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ABSTRACT

The lotus (Nelumbo nucifera Gaertn.) is an aquatic plant that grows in shallow water and has long been cultivated
in South China. It can improve the incomes of farmers and plays an important role in alleviating poverty in rural
China. However, a modern method is required to accurately estimate the area of lotus fields. Lotus has spectral
characteristics similar to those of rice, grassland, and shrubs. The features surrounding areas where it is grown are
complex, small, and fragmented. Few studies have examined the remote sensing extraction of lotus fields, and
automatic extraction and mapping are still challenging methods. Here, we compared the spectral characteristics
of lotus fields and other ground objects and devised a remote sensing method for the rapid extraction of lotus
fields. Using this method, the extraction accuracy of lotus was 96.3%. The Kappa coefficient was 0.926, which
is higher than those of the unsupervised K-means classification, Mahalanobis distance, and support vector
machine supervised classification, and demonstrates the potential of this method for extracting and mapping lotus
fields by remote sensing.
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1 Introduction

Lotus (Nelumbo nuciferaGaertn.) is valuable for its ornamental, edible, medicinal, and other uses. It is a
valued plant that is planted worldwide and is rich in a variety of resources [1,2]. White lotus has been
cultivated in China for more than 1000 years [3]. In 2020, the price of white lotus was about 90 RMB
yuan per kilogram. The economic benefit of planting one mu (a Chinese unit of land measurement that is
commonly 666.667 m2) of lotus is about 6,000 RMB yuan, and the rate of return is 5–7 times the rate of
planting rice. China currently attaches great importance to the development of agriculture for rural
revitalization [4]. Areas such as Guangchang and Shicheng Counties in Jiangxi Province and Jianning
County in Fujian Province have introduced measures to adjust the agricultural planting structure;
consequently, the area of lotus cultivation is expanding rapidly. The annual lotus planting area in
Jiangxiang Town, Nanchang County, where the study area is located, is about 300 mu. Lotus agriculture
can increase the income of local farmers, promote the rural economy, and help eliminate rural poverty.
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There are increasing requirements to monitor different crops in modern agriculture [5,6], and it is
important to develop a quick, accurate method to acquire information on the area planted, distribution,
and yield of lotus. Conventional survey methods are time consuming, slow, inaccurate, and difficult in
terms of obtaining data, and they do not meet the management needs of modern agriculture [7,8] For
example, China’s Third National Land Resource Survey began in 2017 and ended in 2021, taking 5 years
to complete; China’s Second National Census on Sources of Pollution started at the end of 2017 and
ended at the end of 2019, requiring 2 years. In addition, China’s grain statistics are reported in a step-by-
step manner by village-level statisticians, township statistical institutions, county-level statistical
institutions, municipal statistical institutions, and provincial statistical institutions and then delivered to
the National Bureau of Statistics, which takes a long time, and the statistician’s professional skill , sample
selection, and other aspects of each link may cause data distortion [9,10]. Feature extraction and mapping
using remote sensing have focused on major crops, such as rice [11–13], wheat [14,15], corn [16,17], and
soybean [17], but have ignored cash crops with small acreages, such as lotus, peanuts, and sunflowers.
The accuracy of extracting and mapping small-acreage crops using remote sensing is low [18].
Consequently, it is difficult to meet the growing needs of agricultural production management because of
the broken plots, scattered distributions, complex surrounding conditions, and large spectral variation
[19]. Therefore, a method to optimize crop field extraction based on the unique spatial and spectral
characteristics of small-acreage crops is an urgent requirement for monitoring crops by remote sensing.

Plastic film mulching and plastic greenhouses share similarities when monitoring and extracting small land
classes. Many studies have suggested ways to use remote sensing to extract small features. For example, Agüera
et al. [20] extracted plastic greenhouses using the spectral characteristics of QuickBird images with 96.89%
accuracy. Shi et al. [21] separated plastic greenhouses from other ground objects using GF-2 image data and
a distribution program and obtained a plastic greenhouse distribution map with 97.34% extraction accuracy.

