, BM-MSCs, ADSCs or UC-
MSCs, would sense properly the wound microenvironment
when combined with biomaterials in the patient’s setting.

The EXO incorporation into scaffolds as wound dressing
for skin wound healing would make the MSCs and its
secretome more realistic in clinical application, because of
their direct contact with the injury site. Indeed, the common
method of EXO administration is injection, which can affect
their function due to the rapid clearance rate and relatively
short half-life in vivo (Liu et al., 2017). On the other hand,
diabetic wound repair and regeneration require a relatively
long healing time. Herein, it is necessary to develop a novel
biocompatible scaffold that can serve as a sustained release
carrier for EXO to maintain their bioactivity at the diabetic
wound area and further accelerate wound healing.

Among biomimetic composites, hydrogels, structurally
similar to the natural ECM, have been considered promising
biomaterials to deliver drugs/cells for wound treatments
(Sharifzadeh and Hosseinkhani, 2017; Xi et al., 2018; Sivaraj et
al., 2021). Hydrogels are physical or chemical cross-linked
three-dimensional hydrophilic polymeric networks, which
possess the capacity to absorb abundant amount of water
ideally for hydrating and creating a supportive environment
within the wound bed that accelerates angiogenesis and
removal of cell debris and alleviating pain (Sivaraj et al., 2021).

Hydrogels applied to wound healing should possess the
following features: appropriate mechanical properties, good
water retention, anti-infection capacity, injectable capacity, and
excellent cell biocompatibility (Annabi et al., 2017). Moreover,
they should be self-healing, meaning that maintain their
structural stability during the wound healing (Taylor and In
Het Panhuis, 2016; Li et al., 2018).

Methods

The works discussed in this Review were selected when they
presented data on MSC secretome in combination with
biomaterials for cutaneous wound healing in in vivo models.
We have focused only on experimental works in animals
without discussing clinical data and meta-analysis. Thus, we
searched PubMed, MEDLINE, and Scopus using the keywords
mesenchymal stem cell, conditioned medium, exosome,
extracellular vesicle, and skin/cutaneous wound healing.

Results and Discussion

MSC-derived CM, EVs and exosomes were used in combination
mostly with hydrogels, although also one study with electrospun
fibers and one with decellularized amniotic membrane were
found (Table 1). Diabetes chronic wounds/ulcers was the main
medical problem that was considered in these studies. In
general, MSC-CM/EVs/EXO scaffold application could shorten
wound healing time, limit the inflammatory response, enhance
re-epithelialization, promote the formation of high-quality, well
vascularized granulation tissue, and attenuate the production of
fibrotic or hypertrophic scar tissue, thereby improving wound
healing rate and quality. In particular, therapeutic hydrogels
addressed concerns such as desiccation (loss of moisture from
the wound), bacterial infection, and prevention of debilitating
scar formation. Notably, hydrogel-EXO treatments brought to
the promotion of proper skin regeneration (growth of skin
appendages, such as hair follicles, and other cutaneous glands)
within the wound, indicating that epidermal stem cells were

FIGURE 2. MSCs and exosomes
derived thereof acting on the different
stages of cutaneous wound healing,
such as inflammation, proliferation
and remodeling.

1818 MASSIMO CONESE et al.



TABLE 1

Overview of the studies using the MSC secretome in combination with biomaterials for cutaneous wound healing in in vivo models

Secretome MSC source Biomaterial Species Model Results Reference

CM Rat ADSCs Polycaprolactone electrospun
fibers (EF)

Sprague-
Dawley
rat

Full-
thickness
excisional
skin
wound

The CM from MSC grown on EF
determined the highest wound
closure rate as compared with MSC
grown onto microplates. M2
macrophage phenotype was
elicited in vivo

(Su et al.,
2017)

CM Human
umbilical cord
mesenchymal
stem cell

Chitosan/collagen/
β-glycerophosphate
thermosensitive hydrogel

C57BL/6
mice

Third-
degree
burn

Application of the MSC-CM/
hydrogel shortened healing time,
limited the area of inflammation,
enhanced reepithelialization,
promoted the formation of high-
quality, well-vascularized
granulation tissue, and attenuated
the formation of fibrotic and
hypertrophic scar tissue

(Zhou et al.,
2019)

EVs Human
BMSCs and
ADSCs

Carboxymethylcellulose NSG
mice

Diabetic
full-
thickness
cutaneous
wound

At day 10, ADSC-EVs, but not
BMSC-EVs, increased the wound
closure rate, reduced the scar
width, increased the epithelial
thickness and the percentage of re-
epithelization, and increased the
number of microvessels in
comparison to the vehicle alone

(Pomatto et
al., 2021)

