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Abstract: Mesenchymal stem cells (MSC) have pushed the field of stem cell-based therapies by inducing tissue

regeneration, immunosuppression, and angiogenesis mainly through vesicles and soluble factors release (paracrine

signaling). MSC-extracellular vesicles (MSC-EV) adaptable secretome and homing to injured sites allowed researchers

to unlock a new era of cell-free based therapy. In parallel, nanoparticles (NP) have been explored in contributing to

transport and drug delivery systems, giving drugs desired physical-chemical properties to exploit cell behavior.

However, NPs can be quickly recognized by immune cells and cleared from circulation. In this viewpoint, we explore

how combining both therapeutic strategies can improve efficacy and circumvent limitations of both therapies. MSC-

EV benefit from the potent MSC membrane composition, guiding chemotaxis to tumor sites, a very restricted

microenvironment. MSC-EV has low immunogenicity, high stability, long half-life and can explore tissue targeting

ligands as a precise drug carry, even across biological barriers. Those properties promote enhanced targeted drug

delivery that can be combined with NP, exploring biological membrane production through: 1. direct cell therapy

with NP-infused MSC; 2. NP-containing MSC-EV generated by NP-infused MSC; 3. by coating NP in MSC

membrane (“MSC NanoGhosts”), allowing precise cargo definition without losing targeting. Therefore,

nanotechnology combined with cell-based therapeutic resources can greatly improve targeted drug delivery, improving

efficacy and opening a new venue of therapeutic possibilities.

Conceptualizing the Secretome

Mesenchymal stem cells (MSC) have quickly become pivotal
in stem cell-based therapies during the last years. This
phenomenon is due to their ability to induce regeneration,
improve tissue homeostasis, and the immunosuppressive
ability to repair damaged tissues releasing a range of factors
(Gao et al., 2016). Important research has proven that MSC
exerts therapeutic effects not only through the physical
proximity of transplanted cells to damaged tissue but mainly
by the paracrine effect (Harrell et al., 2019). MSCs are
known to release a myriad of bioactive molecules, including
growth factors, cytokines, miRNA, mRNA, microvesicles,
and exosomes (Rani et al., 2015). The ability of MSCs
homing to injured sites and release their secretome allowed
researchers to unlock a new era of cell-free-based therapy.

Even though MSC displays local homing and differentiation
into mesenchymal trilineage, limitations remained such as

comprehension of long-term tissue interaction and MSCs (Ding
et al., 2011; Gomez-Salazar et al., 2020). The MSC secretome
showed similar benefits to those observed after transplantation
of MSC. The main advantage which makes the secretome very
attractive is the possibility to set a specific cocktail of molecules
best fitted to each therapy. In the secretome, we find MSC-EV
and soluble factors produced in vitro, during MSC
preconditioning with specific cytokines to induce the desired
response according to specific disease models (Ferreira et al.,
2018). MSC-EV is a powerful tool in cell-free therapy,
alleviating immune response, inducing angiogenesis, and anti-
apoptotic effects, providing tissue regeneration and repair
(Vishnubhatla et al., 2014). Also, they avoid invasive procedures,
mitigate the risk of unwanted cellular differentiation, embolism
formation with relative uncomplicated production and storage,
thus an efficient approach compared to cellular methods
(Ghafouri-Fard et al., 2021; Sun et al., 2019; Vizoso et al., 2017).

MSC-EVs are a sophisticated and complex way of
cellular communication, which are categorized according to
their origin and size (Ferreira et al., 2018; Vizoso et al.,
2017; Yáñez-Mó et al., 2015). Microvesicles (100–1,000 nm)
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are the larger class of MSC-EV size that interacts through
microtubules and SNARE proteins to deliver their contents
to neighboring or distant sites. Their formation occurs by
outward budding or protrusion of the plasma membrane
(Doyle and Wang, 2019; Eleuteri and Fierabracci, 2019;
Ståhl et al., 2019). Conversely, exosomes are smaller
membrane-bound vesicles (30 nm–100 nm) protected by
lipid bilayer membrane and released through exocytosis.
They are formed in the intracellular compartment, through
endosomes that fuse with endocytic vesicles, known as
multivesicular bodies (MVB). Then, MVB containing
intraluminal vesicles merge with the plasma membrane and
empty their content into extracellular space (Doyle and
Wang, 2019; Eleuteri and Fierabracci, 2019). The MSC-EVs
internalization in target cells can occur through ligands,
allowing precise binding, cell entrance, and release of the
substance into the cytoplasm, exerting effects in recipient
cells. Also, MSC-EV display a long-circulating half-life
(Doyle and Wang, 2019; Lei et al., 2021; Vizoso et al., 2017).
Particularly, both MSC-EV types contain miRNA, mRNA,
lipids, and proteins that differ according to MSC tissue
source and preconditioning (Ferreira et al., 2018; Eleuteri
and Fierabracci, 2019; Lei et al., 2021; Shin et al., 2021).

