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Abstract: The cortical actin network is a mesh of filaments distributed beneath the plasmalemma that dynamically reacts

in response to stimuli. This dynamic network of cortical filaments, together with motor myosin partners, adjusts the

plasmalemma tension, organizes membrane protein microdomains, remodels the cell surface and drives vesicle

motion in order to fine-tune exocytosis, endocytosis and recycling of secretory vesicles. In this review, we discuss how

these mechanisms work in secretory cells.

Introduction

The cytoskeletal actin network is a highly dynamic mesh of
filaments formed by globular actin monomers (G-actin) that
assemble to form actin filaments (F-actin). Six actin isoforms
have been described in mammals. Among them, the
cytoplasmic isoforms β-actin and γ-actin are components of
the cytoskeleton, with β-actin mostly expressed in stress
fibers, contractile rings and cell-cell contacts, whereas γ-actin
is mainly present in a dense branched meshwork at the cell
cortex (cortical actin) and lamellipodia (Dugina et al., 2009).
Nucleation, elongation, ramification, and depolymerization of
these filaments are tightly orchestrated by a set of enzymes
and auxiliary proteins such as the ARP2/3 complex,
N-WASP, cortactin, Src kinases, scinderin, and cofilin, among
others (Gasman et al., 2004; Olivares et al., 2014; González-
Jamett et al., 2017; Carman and Dominguez, 2018). This
armamentarium of proteins acts in concert to rearrange
cortical actin filaments in response to stimuli (Rottner et al.,
2017; Li et al., 2018), remodeling the cell surface, driving
vesicles and other organelles to the plasmalemma as occurs
during exocytosis (Papadopulos, 2017; Miklavc and Frick,
2020; Venkatesh et al., 2020), and/or removing patches of the
plasmalemma and directing the formed vesicles to a given
target membrane, as occurs during endocytosis (Houy et al.,
2013; Hinze and Boucrot, 2018). Together with motor

partners, such as myosin II, the cortical actin network further
provides the membrane tension and drives forces for these
processes to occur (Chugh and Paluch, 2018; Sonal et al.,
2018; Svitkina, 2020). In this review, we will focus on the role
of the cortical F-actin network on regulated exocytosis,
compensatory endocytosis and vesicle recycling in secretory
cells, with an emphasis on adrenal chromaffin cells.

How Does the Cortical Actin Control Exocytosis in
Secretory Cells?

A selective set of proteins regulates Ca2+ and SNARE-dependent
fusion of secretory granules with the plasmalemma to tightly
control the release of neurohormones (Cárdenas and Marengo,
2016) and neurotransmitters (Jahn and Fasshauer, 2012). Among
these proteins are the actin filaments (Marengo and Cárdenas,
2018). In this regard, increasing evidence during the last 40 years
has demonstrated that cortical actin plays a pivotal role in
different processes associated with the activity of secretory cells.
In the early 1980s, it was noted that the actin filaments are
densely localized in the periphery of neurosecretory chromaffin
cells (i.e., cortical actin) (Lee and Trifaro, 1981), and interact with
secretory granule membranes in a Ca2+-dependent manner
(Fowler and Pollard, 1982). Thus, it was initially proposed that
this cortical mesh of F-actin acts as a barrier that retains
secretory vesicles away from the subplasmalemmal area, and
that, upon a rise of cytosolic Ca2+ concentrations, this F-actin
network disassembles, releasing the secretory vesicles to allow
them to reach the cell periphery (Fowler and Pollard, 1982;
Burgoyne and Cheek, 1987; Aunis and Bader, 1988). A similar

*Address correspondence to: Fernando D. Marengo,
fernando@fbmc.fcen.uba.ar; Ana M. Cárdenas, ana.cardenas@uv.cl
Received: 03 September 2021; Accepted: 08 December 2021

BIOCELL echT PressScience
2022 46(8): 1867-1873

Doi: 10.32604/biocell.2022.019086 www.techscience.com/journal/biocell

This work is licensed under a Creative Commons Attribution 4.0 International License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

mailto:fernando@fbmc.fcen.uba.ar
mailto:ana.cardenas@uv.cl
http://dx.doi.org/10.32604/biocell.2022.019086