EXO Human
gingival
mesenchymal
stem cells

Chitosan/silk hydrogel Sprague-
Dawley
rat

Diabetic
full-
thickness
cutaneous
wound

At 1 and 2 week post-surgery,
hydrogel-loaded EXO gave the
highest wound closure rate as
compared with controls and
hydrogel only. Higher
reepithelization, collagen
deposition, microvessel density,
and nerve fiber density in
hydrogel-EXO group

(Shi et al.,
2017)

EXO miR-126- 3p-
overexpressing
human
synovium
MSCs (SMSC-
126)

Chitosan (CS) hydrogel Sprague-
Dawley
rat

Diabetic
full-
thickness
cutaneous
wound

EXO derived SMSC-126–loaded
CS hydrogel accelerated
reepithelialization, activated
angiogenesis, and promotion of
collagen maturity in vivo

(Tao et al.,
2017)

EXO Rat ADSC Hydrogel composed of Pluronic
F127, oxidative hyaluronic acid,
and poly-ε-L-lysine (FHE)

ICR
mice

Diabetic
full-
thickness
cutaneous
wound

The FHE@EXO hydrogel
significantly enhanced wound
closure rates, and induced faster
angiogenesis, re-epithelization and
collagen deposition within the
wound site. Skin appendages and
less scar tissue also appeared in
FHE@EXO hydrogel treated
wounds

(Wang et al.,
2019a)

EXO Human ADSCs Hydrogel scaffold composed of
Pluronic F127, PEI, and
aldehyde pullulan (FEP)

IRC
mice

Diabetic
full-
thickness
cutaneous
wound

The FEP@EXO hydrogel group
showed faster healing, thicker
granulation tissue and higher
collagen deposition, faster
reepithelization and angiogenesis.
Skin appendages and less scar
tissue also appeared in FEP@EXO
hydrogel treated wounds

(Wang et al.,
2019b)

(Continued)
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Table 1 (continued).

Secretome MSC source Biomaterial Species Model Results Reference

EXO Human
umbilical cord-
mesenchymal
stem cells
(hUCMSC)

Pluronic F-127 hydrogel Sprague-
Dawley
rat

Diabetic
full-
thickness
cutaneous
wound

hUCMSC-EXO/PF-127 hydrogel
application resulted in a
significantly accelerated wound
closure rate, hair follicle
generation, ordered collagen
deposition, increased microvessel
density, enhanced regeneration of
granulation tissue and upregulated
expression of VEGF and TGFβ-1

(Yang et al.,
2020)

EXO Rat ADSCs Alginate hydrogel Wistar
rats

Full
thickness
excisional
wound

Alg-EXO accelerated wound
closure rate, determined higher
epithelial thickness, increased
collagen deposition and
microvessel density

(Shafei et al.,
2020)

EXO Human
endometrial
stem cells

Chitosan (Ch)-gòycerol based
hydrogel

BALB/c
mice

Full-
thickness
excisional
wound

The Ch-glycerol-EXO hydrogel
accelerated wound closure rate,
and determined smaller immature
granulation tissue, increase
epithelial thickness, formation of
skin appendages (hair follicles,
collagen bundles, and sebaceous
gland), and higher number of
microcapillaries in comparison
with the control groups including
Ch-glycerol and non-treated
wound conditions

(Nooshabadi
et al., 2020)

EXO Rat ADSCs Polyurethane (PUAO)-based
oxygen releasing antioxidant
scaffolds made by incorporating
calcium peroxide in PUAO
cryogels (OxOBand)

Wistar
rats

Diabetic
full-
thickness
cutaneous
wound

OxOBand facilitated faster wound
closure, reduced the inflammation
and prevented ulcer formation,
enhanced collagen deposition,
faster reepithelialization, hair
follicle formation, increased
neo-vascularization, and decreased
oxidative stress within two weeks
as compared to untreated diabetic
control wounds. OxoBand
prevented diabetic wound
infections and lead to faster healing
in infected chronic and diabetic
wounds

(Shiekh et al.,
2020)

EXO Human
umbilical cord-
mesenchymal
stem cells

Hydrogel composed of
poloxamer 407 (P407) and
chitosan derivate carboxymethyl
chitosan

Sprague-
Dawley
rats

Full-
thickness
dermal
defect

EXO loaded hydrogel had
significantly improved wound
closure, reepithelialization rates,
collagen deposition in the wound
sites. More skin appendages were
observed in EXO loaded hydrogel
treated wound. Hydrogel-EXO
group revealed the lowest
expression quantity of TNF-α and
IL-1β at 7th and 14th day
compared to other groups

(Li et al.,
2021)

EXO Human ADSCs Human acellular amniotic
membrane (hAAM)