The soluble factors are also one of the cornerstones by
which MSC exert their therapeutic effects. Also referred to
as trophic factors, they are part of MSC’s repair machinery
composed of cytokines, growth factors, hormones, and pro-
angiogenic factors (Ferreira et al., 2018; Zhao et al., 2020).

For a given therapeutic proposal, preconditioning MSC
using proinflammatory cytokines, such as IFN-γ, TNF-α, or
IL1-β, downregulated both inflammation and immune
response mainly mediated by the release of IDO, PGE2, IL-
1RA, and IL-10, as well several cytokines and chemokines,
regulating innate/adaptive immune system (Ferreira et al.,
2018; Aggarwal and Pittenger, 2005; Harrell et al., 2020;

Jiang and Xu, 2020). Preconditioning with hypoxia or
growth factors protocols using BDNF, GDNF, HIF1-α,
IGF-1 are described as inducing VEGF production (Ge
et al., 2018; Haider et al., 2008; Tögel et al., 2009) and
reducing fibrosis in vivo (Ferreira et al., 2018) (Fig. 1).

MSC secretome applications
The damaged tissue is often exposed to conditions of enhanced
reactive oxygen species production by aerobic metabolism,
which causes damage to cellular protein, DNA, and lipids,
leading to increased apoptosis, and reduced cell proliferation.
MSCs secretome has enzymes with antioxidant activity that
help bypass the microenvironment with oxidative stress and
promote repair (Chaudhari et al., 2014). MSC-EVs modulate
the apoptotic response through anti-apoptotic proteins, in
addition to high levels of pro-angiogenic factors, such as
VEGF, contributing to the restructuring of the injured tissue
(Kachgal and Putnam, 2011).

Through selectively packing miRNA and cytokines,
MSC-EV can promote tissue remodeling, inhibiting fibrotic
responses by resident fibroblasts (Shentu et al., 2017; Lira
et al., 2017; Almeida et al., 2021). They also have
cardioprotective capacity, reducing infarction extent and
increasing myocardial viability (Lai et al., 2010; Arslan et al.,
2013; Yu et al., 2015). Additionally, MSC secretome reduced
inflammation in inflammatory bowel diseases (Liu et al.,
2019). Recently, the world has been affected by the
COVID-19 pandemic and the use of cell-based or secretory-
based therapies has been shown to contribute to disease
resolution. MSC or MSC-EV treatments normalized cell
counts (Liang et al., 2020), reduced pro-inflammatory
cytokines and serum chemokines, whereas increased the
anti-inflammatory IL-10, reducing the cytokine storm,
allowing lung tissue regeneration. (Leng et al., 2020; Shi
et al., 2021; Paris et al., 2021).

FIGURE 1. Composition of secretome responsible for the therapeutic effects of MSCs. The secretome is rich in soluble factors and MSC-EV
that act to control inflammation and stimulate tissue regeneration, which represents potential strategies to treat several diseases. Mesenchymal
stem cells-extracellular vesicles (MSC-EV). Image made with BioRender.com.
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Combining promising therapeutic strategies–Cell and
NanoTechnology
As the therapeutic capacity of MSC’s secretome is continually
validated in pre-clinical and clinical trials, with robust safety
for patients, we can devise its use as a tool, prospecting future
therapies that aggregate multiple technologies. Besides the
cellular technology used in MSC identification, isolation, and
therapeutic potential validation, nanotechnology has been
emerging as a field of study with great integrative potential in
medicine, contributing to transport and drug delivery
systems, biocompatible nanomaterials, gene therapies, and
even mRNA vaccines effectiveness, as recently demonstrated
in COVID-19 pandemic (Keech et al., 2020). Nanotechnology
development allows for precise modification in high-interest
biomolecules, manipulating molecule’s size, structure,
conductivity, reactivity, functional conformation, and melting
temperature, which ultimately dictates its physical, chemical,
and biological properties (Mazzeo and Santos, 2018).

Nanoparticles (NP) are small-sized (1 nm–100 nm (Vert
et al., 2012)) lipid-based, polymeric, quantum dots, inorganic
or metal-derived particles. NPs can be linked to various
known drugs, thereby modifying their properties, improving
drug accessibility to the target tissue and cellular drug
uptake while reducing toxicity, cellular drug resistance, and
efflux (Markman et al., 2013). Also, their intrinsic

conditional activation by variations in pH, heat, ultrasound,
light, and magnetic field enhances effectiveness, as seen in
gold NPs use in radiotherapy (Mura et al., 2013; Laprise-
Pelletier et al., 2018). Although NPs provide beneficial
features to drugs, several limiting factors still prevail. NPs
are quickly recognized by immune cells and cleared from
the circulation by the mononuclear phagocyte system, and
may present poor biocompatibility or biodegradability,
restricting their utility as drug carriers (Gao et al., 2013).
Therefore, nanotechnology combined with cell-based
therapeutic resources has drawn interest due to low
immunogenicity and targeted drug delivery (Wu et al., 2019).