mechanismwas proposed later in pancreatic beta cells (Trexler and
Taraska, 2017) andmast cells (Singh et al., 2013). According to this
idea, treatment of chromaffin cells with cytochalasin D, a fungal
metabolite that prevents the incorporation of new monomers
into actin filaments by binding to the barbed ends (Cooper,
1987), or with latrunculin A, a toxin that sequesters actin
monomers and promotes subunit dissociation from the F-actin
ends (Fujiwara et al., 2018), increases the number of vesicles
fusing with the plasmalemma (Berberian et al., 2009). These
treatments facilitate a slow secretory component, as was
visualized by electron microscopy and measured by single-cell
amperometry (Gil et al., 2000). The disassembly of the F-actin
network triggered by Ca2+ involves scinderin, an actin-binding
protein that promotes disassembly of actin filaments upon
cytosolic Ca2+ rises (Rodriguez Del Castillo et al., 1990), and
MARCKS, a myristoylated alanine-rich C kinase substrate that in
its non-phosphorylated state binds and cross-links actin
filaments, but upon its PKC-induced phosphorylation such
MARCKS´s properties are inhibited, allowing F-actin
disassembly (Rosé et al., 2001). More recent studies show
that MUNC18-1 also regulates the cortical F-actin mesh, as
Munc18-1 knock-out (KO) chromaffin cells show a twice as
dense F-actin network (Pons-Vizcarra et al., 2019). Curiously, the
expression of a MUNC18-1 mutant (V263T) that recovers
recruitment, docking and fusion of secretory vesicles in KO cells,
does not rescue the F-actin phenotype (Pons-Vizcarra et al.,
2019), suggesting that a dense cortical F-actin meshwork is not a
rate-limiting barrier for the motion of the secretory vesicle
towards the exocytotic sites.

As demonstrated by us, Ca2+ concentrations that trigger
exocytosis not only promote disruption of a preexisting
cortical actin network but also induce the formation of new
actin filaments (Olivares et al., 2014; Figs. 1A and 1B),
indicating that the cytoskeletal actin mesh is actively
remodeled and adapted to facilitate different steps of the
neurosecretory process (Fig. 1C). Among the proteins involved
in de novo formation of actin filaments are the small GTPase
Cdc42 and αII-spectrin, which recruit N-WASP, a promotor
of Arp2/3-mediated actin nucleation, to the plasmalemma
(Gasman et al., 2004; Houy et al., 2020). Src kinase and its
substrate cortactin also contribute to the Ca2+-dependent
formation of F-actin, as established by the enhanced
incorporation of Alexa Fluor 488-G-actin into filaments
(Olivares et al., 2014; González-Jamett et al., 2017). On the
other hand, the β2a subunit of voltage-dependent Ca2+

channels reduces both the incorporation of G-actin monomers
into actin filaments, and Ca2+ and Na+ currents in bovine
chromaffin cells, indicating that the F-actin cortex also
influences the traffic of vesicle carrying ion channels (Guerra
et al., 2019).

The intensity of the stimulus, and therefore the magnitude
of Ca2+ entry, determines the degrees of F-actin disassembly
and assembly (Olivares et al., 2014) and their impact on
the exocytotic release of transmitters (Doreian et al., 2008).
The variable effects of F-actin disassembly/assembly on
neurosecretion include increase or reduction of the number
of exocytosis events, or the amount of transmitter released
per event, as determined by single-cell amperometry (Doreian
et al., 2008; Berberian et al., 2009; González-Jamett et al.,
2013; Olivares et al., 2014; González-Jamett et al., 2017).

Probably these effects are determined by a differential
activation and/or recruitment of actin partners, such as those
that promote actin assembly, like N-WASP (Gasman et al.,
2004) and cortactin (González-Jamett et al., 2017), or F-actin
disassembly, like scinderin (Rodriguez Del Castillo et al.,
1990), among others. However, future investigations should
be conducted to determine the submembrane Ca2+ levels that
selectively recruit or activate proteins involved in F-actin
assembly or disassembly, including protein kinase C, Src
kinase, scinderin, among others.

The rearrangement of the cortical actin cytoskeleton is
required for secretory vesicle mobility (Desnos et al., 2003;
Neco et al., 2004; Wen et al., 2011). Biochemical and
morphological analyses, together with live-cell imaging
experiments, in PC12 cells, a cell line obtained from a
pheochromocytoma of rat adrenal medulla, have shown that
this mobility depends on myosin Va and VI, which bind to
secretory vesicle and promote their motion towards the cell
periphery (Rudolf et al., 2003; Tomatis et al., 2013).

The actin cytoskeleton also plays a role in the organization
of the exocytotic site (Torregrosa-Hetland et al., 2011). As
visualized by total internal reflection fluorescence microscopy
(TIRFM) and Förster resonance energy transfer (FRET),
SNARE proteins and voltage-dependent Ca2+ channels
appear to be clustered together with F-actin structures
(Torregrosa-Hetland et al., 2013). This actin function seems
to involve annexin A2 (Gabel et al., 2015), an actin-binding
protein that binds and remodels lipid membranes in a
Ca2+-dependent way (Gabel and Chasserot-Golaz, 2016). In
this regard, biochemical assays in chromaffin cells, together
with immunogold electron microscopy, reveal that annexin A2
is recruited to the plasmalemma upon cell stimulation, where
it bundles actin filaments that organize lipid platforms for
docking and exocytosis of secretory vesicles (Gabel et al., 2015).

