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Abstract: Diabetic nephropathy (DN) is a commonmicrovascular complication that easily leads to end-stage renal disease. It

is important to explore the key biomarkers andmolecular mechanisms relevant to diabetic nephropathy (DN).We used high-

throughput RNA sequencing to obtain the genes related to DN glomerular tissues and healthy glomerular tissues of mice.

Then we used LIMMA to analyze differentially expressed genes (DEGs) between DN and non-diabetic glomerular

samples. And we performed KEGG, gene ontology functional (GO) enrichment, and gene set enrichment analysis to

reveal the signaling pathway of the disease. The CIBERSORT algorithm based on support vector machine was used to

determine the immune infiltration score. Random forest algorithm and Cytoscape obtained hub genes. Finally, we applied

co-staining, immunohistochemical staining, RT-qPCR and western blotting to validate the protein and mRNA expression

of both hub genes. We obtained 913 DEGs mainly related to inflammatory factors and immunity. GSEA results showed

that differential genes were mainly enriched in IL-17 signaling pathway, lipid and atherosclerosis, rheumatoid arthritis,

TNF signaling pathway, neutrophil extracellular trap formation, Staphylococcus aureus infection and other pathways. The

intersection of the random forest algorithm and Cytoscape revealed both hub genes of CD300A and CXCL1. Experiments

have shown that the both key genes of CD300A and CXCL1 shown increased expression in glomerular podocytes, and

are related to the inflammation of diabetic nephropathy. And immunohistochemical staining and RT-qPCR further

confirmed that the protein and mRNA expression level of CD300A or CXCL1 in glomeruli tissue in DN mice were

increased. The expression levels of CD300A and CXCL1 increased significantly under HG (high glucose) stimulation,

further confirming that diabetes can lead to increased levels of CD300A and CXCL1 at the cellular level. Through

bioinformatics analysis, machine learning algorithms, and experimental research, CD300A and CXCL1 are confirmed as

both potential biomarkers in diabetic nephropathy. And we further revealed the main pathways of differential genes and

the differentially distributed immune infiltrating cells in diabetic nephropathy.

Abbreviations
AGE: advanced glycation end
AI: allergic inflammation
DEGs: differentially expressed genes
DN: diabetic nephropathy
GO: gene ontology
GSEA: gene set enrichment analysis

HG: high glucose
HPCs: human podocytes
KEGG: kyoto encyclopedia of genes and genomes
PPI: protein-protein interaction
qRT-PCR: real-time quantitative PCR
RF: random forest

Introduction

Diabetes is a chronic metabolic disorder characterized by
hyperglycemia. It affects the kidneys and tubules, leading to
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debilitating end-stage renal disease and diabetic nephropathy (DN)
(Bonnet and Scheen, 2018; Maiti, 2021; Cefalu et al., 2016).
Diabetes, characteristic of high blood sugar, mainly includes
type 1, type 2, and monogenic and fibrocalculous pancreatic
diabetes (Bloomgarden, 2016; Vendhan et al., 2014). And type 2
diabetes is the most common form of diabetes in humans.
Prolonged high blood sugar causes chronic damage to various
tissues, especially eyes, kidneys, heart, blood vessels, and nerves.
Including “microvascular disease” (small blood vessel damage)
and “macrovascular disease” (arterial damage) (Forbes and
Cooper, 2013). Diabetic nephropathy (DN) is a microvascular
complication that commonly leads to end-stage renal disease and
even kidney failure in severe cases. Diabetic nephropathy has a
complex pathogenic basis due to various intertwined risk factors.
There are no definite drugs and treatments that can prevent
diabetic nephropathy. Therefore, it is important to explore the
key biomarkers and molecular mechanisms relevant to diabetic
nephropathy.

Hypertension and micro-inflammation play an essential role
in diabetic nephropathy (Tomino and Gohda, 2015).
Inflammatory mediators interact with multiple tissues to promote
the development of diabetic complications (Bonnet and Scheen,
2018). Acute inflammation is a component of innate immunity
that may promote tissue damage. Studies have found that
inflammatory markers increase in diabetic patients to promote
the inflammatory microenvironment, in which infiltrating cells
and inflammatory cytokines demonstrated an active role (Chow
et al., 2004; Russell and Kanthimathinathan, 2018).