When choosing data sources, we tend to choose high-spatial-resolution images, although medium-
resolution data, such as Landsat, Sentinel, and China’s WFV (16 m) data, are rich and free [22,23].
However, the accuracy of medium-resolution image extraction can fail to meet application requirements due
to the scattered distribution and fragmentation of small land classes [24]. To extract and map crops,
researchers often use multi-temporal data combined with crop growth phenology for comparative analysis
to improve the extraction accuracy [25,26]. However, most lotus plants are grown in cloudy, rainy areas at
middle or low latitudes, and it is difficult to obtain multi-period high-quality optical image data during the
growing season. Therefore, it is necessary to devise a method using single images for extraction and
mapping. Naturally, very high spatial resolution (VHR) satellite images contain few multispectral bands,
usually four, namely, blue, green, red, and near-infrared [21,27]. Due to the relative limitation of spectral
resolution, metameric substances with the same spectrum present a challenge when classifying land use/
cover using these VHR images [28]. Therefore, object-based mapping approaches utilizing spectral and
textural information are being considered and developed, and have achieved good accuracy [29]. However,
the setting of segmentation parameters based on more or less systematic trial-and-error approaches remains
challenging, and accuracies measured by visual interpretation are unstable [30]. The purposes of this study
were to reduce the cost of image acquisition for ground feature extraction, and to extract small target
ground features in lotus field automatically and quickly in the case of limited multi-temporal data.

We propose a three-step method for extracting lotus fields from VHR images. First, a vegetation
separation model is constructed according to spectral reflectance to enhance vegetation information and
distinguish vegetation from non-vegetation. Second, a model is constructed to enhance spectral features
and eliminate high-density vegetation, such as woodland. Third, the commonly utilized normalized
difference vegetation index (NDVI) is used to distinguish lotus field.
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The next section of this paper provides an overview of the research area. The third section introduces the
data acquisition and data processing methods, as well as the model construction and concepts. The fourth
section, presents the model calculation results and accuracy verification, and the fifth section provides the
extraction results and discusses the applicability of the method. The sixth and final section lists the major
conclusions of the work.

2 Study Area

The study area was Jiangxiang, Nanchang, China, on the lower reaches of the Ganjiang River
(115°65’E, 28°32’N, Fig. 1). This area is surrounded by water, bordering Lake Poyang in the east and the
suburbs of Nanchang in the west. Jiangxiang has a total area of 241 km2, measuring 46 km from east to
west and 8 km from north to south. It has a warm, humid, subtropical monsoon climate with abundant
rainfall during spring and summer. Jiangxiang Town, with its basic pattern of organic rice, aquaculture,
vegetable cultivation, economic crop (lotus), and ecotourism as pillar industries, has an annual grain
output of 100 million kilograms. In 2020, the population of Jiangxiang Town was 94,573, the GDP was
11.5 billion RMB yuan, and the per capita disposable income was 23,112 RMB yuan [31].

3 Materials and Methods
3.1 Data and Data Processing

3.1.1 Processing GF-1 Data
GF-1 is China’s high-resolution remote sensing satellite, and it collects data in blue, green, red, and near-

infrared bands. It has been widely used for extracting land-use information [32,33]. Lotus is usually planted
in April, grows vigorously in June, July and August, when huge lotus leaves cover the whole water surface,
and gradually withers from September until all stems are withered in November. Therefore, remote sensing
images from June to August are considered suitable for remote sensing identification and monitoring of
lotus fields.

We downloaded orthophoto data from July 31, 2020, from the China Centre for Resources Satellite Data
and Application (http://www.cresda.com). The resolution was 8 m for the multispectral data and 2 m for the
panchromatic data (Table 1). At that time, some of the early season rice had been harvested, the late season
rice had been replanted, and the lotus was in a period of luxuriant growth. As a result, the types of land
surface around the lotus field were very complex, including lotus field, water, early season rice, late
season rice, forest, and artificial surfaces. This complex spatial and spectral pattern is the main challenge
of lotus field remote sensing extraction.

Figure 1: Location of the study area
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We used ENVI software (L3Harris, USA) for remote sensing image preprocessing, including image
radiometric calibration, atmospheric correction, geometric correction, image clipping, and other steps.
Image radiometric calibration uses the absolute calibration coefficient and band offset linear operation to
obtain the gray value of the image Le(λe). The phase calibration is obtained as follows:

LeðkeÞ ¼ Gain� DN þ Offset (1)

In the formula, Laurel Le(λe) is the radiance after conversion, with units of W/(m2⋅sr⋅μm), DN is the
observed value of satellite load, Gain is the slope of the calibration, and Offset is the calibration intercept,
also with units of W/(m2⋅sr⋅μm). The calibration slope and intercept of GF-1 are shown in Table 2.

In ENVI software, the FLASSH correction module was used to correct the atmosphere of the image. The
spectral response functions were downloaded from the China Centre. For Resources Satellite Data and
Application. We used the RPC model to orthorectify the remote sensing image data and selected control
points on Tianditu (http://www.tianditu.com) for geometric correction. The ground control points were
uniformly distributed in the study area, and the root mean square after correction was less than 1 pixel.
The panchromatic and multispectral images were fused using the Gram–Schmidt Spectral Sharpening
model to give multispectral image data with a 2-m resolution.

