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Abstract: Mammalian cell surfaces consist of the plasma membrane supported by an underneath cortical cytoskeleton.

Together, these structures can control not only the shape of cells but also a series of cellular functions ranging from

migration and division to exocytosis, endocytosis and differentiation. Furthermore, the cell surface is capable of

exerting and reacting to mechanical forces. Its viscoelastic properties, especially membrane tension and bending

modulus, are fundamental parameters involved in these responses. This viewpoint summarizes our current knowledge

on how to measure the viscoelastic properties of cell surfaces employing optical tweezers-based tether assays, paving

the way for a better understanding of how cells react to external mechanical forces, with a glance on their remodeling

dynamics and possible consequences on downstream cellular processes.

Introduction

Mammalian cell surfaces are extremely dynamic and complex
structures, mainly composed of a lipid bilayer membrane
supported by a handful of proteins and other accessory
molecules. A set of polymerizing proteins make up the
underneath cell cortex, involved in maintaining cell shape
and integrity, and allowing cell movement, division, and
tissue morphogenesis (Chugh and Paluch, 2018). In most
eukaryotic cells, the cortex is a well-conserved actin-based
network composed of F-actin filaments, myosin, and actin-
binding proteins, and thus is called the actomyosin cortex
(Chugh and Paluch, 2018; Svitkina, 2020).

The cell membrane and its associated actomyosin cortex,
also known as the membrane-cytoskeleton complex (MCC),
are important regulators of cell functions, from migration
and shape/size determination to molecule-presenting and
signaling (Salbreux et al., 2012). Besides interacting with
plenty of biochemical stimuli, the MCC exerts and reacts to
mechanical forces from its environment (Salbreux et al., 2012).

In this context, MCC’s viscoelastic properties, especially
membrane tension and bending modulus, are fundamental
parameters involved in their interaction with the intra- and
extracellular spaces (Pontes et al., 2017a). In this viewpoint
manuscript, we present how these properties are measured,
their implications on cell functions, as well as a detailed
description of the membrane tether extraction experiment
using optical tweezers (OT), the gold-standard tool to
perform these measurements (Pompeu et al., 2021). Finally,
we also discuss how membrane tether-pulling assays can be
used to probe cell surface remodeling dynamics together
with possible consequences on downstream cellular processes.

Main Text

OT are described as single-beam gradient force optical traps
that explore the property of photons being able to transfer
momentum to small particles in focused laser beams.
Reflection and refraction of light by a transparent particle
near the laser beam with a Gaussian intensity profile causes
a change in the photons’ momentum that is translated as
force, attracting it to the focus point. There, the particle
experiences a balance of forces that maintains it trapped.
These conditions describe a successfully employed OT
(Ashkin et al., 1986).
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Several biological transparent objects can be trapped with
OT, including viruses, bacteria or even suspended cells
(Ashkin and Dziedzic, 1987). However, the most suitable
way to interact with biological systems using OT is to
capture dielectric transparent microspheres with the focused
laser beam (Ashkin et al., 1986; Neuman and Block, 2004).
It is possible to use these trapped microspheres as handles,
attaching them to cell surfaces, and then displacing the
microscope stage. This procedure will produce forces (in the
piconewton range, pN) on the membrane and can also be
used to measure its reaction, given that any displacement in
the microsphere position relative to its focal point (Dx in
nanometers, nm) causes a restoring force in the opposite
direction. This is predicted by Hooke’s Law (F ¼ �jDx) for
an ideal spring extended at a distance Dx and stiffness j
(pN/nm), the latter obtained by proper OT calibration
methods (Pompeu et al., 2021; Dutra et al., 2014; Neuman
and Block, 2004). Such robust methodology can be applied,
for example, to measure the forces that MCC produces on
optically trapped microspheres.

Over the years, OT and other micromanipulation tools,
such as atomic force microscopy (AFM), traction force
microscopy, magnetic twisting cytometry and micropipette
aspiration have been employed to exert forces on MCCs to
characterize their mechanical responses (Moeendarbary and
Harris, 2014). Membrane tether-pulling is one of the most
common assays in this regard. Tether extractions were first
performed in red blood cells, using a flow channel
experiment where cells previously attached to a coverslip
were subjected to fluid shear stress until they began to form
membrane tubes connected to the substrate (Hochmuth et
al., 1973). An improvement was later introduced using
micropipettes. On one side of the red blood cell a portion of
its surface was aspirated, and on the opposite side a
microsphere (held by another micropipette) was attached to
the cell surface and subsequently removed to generate a
membrane tether (Hochmuth and Evans, 1982; Hochmuth
et al., 1982). However, this assay could not be easily applied
to adherent cells. Thus, an OT-based membrane tether
pulling method was created (Dai and Sheetz, 1995) and has
been widely applied to extract tethers from cells to
determine their membrane tension and bending modulus
(Ayala et al., 2017; Hissa et al., 2017; Hissa et al., 2013;
Pontes et al., 2013; Pontes et al., 2017a; Pontes et al., 2017b;
Pontes et al., 2011; Soares et al., 2020; Farias et al., 2020;
Gomez et al., 2020).