Diabetic nephropathy involves inflammatory, genetic, and
epigenetic modification. For example, some genetic mutations
increase disease risk by regulating B cells and insulin (Dang et al.,
2013). In addition, diabetic nephropathy increases advanced
glycation end (AGE) products (Stitt et al., 1997; Horie et al.,
1997). And studies have shown that its receptors act on
pleiotropic transcription factors, leading to pathological changes
in gene expression (Ishii et al., 1996). Thus, genetic modifications
and signaling pathways affect the progress of diabetic nephropathy.

The leading cause of diabetic nephropathy is glomerular
damage. The prominent feature is that collagen in patients
with diabetic nephropathy accumulates in the kidney
compartment, and renal tubules and glomeruli will be
hypertrophy, thickening, and fibrosis (Kato and Natarajan,
2019). The glomerular basement membrane thickens, and the
glomerular mesangial area expands during diabetic
nephropathy (Ban and Twigg, 2008; Meza et al., 2017).
Hyperperfusion and increased internal pressure in the
glomerulus lead to the pathogenesis of diabetic nephropathy
(Flyvbjerg, 2017). In addition, damaged glomerular mesangium
and podocytes produced cytokines to activate immune cells
(Elmarakby and Sullivan, 2012). At present, reducing the
internal pressure of the glomerulus serves as an effective
treatment for diabetic nephropathy. Therefore, studying key
glomerular genes and the relevant signaling would be helpful
to explore the prognosis and treatment of diabetic nephropathy.

There is a lack of early diagnosis and prevention methods
in clinical diabetic nephropathy. Therefore, the paper
combines experimental and bioinformatics approaches to
study the potential biomarkers and signaling pathways in
diabetic nephropathy, providing references for targeted
prevention and treatment of diabetic nephropathy.

Methods

RNA sequencing of mice glomeruli
24-week-old male db/m mice and db/db mice were randomly
selected and sacrificed by cervical dislocation. The mouse
kidney was taken out and chopped up, filtered with 100 um,
80 um, and 40 um filters to obtain glomeruli. The kidneys
of 9 mice in each group were used to extract glomeruli, and
then the glomeruli of 3 mice were mixed as independent
samples. The RNA transcriptome sequencing was completed
by Myhalic Biotechnological Co., Ltd. (Wuhan, China).
Each group sequenced three independent biological replicate
samples. The original RNA-seq data and processed data
have been uploaded to the GEO database (GSE184836;
https://www.ncbi.nlm.nih.gov/geo/; May 2020).

Identification of differentially expressed genes
Differentially expressed genes (DEGs) and data preprocessing
between DN and non-diabetic glomerulus were analyzed.
Glomerular genes whose expression significantly differed
were defined as DEGs and used for further analyses: | log2
(fold change) | >1 and P-value < 0.05. Gene ontology (GO)
enrichment analysis of DEGs were carried out by using
DAVID (https://david.ncifcrf.gov/; May 2020) online tools.
Gene Set Enrichment Analysis (GSEA) was used to screen
significantly enriched signalling pathways with appropriate
parameters.

Gene set enrichment analysis
DAVID performs gene ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway enrichment analysis
on differential genes. P < 0.05 was used as the screening
condition, and the chord diagram was visually analyzed to
display the description of gene function, the pathway and the
range of logFC. R program packages such as “clusterProfiler”
perform gene set enrichment analysis (GSEA). Mainly study
the functionally similar genomes and related signal pathways
among different genes.

Analysis of differential genes in the immune microenvironment
The CIBERSORT (https://cibersort.stanford.edu/; May 2020)
algorithm analyzes the expression of differential genes in
samples. First, we use LM22 cells and 1000 permutations to
run the algorithm to infer the composition ratio of immune
cells. Then we use the abundance map to visually analyze
the proportion of different cells in each sample.

Analysis of protein-protein interaction and key genes
We construct a protein-protein interaction (PPI) network and
select genes with a confidence score greater than 0.9. Then, we
use String and Cytoscape to screen different genes for hub
genes. Finally, we filtered out the top 50 key genes of degree
according to degree calculation.