3.1.2 Acquiring and Processing Unmanned Aerial Vehicle Data
To obtain the interpretation samples of the study area and verify the results, on July 17, 2020, we flew a

multi-rotor unmanned aerial vehicle (UAV; Mavic 2, DJI, Shenzhen, China) (Table 3) over the study area
14 days after the satellite transit. Using the video taken by the UAV, ground feature samples were
sketched on remote sensing images, including early and late season rice, forest, water, lotus fields, and
artificial surfaces.

Table 1: Basic parameters of the GF-1 image data

Sensor Spectral
band

Spectral range
(nm)

Ground sample
distance

Image width
(km)

Revisit
period

Panchromatic
sensor

Pan 450–900 2 60 4

Multispectral
sensor

Blue
Green
Red
Near-infrared

450–520
520–590
630–690
770–890

8 60 4

Table 2: Radiometric calibration coefficient of the GF-1 sensor

Band Gain Offset

PAN 0.1886 −13.127

Band 1 0.2082 4.6186

Band 2 0.1672 4.8768

Band 3 0.1748 4.8924

Band 4 0.1883 −9.4771
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3.2 Spectral Analysis of Ground Features
The GF-1 image has only RGB + NIR bands and a panchromatic one used for pan-sharpening. The

spectral features have the phenomenon of “same spectrum foreign body, same body different spectrum”.
For this reason, we selected only six representative land types for the study. First, through interpretation
of the UAV remote sensing image, typical land samples were selected on the GF-1 image. Then,
200 samples were manually selected in each sample area. The reason for manually selecting sample
points was to ensure that the selected samples were pure pixels; thus, the spectral reflectivity curve of
each sample was drawn according to the average reflectivity of 200 pure pixels. The spectral reflectance
curves of the sample points are shown in Fig. 2.

The following can be discerned from Fig. 2 and Table 4:

(1) The difference of spectral reflectance of all land types is the largest in the near infrared band.
(2) The spectral characteristics of lotus fields, forest, and early season rice are similar and nearly parallel,

but the reflectance of lotus fields is higher than the reflectance of the other two. Reflection peaks occur
in the green and near-infrared bands, and reflection valleys occur in the blue and red bands.

(3) The artificial surface and late season rice show an upward trend from band 1 to band 4 (blue, green,
red, near infrared, respectively), there are no obvious reflection valleys, and the reflectivity of
artificial surface is significantly higher than the reflectivity of late season rice.

(4) Water has the lowest reflectivity among all land types, which is an almost horizontal line. Among all land
types, only the average reflectivity of water is lower in the near infrared band than in the green band.

Table 3: Details of the equipment and sensors

Device Parameter

Equipment DJI Mavic 2

Sensors Pixels: 20 million effective pixels

Viewing angle: 77°

Equivalent focal length: 28 mm

Aperture: f/2.8-f/11
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Figure 2: Spectral characteristics of the land cover
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3.3 Mathematical Model Construction

3.3.1 Separation of Non-Vegetation Information
Using the spectral reflectance characteristics of the features, a mathematical model for separation of non-

vegetation information was constructed:

F1 ¼ � ðBred � BgreenÞ
jðBred � BgreenÞj �

ðBred � BnirÞ
jðBred � BnirÞj (2)

In formula (2), Bgreen; Bred; and Bnir are the spectral reflectance of green, red, and near infrared bands
of the GF-1 remote sensing images. In Fig. 2 and Table 4 non-vegetation areas of water and artificial surfaces
as follow the patterns of Bgreen > Bred > Bnir and Bgreen < Bred < Bnir, respectively, and the calculation result of
F1 is −1. However, vegetation presents the pattern of Bgreen > Bred < Bnir, forming a reflection valley in the
Bred, and the calculation result of F1 is 1. This step suppresses the background information of non-vegetation
types, such as artificial surfaces and water.

3.3.2 Enhancement of the Difference between Lotus Fields and Other Land Types
The second step is to calculate F2 to enhance the differences between lotus fields and other vegetation

types, such as forest or early season rice.

F2 ¼ Bgreen � ðBnir � BredÞ
ð1� BredÞ (3)

In the formula (3), Bblue; Bgreen; and Bnir are the spectral reflectance of blue, green, and near infrared
bands of the GF-1 remote sensing images.