Briefly, in this assay, an optically trapped microsphere is
attached to the MCC and then withdrawn when the
microscope stage is set to move (in the xy direction). The
trapped microsphere position (Dx) is recorded over time
and converted into force. During this process, a thin
membrane tether is formed. Why does it form? When a
perpendicular force is applied to a membrane bilayer, a
catenoid-shaped structure initially appears, but is then
replaced by a thin membrane tube, because the membrane
is always under tension and therefore tends to minimize its
surface area. In theory, the minimum surface area would be
reached when almost the entire membrane gets retracted to
its original situation, leaving only an infinitesimally thin
tube. For such a narrow tube to occur, the membrane

curvature would dramatically increase; but due to
membrane bending rigidity (also known as bending
modulus–resistance of a membrane to bend), a tether with
radius R is formed. Thus, the balance between membrane
tension and bending rigidity generates a tube with a given
radius Rð Þ maintained by a certain force (Ft) (Fig. 1)
(Derenyi et al., 2002; Powers et al., 2002):
membrane tension ¼ Ft=4pR; bending modulus ¼ FtR=2p.
Experimentally, during tether extractions, if one measures the
tether radius and the force to maintain the tether, it is possible
to determine the cell membrane tension and bending modulus
(Pontes et al., 2017a; Derenyi et al., 2002; Powers et al., 2002).
Based on the same principles, AFM cantilevers can also be
used to pull membrane tubes (in the z direction) (Diz-
Muñoz et al., 2016), but it does not always provide the
optical capacity to observe tether formation.

Several studies have demonstrated that these physical
parameters, measured with tether extraction experiments,
are not only cell-type specific (for more information, see
Table 1 in Pontes et al., 2017a), but also depends on the
MCC, more specifically on the lipid composition (Hissa et
al., 2017; Hissa et al., 2013; Khatibzadeh et al., 2012), the
actomyosin cortex organization (Pontes et al., 2011; Masters
et al., 2013; Diz-Muñoz et al., 2016; Ayala et al., 2017) and,
more strikingly, the membrane-cortex attachment (Nambiar
et al., 2009; Diz-Muñoz et al., 2010; Bergert et al., 2021).
The membrane tension and bending rigidity of a cell is
thus a combination which includes the tension and
bending rigidity of the plasma membrane itself plus the
membrane-cortex attachment (Dai and Sheetz, 1999;
Pontes et al., 2013).

Moreover, other studies have shown the importance of
these parameters, particularly membrane tension, as capable
of orchestrating a series of cellular functions ranging from
endocytosis (Boulant et al., 2011; Bucher et al., 2018; Sinha
et al., 2011; Del Pozo et al., 2021; Djakbarova et al., 2021),
exocytosis (Gauthier et al., 2011; Bretou et al., 2014;
Masedunskas et al., 2011) and phagocytosis (Masters et al.,
2013) to migration (Pontes et al., 2017b; Hetmanski et al.,
2019), polarity (Houk et al., 2012; Graziano et al., 2019) and
differentiation (Bergert et al., 2021; de Belly et al., 2021).
High tension impairs endocytosis, exocytosis, phagocytosis
and the overall migration but maintains cell polarity by
confining signals to the leading edge of cells. In addition,
tension decrease was correlated with a decrease in
membrane-cytoskeleton attachment, increased endocytosis
and enhanced ERK signaling, which allows exit from naïve
to primed pluripotency in embryonic stem cells (Bergert et
al., 2021; de Belly et al., 2021). A more detailed description
of how membrane tension controls these and other cellular
processes are better reviewed in Pontes et al. (2017a) and
Sitarska and Diz-Muñoz (2020). In contrast, little is known
about how bending rigidity can alter cellular events.