Random forest algorithm
Based on R program packages such as “randomForest” (Le
et al., 2017), we performed random forest ensemble learning
algorithm analysis on differential genes. The classification
is based on whether it is a diabetic complication, the
differential gene and the classification are based on this
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mapping relationship to screen the genes. 50 key genes were
screened out according to the MeanDecreaseGini value.

Western blot
RIPA buffer containing protease and phosphatase inhibitors
was used to extract proteins from the separated glomeruli
and human podocyte (HPCs). The protein concentration is
quantified by BCA determination. Separate equal amounts
of protein by 10% SDS-PAGE and transfer to PVDF
membrane (Millipore Corp, USA). Incubate the membrane
overnight at 4°C with primary antibodies: GAPDH
(Proteintech, China, dilution: 1:1000), CXCL1 (Proteintech,
China, dilution: 1:1000), CD300A (Proteintech, China, dilution:
1:1000). Then the membrane was incubated with goat anti-
mouse/goat anti-rabbit secondary antibody IgG H+L (1:10,000)
for 2 h and detected by the Odyssey system (LI-COR
Biosciences). All experimental protocols for animal studies were
approved by the Animal Care Committee of Wuhan University
(Ethical permission number: WDRM20200603).

Immunofluorescence assay
The paraffin-embedded kidney sections were deparaffinized
and sealed. Incubated the section with a mixture of anti-
synapsin antibody (1:100, Santa cruz, USA) and anti-CXCL1
antibody (1:100, Proteintech, China) or anti-CD300A
antibody (1:100, Proteintech, China) in Overnight at 4°C.
Then, the sections were washed 3 times with PBS and
incubated with anti-rabbit and anti-mouse fluorescent
secondary antibodies (1:200, Thermo Fisher Scientific, USA)
for 60 min. The nuclei were counterstained with DAPI
(Antgene, China) for 5 min. We observed the glass slide
through a microscope (Olympus, Japan).

Real-time quantitative PCR (qRT-PCR)
We used Trizol reagent (Takaro, Japan) to extract total RNA
from frozen kidney sections or HPC. Then we used RevertAid
First Strand cDNA Synthesis Kit (Thermo, USA) to transcribe
RNA into cDNA. RT-qPCR was performed by SYBR Green
Master Mix (Bio-Rad, USA). The 2-ΔΔCt method was used to
normalize relative gene expression to β-actin. The primers
were synthesized by Sangon Biotech (Sangon Biotech,
China), and the primer sequence is shown in Table 1.

Statistical analysis
The statistical analysis of this study uses R software (version 3.6.1).
Both “clusterProfiler” and “GOplot” were used to identify
differential genes’ essential functions and signal pathways (Yu et
al., 2012). PPI and random forest were used to distinguish the
essential genes in the differential genes, overlapping the hub
genes of both methods. The P < 0.05 was considered to be
statistically significant. All experiments were repeated at least 3
times. Quantitative data is expressed as mean ± SD, and
statistical analysis is performed using Graphpad. The student’s t
test was used for statistical comparison of groups.

Results

Differentially expressed genes
Bioinformatics analysis of differential genes between diabetic
and non-diabetic glomerular samples was performed after

data standardizing (P < 0.01 and |logFC| > 1). The results
showed a total of 913 DEGs, including 615 up-regulated
genes and 298 down-regulated genes (Fig. 1A). In addition,
heat maps represent differential genes, and gene cluster
analysis was performed to show the difference in expression
of up-regulated and down-regulated genes in different tissue
samples (Fig. 1B).

GSEA pathway analysis
We further used GSEA to study potential biological processes
and pathways. GSEA results showed that differential genes
were mainly enriched in IL-17 signaling pathway, lipid and
atherosclerosis, rheumatoid arthritis, TNF signaling pathway,
neutrophil extracellular trap formation, Staphylococcus aureus
infection and other pathways (Figs. 2A and 2B).