BABL/C
mice

Diabetic
full-
thickness
cutaneous
wound

The hAAM-EXO dressing
accelerated wound closure, reduced
inflammation by promoting higher
recruitment of M2 macrophages,
stimulated vascularization, and
promoted the production of
extracellular matrix

(Xiao et al.,
2021)

Note: ADSCs: adipose tissue-derived MSCs; BMSCs: bone marrow-derived MSCs; CM: conditioned medium; EXO: exosomes; EVs: extracellular vesicles; IL-1β:
interleukin-1β; TGF-β1: transforming growth factor-β1; TNF-α: tumor necrosis factor-α; VEGF: vascular endothelial growth factor.
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activated (Wang et al., 2019a; Wang et al., 2019b; Nooshabadi et
al., 2020; Shiekh et al., 2020; Li et al., 2021). As fewer skin
appendages could be found in diabetic wounds treated by pure
exosomes, these results strongly indicate that the sustained
release of exosomes may facilitate complete wound healing with
abundant skin appendages and scarless tissue (Wang et al., 2019a).

EXO are rapidly cleared from the application site and
survive in vivo for only a short time (Liu et al., 2017), and
specifically EXO rapidly degrades at body temperature
particularly in the chronic wound sites, which may decrease
their therapeutic efficacy. On the other hand, chronic
wound repair and regeneration, particularly in diabetic
patients, require a long healing time (more than 3 months)
during which many proteases are released by concurring
cells (Zeng and Liu, 2021). The biomaterials used in the
combination with MSC secretome are of paramount
importance to stabilize and allow EXO biological activities.
In the study by Yang et al. (2020), a hydrogel based on
Pluronic 127 (PF-127), that provide a moist environment
for wound healing and act as a barrier against harmful
substances, was used with human UC (hUC)-MSC-EXO in
the treatment of diabetic wounds, demonstrating that both
hUC-MSC-EXO and hUC-MSC-EXO/PF-127 reduced the
wound area in the first three days after treatment in vivo.
Subsequently, hUC-MSC-EXO/PF-127 evoked a faster
healing rate than the other treatments at 7, 10, and 14 days.
A study with self-healing polypeptide-based hydrogel, made
of PF-127, oxidative hyaluronic acid (OHA), and Poly-ε-L-
lysine (EPL), showed a long-term exosomes release (up to
21 days) and an enhanced proliferation of human umbilical
vein endothelial cells (HUVECs) than one-time treatment of
exosomes, as well as a higher diabetic wound healing rate at
14 days as compared with the EXO-only group (Wang et
al., 2019a). These results are compatible with the notion
that, besides in the first phases of wound healing, the
biological activity of hUC-MSC-EXO was prolonged by the
protection of the PF-127 gel, and we can assume that these
exosomes were continuously released, leading to increased,
sustained, and rapid wound healing. In summary, from these
studies we have learnt that developing a biocompatible
scaffold that can maintain the function of EXO and sustained
release would be critical for exosomes-based therapeutics for
cutaneous wound healing. Moreover, it can be noticed a
synergistic action of scaffolds with exosomes. In particular, the
sustained release of bioactive factors in scaffold dressing could
efficiently enhance the early angiogenesis in the diabetic
wound and accelerate the healing. The main primeval action
of EXO released by scaffolds is to increase cell proliferation
and migration underlying the first stages during wound
healing, i.e., re-epithelization and neoangiogenesis, giving rise
to granulation tissue and subsequent matrix deposition and
remodeling. It remains to understand the specific functional
component of EXO and mechanism by which exosomes
released by scaffolds operate and accelerate wound healing.
Non-excluding mechanisms include the modulation of
signaling pathways (Chen et al., 2017) and the delivery of
anti-inflammatory and anti-scarring miRNAs (Golchin et al.,
2018). Activation of AKT, ERK, and STAT3, and the
induction of the expression of cell cycle genes and growth
factors as well (including HGF, insulin-like growth factor

(IGF)-1, nerve growth factor (NGF), and stromal cell-derived
factor (SDF)-1) by MSC-derived EVs/EXO play a role in
inhibiting stress-induced skin cell apoptosis, and in promoting
their migration and proliferation (Shabbir et al., 2015; Kim et
al., 2018; Ren et al., 2019). HUC-MSCs-EXO could promote
wound healing in the rat model of skin deep second-degree
burn injury through activation of Wnt/β-catenin to enhance
proliferation and migration of skin cells and AKT signaling to
reduce heat stress-induced apoptosis (Zhang et al., 2015a).
The same group showed that the administration of hUC-
MSCs-EXO in a deep second-degree burn injury skin model
promoted wound healing and angiogenesis by delivering
Wnt4 and activating Wnt/β-catenin signaling in endothelial
cells (Zhang et al., 2015b).