In order to determine these two physical properties, it is
necessary to measure both the tether force and radius (Pontes
et al., 2017a; Derenyi et al., 2002; Powers et al., 2002).
Measuring the tether force and/or radius individually does
not allow an absolute estimation of mechanical parameters,
although most studies consider indirect measurements with
the tether force alone.
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Tether force can be measured during OT-tether extraction
experiments, as already mentioned. However, measuring the
tether radius (50–150 nm) is a bigger challenge, as its size is
typically below the resolving limit of conventional optical
microscopes (~250 nm) (Fig. 1). Therefore, a correlative
microscopy-based method was established (Pontes et al.,
2013; Pontes et al., 2011; Pompeu et al., 2021). In this
method, a tether is extracted via OT and the force required to
perform tether extraction is obtained during the experiment,
while the tether radius is later measured by scanning electron
microscopy (SEM). The most challenging step is to perform
the SEM images of tethers. Regardless of the difficulties
inherent to correlative experiments, this is currently the most
reliable method to determine the mechanical properties of
cell membranes (for a step-by-step procedure, see Pompeu et
al., 2021). New optical microscopy methods integrated with
OT are needed in order to measure tether radius concomitant
with its generation and without other steps, such as fixation
for SEM. A proposed method based on quantitative phase
imaging, known as spatial light interference microscopy
(SLIM) (Wang et al., 2011) combined with OT appears to be
very promising in this regard (Lu and Anvari, 2020; Sarshar
et al., 2016). Tether radii between 55 and 110 nm were
measured for ovarian cancer cells using this method (Lu and
Anvari, 2020). Also, stimulated emission depletion (STED)
microscopy and AFM have been used; however, for AFM the
tether needs to be adhered to the substrate and, as a result of
this adhesion, the tube morphology gets slightly deformed
(Lamour et al., 2020). And for STED combined with OT, the
initial study was carried out in giant unilamellar vesicles (Roy
et al., 2020) and no application in cells has been performed
so far.

In addition to the mechanical characterization of cell
surfaces, membrane tether-pulling can also probe how a cell
is able to dynamically remodel its surface in response to an
external force. Contrary to some observations (Raucher et
al., 2000; Gabella et al., 2014) tethers from adherent cells
have been shown to present F-actin inside (Pontes et al.,
2011; Pontes et al., 2013; Bornschlögl et al., 2013; Leijnse et
al., 2020), which is probably coming from the actomyosin
cortex. Moreover, studies of tether-pulling from mast cells

(Farrell et al., 2013) and neuronal axons (Datar et al., 2015)
found evidence of dynamic saw-tooth-shaped force peaks,
with slow rises and sharp decays, arising beyond the tether
force plateau region when tethers were kept stretched.
Possible explanations for such observations are based on
actin polymerization/depolymerization dynamics, together
with the action of molecular motors. While the slow rises in
force were attributed to the polymerization of F-actin, the
decays were associated with depolymerization and/or active
rearward movement due to molecular motors such as
myosin II (Farrell et al., 2013; Datar et al., 2015). In
addition, recently, in a manuscript yet to be published
(Leijnse et al., 2020), the presence of actin inside tethers was
confirmed not only from the initial moments of extraction,
but also increasing after a few minutes post-extraction. The
authors also demonstrated that the dynamics of force peaks
may be associated with twists and buckles of the F-actin
inside the tether, such as those happening in filopodia
(Leijnse et al., 2020; Leijnse et al., 2015).

All the experimental evidences described above point to
membrane tethers-pulling not only as a strategy to measure
the mechanical properties and their variations according to
different situations to which cells are exposed, but also as a
tool to follow the dynamic rearrangement of cell surfaces.
Important consequences of such method could be the
elucidation of several molecular mechanisms of protein-
membrane interactions and particularly how proteins are
able to shape membranes. Also important is the activation/
deactivation of local membrane proteins, such as ion
channels or other cell receptors after an external pulling
force is applied, together with their effects when membrane
curvature increases. All proposed observations would be
influenced by bending rigidity. A combination of OT and
fluorescence microscopy, as previously highlighted (Arbore
et al., 2019), can help the field to advance. A schematic
summarizing some of the findings described in this
viewpoint together with future implications is presented in
Fig. 1. Further studies exploring such possibilities could
greatly improve our understanding of the role of forces
acting on cell surfaces together with their consequences in
several downstream cellular processes.

FIGURE 1. Schematic of a tether extraction experiment
with OT, highlighting the nanotube internal
organization. Dx is the trapped microsphere position
and R is the tether radius.
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