GO and KEGG enrichment analysis
The gene ontology and pathway analysis results showed that the
biological processes of 913 differential genes involved
chemotaxis, inflammatory response, immune response, etc.
(Fig. 3A). The cell components were mainly plasma membrane,
extracellular space, extracellular zone, plasma membrane
components, cell surface, anchoring components of membrane,
extracellular exosomes (Fig. 3B). Molecular functions mainly
include chemokine activity, serine endopeptidase activity,
chemokine receptor, receptor binding, CXCR chemokine
receptor binding, non-transmembrane protein tyrosine kinase
activity, cytokine activity, etc. (Fig. 3C). KEGG pathway analysis
mainly involves Staphylococcus aureus infection, cytokine-
cytokine receptor interaction, complement and coagulation
cascade, TNF signaling pathway, neuroactive ligand-receptor
interaction, etc. (Fig. 3D).

Immune infiltrating analysis
We used CIBERSORT to perform deconvolution algorithm
analysis on 913 differential gene expression data. The
immune abundance landscape displays difference in immune
infiltration of the 22 immune infiltrating cells between DN

TABLE 1

Primers sequences (forward, F; reverse, R) used in real-time
quantitative PCR

Gene Sequence 5’→3’

Human-CD300A-F CATCAACGTCAATGACACCTGC

Human-CD300A-R CACCCACTGCAAACAGGGTA

Human-CXCL1-F AACCGAAGTCATAGCCACACTC

Human-CXCL1-R CTTCTCCTAAGCGATGCTCAAA

Human-b-Actin-F CATGTACGTTGCTATCCAGGC

Human-b-Actin-R CTCCTTAATGTCACGCACGAT

Mouse-CD300A-F TGAGTGCCAGTATGTGAATTTGC

Mouse-CD300A-R ACAGGTAAAGGTCAGAGAGTCC

Mouse-CXCL1-F CTGGGATTCACCTCAAGAACATC

Mouse-CXCL1-R CAGGGTCAAGGCAAGCCTC

Mouse-b-Actin-F GTGACGTTGACATCCGTAAAGA

Mouse-b-Actin-R GCCGGACTCATCGTACTCC
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and non-diabetic glomerular samples. Compared with healthy
tissues, T cell follicular helper cells, T cell CD4 memory,
resting mast cells, and monocytes have significant different
proportions in the DN glomerular samples (Fig. 4).

PPI and random forest algorithm determine key genes
The PPI network contains 753 nodes and 1323 edges, with an
average node degree of 3.51, and PPI enrichment is statistically
significant (P = 1.0e-16) (Fig. 5A). Then 50 important genes
with high scores were screened out according to the degree
(Fig. 5B). Besides, the genes are screened according to the
mapping relationship between the differential gene and
whether it is DN. The decision tree is 25, and the results show
differences between samples and the distribution between
samples (Figs. 5C and 5D). Finally, we overlap the PPI and the
random forest results to determine hub genes’ intersection
CD300A and CXCL1 (Fig. 5E). The expression of both genes
was significantly increased in DN glomerular samples.

Increased expression of CD300A and CXCL1 in podocytes of
DN mice
In the glomerulus of mice, Synaptopodin is a specific synaptic
junction protein of podocytes, which is mainly expressed on the
cell membrane and can be used as a marker of podocytes. We
observed the expression of CD300A or CXCL1 in podocytes by
co-staining Synaptopodin with CD300A or CXCL1 by
immunofluorescence. In Figs. 6A and 6B, it was found that the
expression of CD300A or CXCL1 was increased in podocytes.
Through immunohistochemical staining and RT-qPCR, it was
further confirmed that the expression level of CD300A or
CXCL1 protein and mRNA expression level in glomeruli tissue
were increased (Figs. 6C–6F). The results indicate that the
glomerular inflammation level of DN mice is increased.

HG stimulation lead to increased expression of CD300A and
CXCL1 in podocytes
We incubated HPC cells with high glucose to observe the
changes in the expression levels of CD300A and CXCL1. To

confirm whether the increase of CD300A and CXCL1 in
podocytes in the DN is caused by diabetes. Since high sugar
has an effect on osmotic pressure, we added a mannitol
group as a control. Western blotting, RT-qPCR and
immunofluorescence detection, found that the expression
levels of CD300A (Figs. 7A–7C) and CXCL1 (Figs. 7D–7F)
were significantly increased under HG stimulation. This is
further confirmed at the cellular level that diabetes can lead
to increased expression of CD300A and CXCL1.