The cortical actin cytoskeleton further provides the
membrane tension required for the late stage of the
exocytotic process (Bretou et al., 2014; Shin et al., 2018; Wen
et al., 2016). In this regard, measurements of exocytosis with
single-cell amperometry shows that the disruption of the F-
actin cortex, with cytochalasin D or latrunculin A or by
interfering with the function of N-WASP or cortactin, delays
the enlargement of the fusion pore (González-Jamett et al.,
2013; Olivares et al., 2014; González-Jamett et al., 2017), a
transient structure formed during exocytosis (Álvarez de
Toledo et al., 2018). The membrane tension provided by
cortical F-actin importantly depends on myosin II (Bretou et
al., 2014). Indeed, inhibition of myosin II function also
impairs the fusion pore expansion (Neco et al., 2008; Doreian
et al., 2008; Berberian et al., 2009). Regarding the mechanism
by which myosin II might control membrane tensions,
optical trap experiments suggest that myosin-1a contributes
to the adhesion between the plasmalemma and the F-actin
cortex (Nambiar et al., 2009). Then, it remains to be proved
that this mechanism is also valid for myosin II.

Although some of the findings aforementioned appear to
be controversial, it is currently accepted that the cortical actin
cytoskeleton is a dynamic structure that is constantly
rearranged at specific submembrane regions in response to
different stimulus intensity. This tightly controlled assembly
and disassembly of actin filaments facilitates different stages
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of the secretory process, including secretory vesicle mobility, and
its docking and fusion at exocytotic sites, wherein SNARE
proteins and Ca2+ channels are organized together with actin
structures. Despite different actin partners participating in these
distinct events have been identified, the underlying mechanisms
still remain ambiguous, in particular those that control
membrane tension, and the signaling pathways activated by the
stimulus that determine local assembly or disassembly of actin
filaments. This should be resolved with the use of modern
instruments with high temporal and spatial resolution.

How Does the Cortical Actin Drive Endocytosis and Vesicle
Replenishment in Secretory Cells?

The cortical actin cytoskeleton plays a critical role in several
forms of endocytosis by providing force for the invagination
of endocytic pits (Kessels and Qualmann, 2021) and their
later fission (Wu et al., 2016; Gormal et al., 2015). For
example, using time-lapse imaging of Lifeact–GFP-transfected
bovine chromaffin cells in combination with fluorescent
70 kDa dextran, Gormal and collaborators demonstrated that
an acto-myosin II ring constricts the neck of nascent big
vesicles or cisternae during bulk endocytosis, allowing the
retrieval of large amounts of plasmalemma in response to
sustained stimulation (Gormal et al., 2015). Actin
polymerization can also provide the additional work against
the membrane tension needed to complete membrane bending
during clathrin-mediated endocytosis in cells (Boulant et al.,
2012). In this regard, Huntingtin-interacting protein 1-related
(HIP1R), a binding partner for clathrin light chains, is required
for the productive interactions of clathrin coated vesicles with
the actin cytoskeleton (Poupon et al., 2008). Additionally,
using ‘flash-and-freeze’ electron microscopy, Watanabe and
collaborators revealed that polymerized actin, possibly through
the modulation of membrane tension, is needed for membrane
invagination during the ultrafast endocytosis occurring in less

than 0.1 s at sites flanking 100 nm the active zone in
hippocampal pre-synapses (Watanabe et al., 2013). Moreover,
Wu and collaborators, using measurements of membrane
capacitance and fission pore conductance, imaging of vesicular
protein endocytosis, and electron microscopy, also reported
that cortical actin mediates overshoot (endocytosis that
surpasses previous exocytosis), slow (time constant > 10 s) and
rapid endocytosis (time constant ~1 s) in the calyx of Held,
possibly by exerting mechanical forces required to bend
membranes and thus to generate membrane pits (Wu et al.,
2016). Finally, actin also has a fundamental participation in
clathrin- and dynamin-independent endocytosis, a mechanism
that is coordinated by the small GTPases Arf1 and Cdc42 and
Bin/Amphiphysin/Rvs (BAR) domain proteins (Sathe et al.,
2018). BAR domain proteins further provide a link between
membrane remodeling and the actin cytoskeleton, coordinating
the modulation of membrane curvature and actin assembly
during cellular processes such as endocytosis and organelle
trafficking (Carman and Dominguez, 2018).