MiR-181c in UC-MSC-EXO was demonstrated to reduce
burn-induced excessive inflammation by downregulating the
TLR4 signaling pathway (Li et al., 2016). In a rat deep
second-degree burn injury model, hUC-MSC-derived EXO
promoted activation of β-catenin and skin stem cell
proliferation in the early stages of tissue repair and restricted
excessive cell expansion by inhibiting Wnt signaling via
transfer of the 14–3-3ζ protein, inducing cytoplasmic
retention of the YAP protein (Zhang et al., 2016). hUC-MSC-
Exo could promote wound healing and reduce scarring by
delivering a group of specific microRNAs (miR-21, miR-23a,
miR-125b, and miR-145) that were found to suppress
myofibroblast formation by inhibiting excess α-smooth
muscle actin and collagen deposition associated with activity
of the TGF-β/SMAD2 signaling pathway (Fang et al., 2016).

As regarding the techniques used in the studies procuring
biocomposites with MSC-EXO, electrospun biomaterials,
which mimics ECM structure, have been shown to give rise to
homogenous mixtures made of nanofibres with high tensile
strength (Riha et al., 2021), however they are derived from a
complicated process that produces ECM matrix structure with
an unsatisfactory strain (Sadeghi-Avalshahr et al., 2017).
Moreover, the elecrospinning process depends on many
variables, and it is problematic to obtain 3D structures with
the required pore size needed for biomedical application (Law
et al., 2017; Keirouz et al., 2020). Decellularised scaffolds retain
native ECM thus maintaining normal atomical features, as well
as present less inflammatory and immune response with
higher mechanical strength (Chaudhari et al., 2016). Although
the human amniotic membrane (AM) presents many
advantages, including anti-bacterial, anti-inflammatory, and
non-immunogenic properties, promotes reduced pain and
dehydration, and favors the reepithelialization process,
disadvantages of AM include poor mechanical properties and a
high biodegradability rate, which complicate its extensive use
in clinic (Dussoyer et al., 2020). Due to the limited use of
decellularized AM in the skin regeneration field combining
composites and EXO, and unknown mechanisms of action,
further studies are needed to comprehend its usefulness as
compared with other decellularized sources and other
composites, either made of natural or synthetic polymers.

Hydrogels, that were found the most used composites in
the above outlined studies, however show on their own some
limitation when used in conjunction with MSCs. First, MSCs
pre-encapsulated within hydrogels may slowly alter hydrogel
stability and mechanical properties due to secretion of
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proteases. Thereby, seeding premade hydrogels with MSCs
should be operated at the point of care, implying that the
un-seeded hydrogel must be easy to handle and encourage
rapid cell seeding (Garg et al., 2014). The integration of
MSC secretome, and significantly EXO, should overcome
these limitations. Another critical issue is linked to already
moist wounds, such as venous leg ulcers, as hydrogels may
cause a high amount of output drainage and exudate from
the site that further impedes healing by slowing down cell
growth, degrading the tissue matrix structure, promoting
inflammation or bacterial contamination (Murakami et al.,
2010). Finally, these hydrogels are usually changed every
3 days, so production of these scaffolds must be
simple, quick, and inexpensive to be commercially
appealing for physicians (Sivaraj et al., 2021). All these
issues will be the focus of future studies on hydrogels
applied to the MSC secretome delivery, in particular EXO,
to wound-healing settings in animal models first and in
patients hereafter.

Although a direct comparison among CM, EVs and EXO
has not been conducted in the setting of cutaneous wound
repair in combination with biomaterials, it has been shown
that MSC-EXO’s role is not static during the entire
cutaneous tissue regeneration process and they exert distinct
effects on skin cell proliferation at various cell densities
(Zhang et al., 2016). However, further studies are deemed to
definitively understand which MSC secretome would have
better results in terms of application to different
pathological skin wound healing processes.

Finally, from a logistic point of view, clinic application of
MSC-derived exosomes in wound healing needs that the
standard procedures for purification, storage, and administration
of therapeutic exosomes with low cost ought to be developed
(Hettich et al., 2020).

Conclusion

Nonhealing and chronic wounds (mainly diabetic) deserve
more efficient treatment options that accelerate wound
healing, favor neoangiogenesis, reduce scarring, and allow
optimal epidermal reconstitution. Biomimetic materials and
MSC-derived exosomes possess all these properties and
therefore have great potential in achieving satisfactory
healing in recalcitrant wounds. Due to their versatility,
different fabrication techniques, and numerous biological
properties, hydrogels represent a promising approach to
advance the combination of EXO with tissue engineering
scaffolds to the clinic.
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