Discussion

Diabetes has acute and chronic diabetic complications,
including retinopathy, nephropathy, and atherosclerosis [5].
Diabetic nephropathy is the leading cause of death in
diabetic patients. However, the current diagnosing methods
for diabetic nephropathy are still limited (Cefalu et al., 2016;
Harding et al., 2019). Therefore, it is of great significance to
study the key genes of diabetic nephropathy and the
biological functions and pathways relevant to the disease.
Diabetic nephropathy is a kidney disease caused by
angiopathy of the capillaries in the glomeruli (Volker and
Scott, 2020). Therefore, we obtained gene expression profiles
in glomeruli through RNA sequencing and obtained 319
differential genes through differential analysis. Then we used
machine learning algorithms to identify hub genes
(CD300A, CXCL1), and analyze the biological functions and
signal pathways involved.

Random Forest (RF) is an algorithm that integrates
multiple trees through ensemble learning. The main idea is
to obtain a series of decision trees, which captures complex
interactions, and then obtain a set of average characteristics.
RF randomly processes data (randomness): guide many
patients on each tree and select a subset of variables to grow
each node. In growing decision trees, binary split recursion
is performed on each region (called a node) of a specific
predictor variable to maximize the difference between child
nodes. When certain conditions are met, the split ends

FIGURE 1. Identification of differential genes. (A) Volcano plot between diabetic and non-diabetic glomeruli. The red node represents the up-regulated
DEG, and the green node represents the down-regulated DEG. (|logFC| > 1 and P < 0.05) (B) Heat map of all differential genes. Each row represents a
data set, and each column represents a gene. The color changing from blue to red represents a change in the expression of ups and downs.
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(these nodes are called terminals). The most commonly used
splitting criterion is the log-rank test. RF can also handle data
with a large number of samples and a large number of
predictors. In addition, combining the results of many tree
branches achieve remarkable stability.

The KEGG signaling pathway of differential genes mainly
includes staphylococcus aureus infection, cytokine-cytokine

receptor interaction, TNF signaling pathway, and neural
active ligand-receptor interaction. The pathology of diabetic
nephropathy involves multiple signal pathways and
cytokines. The cytokine-cytokine receptor signaling pathway
is related to insulin secretion (Xu et al., 2017). TNF-α is an
inflammatory factor marker to change insulin sensitivity.
And sugar participates in diabetic kidney injury through

FIGURE 2. GSEA analysis. (A, B) The expression of DEGs in GSEA results in IL-17 signaling pathway, lipid and atherosclerosis, rheumatoid
arthritis, tumor necrosis factor signaling pathway, fluid shear stress and atherosclerosis, medium Extracellular traps of neutrophils, osteoclast
differentiation, Staphylococcus aureus infection.
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FIGURE 3. (Continued)
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FIGURE 3. The enrichment analysis of GO and KEGG pathways of differential genes. (A) DEG at the biological process level mainly involves
chemotaxis, chemokine-mediated signaling pathways, inflammatory response, cell chemotaxis, immune response, neutrophil chemotaxis, and
positive regulation of cytoplasmic calcium ion concentration, cell adhesion (B) Cell composition level DEGmainly involves plasma membrane,
extracellular space, extracellular zone, plasma membrane composition, cell surface, membrane anchoring composition, and extracellular
exosomes. (C) Molecular function level DEG mainly involves the activity of chemokines, serine endopeptidase activity, chemokine
receptor, receptor binding, CXCR chemokine receptor binding, non-membrane transprotein tyrosine kinase activity, Cytokine activity, etc.
(D) DEG enrichment analysis of biological pathways. Staphylococcus aureus infection, cytokine-cytokine receptor interaction, complement
and coagulation cascade, TNF signaling pathway, neuroactive ligand-receptor interaction, etc.
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TNF-α signaling pathways (Dewanjee et al., 2018; Bastard et
al., 2006; Yang et al., 2019). GSEA analysis also showed that
differential genes are related to immune inflammation. It
plays an essential role in the IL-17 signaling pathway, lipid
and atherosclerosis, rheumatoid arthritis, and tumor
necrosis factor signaling pathway. Studies have shown that
IL-17A affects diabetic nephropathy by affecting pro-
inflammatory factors and kidney damage (Lavoz et al.,
2019). The complement and coagulation cascade are
significantly enriched in DN and play an essential role in
DN development (Lo and Woodruff, 2020). Complement
system activation (C3 and C5) is related to the pathogenesis
of DN (Lo and Woodruff, 2020). Complement system
activation (C3 and C5) is associated with the pathogenesis
of DN (Ricklin et al., 2010), and recruits inflammatory and
immunocompetent cells and kills tumor cells as a mediator
of innate immunity. However, excessive complement
activation can lead to kidney failure if left untreated.
Therefore, both KEGG and GSEA data indicate that these
differential genes play an essential role in the development
of diabetes.