A cell-based targeted delivery system has been
developed granting low immunogenicity, low intrinsic
mutation rate (Sotiropoulou et al., 2006), long circulation
time, no neurotoxicity or tumorigenicity, and integration
of receptors (Thanuja et al., 2018). MSC therapy holds
those qualities as it has been proved safe in multiple
physiological contexts and routes of administration. More
importantly, transplanted MSC migrate towards injured
tissue, inflammatory, and tumor sites (Hu et al., 2010;
Kidd et al., 2008). Tumor tropism has been observed for
MSCs either administered via intravenous (Yang et al.,
2009), intraarterial (Nakamizo et al., 2005), or peritumoral
routes (Hong et al., 2009; Wu et al., 2019).

FIGURE 2. Protocols for combining MSC-EV and nanotechnology into an improved targeted drug delivery system. Nanoparticles can be
inserted into the plasma membrane by selected affinity while carrying a drug or enzyme of interest. The complex NP + drug can vary in
orientation. Thanks to MSC and MSC-EV homing ability, the complex can be carried to the tumor site while directly inserted in the
membrane of a migrating cell (1) or inserted in an EV (2). As these qualities are membrane-specific, MSC membrane can be ruptured and
used to make synthetic EV, precisely controlling cargo content (3). Image made with BioRender.com.
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NPs incorporation in biological systems such as in cells,
vesicles, proteins, and genetic material allows for imaging/
diagnostic detection and can improve targeted therapy,
especially for tumors. Usually, the immunomodulated tumor
microenvironment hampers drugs or cells entry. Drug-
loaded NPs can be incorporated by cells through clathrin-
mediated endocytosis pathways (Saulite et al., 2017) as
intracellular drug depots and achieve sustained release,
thereby decreasing anticancer-drug cytotoxicity and
chemotherapeutic loss by rapid drug efflux, since drug
delivery would be targeted to the tumor/inflamed area.
Therefore MSC’s tropism for tumor sites is an extremely
desired quality since the tumor microenvironment is very
restrictive to new immunological cells entry as seen in CAR-
T cell studies (Dapkute et al., 2017; de Boeck et al., 2013;
Kidd et al., 2009; Moradian Tehrani et al., 2018; Sadhukha
et al., 2014; Usha et al., 2013; Vegh et al., 2013).

And just as MSC, MSC-EV maintain chemotaxis towards
tissue injury, inflammation, and tumor (Kriebel et al., 2018).
The low immunogenicity, stability, long half-life, and tissue
targeting ligands potentiate MSC-EV as an appropriate
candidate for precise drug carriers even across different
biological barriers (Heidarzadeh et al., 2021). Exosomes can
cross the blood-brain barrier, a much-desired characteristic for
drug delivery, and can readily access nearly all types of human
biofluids, which make them promising biomarkers for gliomas
(Cheng et al., 2020). In addition, MSC-EV membranes might
also regulate the microenvironment as their receptors can act
as decoy receptors, binding to ligands without generating the
final response, diminishing continuous adverse signaling
(Madsen et al., 2017; Harrell et al., 2020). Many of those
properties arise from the MSC-derived membrane present in
MSC-EV, an intrinsic benefit from using MSC’s secretome.

Furthermore, exosomes are selectively packaged by
ESCRT-dependent or independent mechanisms associated
with the plasma membrane (Colombo et al., 2013) and are
highly variable depending upon the source of the parental
cells, age, and pathophysiological conditions (Pegtel and
Gould, 2019). It has been shown that the ESCRT-
independent mechanism selects precise exosomal cargo via
raft-based microdomains enriched in sphingomyelinases,
controlling the lipid composition of exosomes during
biogenesis (Zhang et al., 2019). After secretion, exosomes
interact with neighboring or distant specific recipient cells
through several ways, including ligand/receptor interaction,
direct membrane fusion, and endocytosis, to modulate the
activities of recipient cells (Heidarzadeh et al., 2021). MSC
membrane is a crucial asset as it improves EV uptake by
receiving cells (Shentu et al., 2017). Therefore, parental
plasma membrane plays a role in MSC-EV cargo sorting
and targeting, making MSC membrane of high interest.

Conclusion

Hence, synthetic technology has tried to emulate those
desired qualities, but the highly complex composition and
organization of MSC’s membrane makes it unable to
precisely reproduce it with today’s technology, even though
progress is being made as synthetic vesicles are now able to
migrate towards a gradient (Pan et al., 2019).

Three protocols to explore this tool resorting to
biological membrane production are:

1. Inserting NP-drug complex in MSC and using direct
cell therapy, achieving condition-specific EV production,
sustained release and targeted drug delivery;

2. Inserting NP-drug complex in MSC and letting them
produce NP-drug-containing MSC-EV;

3. Striping MSC’s membranes to form engineered NP-
drug-containing vesicles (MSC-EV-NPs), also called “MSC
NanoGhosts” allowing precise control over EV cargo
(Toledano Furman et al., 2013) (Fig. 2).

Therefore, this technique reflects a transfer of
technology, upgrading targeted drug delivery and allowing
complex interactions with the microenvironment that will
lead to specific secretome production, improving efficacy.
Nanotechnology combined with cell-based therapeutic
resources has promising therapeutic potential as a targeted
drug delivery platform with low immunogenicity.
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