We have recently found, by using membrane capacitance
measurements in mouse chromaffin cells, that the fast
dynamin-dependent endocytosis (time constant ~800 ms)
which develops after the exocytosis triggered by action
potential-type (ETAP) stimulus (Moya-Díaz et al., 2016,
2020) also depends on cortical F-actin (Montenegro et al.,
2021). Particularly, depolymerization of actin filaments,
induced by an increase of cytosolic Ca2+ or by pretreatment
with cytochalasin D, significantly decelerates this endocytosis
(Montenegro et al., 2021). This endocytic process is tightly
associated with the replenishment of the group of vesicles
secreted during ETAP. Inhibition of GTPase dynamin by
different experimental approaches (cell dialysis with dynamin
829–842 blocking peptide or specific blocking antibodies
against dynamin), modifications of cytosolic [Ca2+], as well as
depolymerization of F-actin decelerate both processes in
parallel (Moya-Díaz et al., 2016; Montenegro et al., 2021).

FIGURE 1. Ca2+ concentrations that induce exocytosis promote both disruption of the preexisting cortical actin network and formation of new
actin filaments. A–B: As measured in permeabilized chromaffin cells, formation of new actin filaments (green) is observed at 1 and 10 μM free
Ca2+ concentrations, whereas a significant disruption of the actin network (red) is manifested at 10 μM free Ca2+ concentrations. Figures
reproduced from Olivares et al. (2014). C: Electron microscopy analyses show that in unstimulated chromaffin cells a dense cortical actin
mesh separates the secretory vesicles from the plasmalemma (upper panel), whereas in stimulated cells, the secretory vesicles that reach
the plasmalemma are still surrounded by actin filaments (middle panel), and their exocytosis is favored by actin bundles linking secretory
vesicles (granule) to the plasmalemma (bottom panel). Upper and middle images adapted from Nakata and Hirokawa (1992); Copyright
1992, Society for Neuroscience, and bottom image adapted from Gabel et al. (2015).
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We propose two alternative hypotheses (Fig. 2) to explain this
tight relationship between fast dynamin-dependent endocytosis
and rapid dynamin-dependent ETAP replenishment. One
hypothesis is based on the idea that ETAP exocytosis is
produced by a kiss-and-run type of mechanism. Through this
process, the secretory vesicle is retrieved directly after the
formation of a fusion pore, without collapse of the vesicle,
and after the release of some portion of its content (Saheki
and de Camilli, 2012). In such a case, vesicles would be rapidly
retrieved and replenished locally, resulting in a rapid recovery of
ETAP exocytosis. This hypothesis is supported by previous
publications of the Corey Smith group showing that fast
endocytosis, measured as membrane capacitance changes, and
kiss-and-run, evaluated by small amperometric spikes and
internalization of fluid phase fluorescent markers of small sizes,
predominate in response to stimulation with action potentials
applied alone or at low frequencies (Chan and Smith, 2001;
Fulop et al., 2005). Later studies from the same group proposed
that cortical F-actin plays a key role in stabilizing the kiss-and-
run fusion event, whereas a stronger stimulation, as well
cytochalasin D treatment, disrupts the actin cortex, driving full
granule collapse (Doreian et al., 2008). The other possible
hypothesis is that, after ETAP exocytosis, a fast endocytotic
mechanism facilitates rapid vesicle replenishment by clearance of
exocytotic materials from active zones, restoring the structure of
the exocytotic sites (Hosoi et al., 2009). Following this
hypothesis, if endocytosis is impaired by F-actin disruption (or
by inhibition of dynamin) vesicle replenishment will be affected
as well. In addition, the actomyosin network is also essential in
the transport of vesicles to the exocytotic sites at the
plasmalemma (Neco et al., 2003; Papadopulos et al., 2015).
Therefore, in agreement with our experimental results, both
hypotheses consider a pivotal role of cortical actin in the
recycling of secretory vesicles occurring after ETAP. Future

investigations directed to the fusion pore dynamics during ETAP
should be conducted to discriminate between both hypotheses.

Conclusions

The localization of cortical filamentous actin in the sub-
plasmalemmal region of secretory cells is strategic for the
multiple roles that this protein has on diverse processes
associated with secretion, as was summarized in this
viewpoint. Cortical F-actin co-localizes with the secretory
vesicles at different stages of the secretory process, even when
secretory vesicles dock and fuse with the plasmalemma. Also,
in this cortical area the compensatory membrane retrieval is
produced for the reestablishment of plasmalemma surface and
composition after vesicle fusion, and the transport of new
endosomes to their respective membrane targets is initiated.
Similar events have been observed in other systems, like in
epithelial cells which undergo regulated secretion (Khandelwal
et al., 2013, 2010). Some of the contributions of cortical actin
to secretory vesicle exocytosis, endocytosis and recycling were
already described in chromaffin cells, in pancreatic beta cells,
in mast cells and in some neuronal models, as it was
mentioned in this viewpoint. However, the strategic
localization and properties of cortical actin open the door to
many other regulatory functions associated with secretion. As
aforementioned, how these many functions are distinctly and
tightly regulated should be further investigated in the future.
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