GO function enrichment analysis revealed that
differential genes are mainly involved in many immune
responses and immune cell chemotaxis. Molecular functions
mainly involve chemokines and their receptors, CXCR
chemokine receptor binding and cytokines. The evident
biological processes are neutrophil chemotaxis,
inflammatory response, immune response. For example, in
the pathogenesis of painful diabetic neuropathy, chemokines
and cell signaling molecules connect signal pathways inside
and outside the cell, leading to increased production and
release of inflammatory factors (TNF-α, IL-6) (Liu et al.,
2019). In addition, the CXCR4 axis plays a crucial role in
kidney development, and the high expression of chemokine
receptor binding is associated with a poor prognosis of
kidney cancer (Siddiqi et al., 2015). Diabetic nephropathy (DN)

kidney damage inflammatory cells play a key role. Tubular
interstitial injury is the main feature of DN and a significant
predictor of renal dysfunction (Mezzano et al., 2003). The
genes encoding inflammatory cytokines and chemokines
influence the development of DN. -511 C/T in interleukin-
1β (IL-1β), tandem repeat in IL-1 receptor antagonist
(IL-1Ra), -308 in tumor necrosis factor-α (TNF-α) G/A is
significantly associated with an increased risk of kidney
failure (Lee et al., 2005).

The protein-protein interaction network (PPl) system
uses a scoring mechanism to give a certain weight to the
results obtained from these different methods (gene
adjacent, gene fusion, phylogenetic profiling and gene co-
expression based on chip data). Based on the type and
intensity of interaction between coding genes, the degree of
contribution of a node in the entire network can be judged
by the number of connections between a certain node and
other nodes. This study used PPI analysis of differentially
expressed genes to obtain the connection value of the
interaction between the differentially expressed genes. The
hub gene can be screened according to the PPI results.

We found two key genes CD300A and CXCL1 based on
machine learning algorithms and key gene screening. Western
blot results, immunofluorescence and PCR showed that
CD300A and CXCL1 in diabetic nephropathy increased.
CD300A is an inhibitory receptor of mast cells and
eosinophils in allergic inflammation (AI), and has anti-
inflammatory activity (Karra et al., 2018). As an essential
regulator in rheumatoid arthritis, CD300A inhibits the
production of the inflammatory factor CXCL1 (Valiate et
al., 2019). CXCL1 chemokines play a role with G protein-
coupled receptors and are involved in hypersensitivity and
inflammation (Peters et al., 2015; Zhang et al., 2013). Active
inflammatory substances produce pro-inflammatory
mediators (macrophages, etc.), and the proliferation and
infiltration of macrophages in diabetes is significantly

FIGURE 4. Abundance graph, the expression of immune infiltrating cells in different sample groups is different. The ratio of 22 types of
immune infiltrating cells in each diabetic and non-diabetic glomerular sample.
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FIGURE 5. (Continued)
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increased. CXCL1 is mainly enriched in the chemokine
signaling pathway, cytokine-cytokine receptor interaction
signaling pathway and TNF signaling pathway. Studies have
shown that the cytokine-cytokine receptor interaction
signaling pathway is significantly enriched in tacrolimus-
induced nephrotoxicity and can increase the expression level
of CXCL1 (Bachelet et al., 2005). CXCL1 and CD300A are
mainly enriched in inflammation, extracellular space,
chemokine-active plasma, exosomal membrane, and cell
adhesion. The pancreatic islets of diabetic patients will show
increased expression of pro-inflammatory cytokines and
chemokines. TWEAK-induced chemokine CXCL1/KC may
be involved in the positive feedback loop that promotes
glomerular inflammation (Campbell et al., 2006).

Immune cell infiltration plays a vital role in diabetic
nephropathy. Hyperglycemia activates macrophages and mast
cells to increase the accumulation of immune cells in the
kidney tissue of diabetic patients. In turn, it promotes
diabetic kidney inflammation and fibrosis (Wada and
Makino, 2013; Perlman et al., 2015; Yang et al., 2018). The
development of microalbuminuria into persistent proteinuria
cause kidney damage (Anders et al., 2018). The activation of
cytokines and the immune system continue to cause
irreversible kidney damage (Tesch, 2017). Diabetic
nephropathy (DN) is a progressive kidney disease
characterized by proteinuria (Packham et al., 2012). T
lymphocytes play an essential role in kidney injury in early
DN due to their cytotoxic effects and by activating tissue

macrophages. T follicular helper (Tfh) cells can regulate the
humoral immune response. In the study of diabetic
nephropathy, early glomerular regulatory genes are primarily
involved in metabolic pathways. The late-stage is mainly
signal pathways such as immune response complement
regulation and extracellular matrix deposition (Sangartit et
al., 2021). There is a positive feedback effect between the
glomerulus and immune cells (Yao et al., 2021). The paper
applied the CIBERSORT algorithm to analyze the proportion
of different genes in immune cells in the immune
microenvironment (Li et al., 2021). Studies have found that
the expression levels of T cells, mast cells and monocytes are
quite different in different groups of glomeruli. For instance,
the level of CD4+CXCR5+PD-1+T follicular helper cells
increases (Zhang et al., 2016). Monocytes cause podocyte
damage to patients with DN through various ways, reducing
monocytes and alleviating hyperglycemia (Niu et al., 2016).
The level of serum creatinine affects mast cells in patients
with diabetic nephropathy. This is consistent with our research.

Although we have analyzed the key genes of diabetes
complications through bioinformatics methods, our research
still has limitations. Fewer samples are used in data analysis
and screening, and a larger population needs to be analyzed
and processed for verification. The study used RT-qPCR,
Western blotting and immunofluorescence to analyze the
expression of key genes. However, the clinical information is
lacked, restricting the study of the impact of hub genes on
the progression of the disease.

FIGURE 5. Screening of key genes A. String database is used to predict 913 differentially expressed genes. B. The protein-protein interaction
network diagram screens the 50 most important hub genes. Use custom R to calculate the degree score of each gene. C–D. Random forest
analysis. According to the MeanDecreaseGini value, 50 key genes were screened out. E. Venn diagram. An important intersection gene
between random forest and PPI. These genes may mediate the role of diabetic nephropathy.
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FIGURE 6. In DN mice, the expression levels of CD300A and CXCL1 in podocytes increased. A. Immunofluorescence co-staining of CXCL1
and Synaptopodin in kidney sections. B. Immunofluorescence co-staining of CXCL1 and Synaptopodin in kidney sections. C. CD300A
immunohistochemical staining in kidney sections. D. Immunohistochemical staining of CXCL1 in kidney sections. E. Detect the level of
CD300A mRNA in the kidney tissue of each group. F. Detect the level of CXCL1 mRNA in the kidney tissue of each group.
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FIGURE 7. HG stimulation increase the expression of CD300A and CXCL1 in podocytes. A. Immunofluorescence staining of CXCL1 in each
group of HPC. B. Quantitative analysis of fluorescence intensity of CXCL1. C. Quantitative analysis of the changes in CXCL1 mRNA
expression levels in each group. D. Immunofluorescence staining of CD300A in HPCs of each group. E. Quantitative analysis of CD300A
fluorescence intensity. F. Quantitative analysis of changes in CD300A mRNA expression levels in each group. G. Representative Western
blot images of each group of CD300A and CXCL1. H. Quantitative analysis of changes in the expression level of CD300A protein in each
group. I. Quantitative analysis of changes in CXCL1 protein expression levels in each group.
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Conclusions

In the study, we identified both hub genes CD300A and CXCL1
as potential biomarkers for diabetic nephropathy through
bioinformatics analysis, machine learning and experimental
study. The celluar and tissue expression of both hub genes was
validated by RT-qPCR, western blot and immunofluorescence
experiments. And we further revealed the pathways and
immune infiltration cells in diabetic nephropathy.
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