In the reflectance spectra, as for vegetation, Bgreen and Bnir are reflection peaks, and Bred is a reflection
valley. As the values of Bnir and Bnir − Bred are significantly higher for lotus fields than for forest and early

Table 4: Spectral reflectance of land cover types

Land cover Blue Green

Min Max Mean SD Min Max Mean SD

Lotus field 0.0819 0.1658 0.132047 0.019082 0.1063 0.216 0.170916 0.021079

Forest 0.0374 0.1273 0.073589 0.016476 0.0591 0.1675 0.108159 0.018705

Artificial surface 0.0443 0.2995 0.142684 0.074679 0.0486 0.3349 0.157759 0.074684

Water −0.0205 0.0399 0.020058 0.01104 0.001 0.0701 0.039085 0.012665

Early season rice 0.0354 0.0904 0.062932 0.01145 0.0563 0.1251 0.093507 0.01602

Late season rice 0.0707 0.1114 0.084199 0.008144 0.0892 0.1487 0.114749 0.009563

Land cover Red NIR

Min Max Mean SD Min Max Mean SD

Lotus field 0.0743 0.143 0.115057 0.014239 0.3905 0.6063 0.542955 0.038553

Forest 0.0485 0.1214 0.076241 0.012749 0.2833 0.526 0.398069 0.051622

Artificial surface 0.035 0.3251 0.1803 0.06928 0.0694 0.5101 0.240611 0.088347

Water 0.0055 0.0488 0.025474 0.008094 −0.0143 0.1757 0.036835 0.034851

Early season rice 0.0443 0.1369 0.09605 0.020685 0.0441 0.2743 0.165184 0.028129

Late season rice 0.065 0.1008 0.083526 0.006939 0.3392 0.5511 0.454033 0.044996
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season rice, Bnir × (Bnir − Bred) can enhance the difference between lotus fields and forest or early season rice.
Bred has the smallest standard deviation (SD) and best convergence for all land types. In addition to
stabilizing the calculation results, the value of 1 − Bred is smaller for lotus fields than for forest or early
season rice; therefore, the denominator of the formula increases the gap between lotus and other land types.

3.3.3 Further Separation Using NDVI Values
Different types of features and features with different vegetation coverage often show different NDVI

values, so the NDVI is often used for extracting vegetation.

NDVI ¼ Bnir � Bred

Bnir þ Bred
(4)

F3 ¼ F 0
1 � F 0

2 � NDVI (5)

In formula (4), Bred and Bnir are the spectral reflectance of red and near infrared bands of the GF-1 remote
sensing image. In formula (5), F

0
1 and F

0
2 represent the binarization results of F1 and F2, respectively, where

the background value is 0 and the target is 1.

3.3.4 Threshold Setting
The purpose of the calculation above is to extract lotus fields, by suppressing the features of spectral

reflectance that are quite different from the features of lotus field and by calculating the transformation to
increase the difference for the features similar to those of lotus field. According to the calculation results
of F1, a grayscale image in which the target value is 1 and the background value is −1 is obtained. From
the results of the second step and the third step, F2 and F3, respectively, a grayscale image with
continuous value can be obtained. We can determine the range of the target result by defining the
appropriate threshold value of the grayscale plot. According to the method proposed by Prewitt in 1996,
if there are obvious or relatively close bimodal peaks on a grayscale histogram, the gray level threshold
corresponding to the bottom of the valley between the two peaks is selected; one peak is the target class,
and the other is the background value [34,35]. If there is no obvious valley in the histogram, the Otsu
algorithm proposed by Nobuyuki in 1979 can be used to determine the threshold quickly and effectively
[36,37]. The threshold is determined by calculating the variance between the target feature and
background, and the value with the greatest difference between classes is the optimal threshold [38,39].

4 Results

4.1 Calculation Results of F1

We used the preprocessed GF-1 remote sensing image to calculate the result of F1 using ENVI software
and obtained a grayscale image, shown in Fig. 3. The grayscale image contains two values, 1 and −1, where
1 is the target value, and the area of −1, which is mainly non-vegetation information, is the background that
needs to be suppressed. We converted −1 to 0, and derived a binarized result layer containing only the values
of 0 and 1.

4.2 Calculation Results of F2

Next, we calculated F2 and obtained a grayscale image, ranging from-0.05 to 0.2. If we count the
histogram of the pixels, the lotus field information is obscured by other land types; therefore, we used
sample points for statistics and analysis. The gray-level histogram image of the result, as shown in Fig. 4,
has 3 peaks. We set the separation threshold at each valley, and then established four regions: I
(−0.050 to −0.008), II (−0.008 to 0.020), III (0.020 to 0.068), and IV (0.068 to 0.20). Then we classified
and analyzed the results of the four regions. The results showed that region I is mainly uncovered
surface, region II is mainly water, artificial surface, and a portion of later season rice, region III is mainly
early rice and forest, and region IV is mainly lotus field , a portion of grassland and a portion of early

Phyton, 2022, vol.91, no.10 2303



season rice with spectra similar to the spectrum of lotus field. Therefore, region IV is the target that contains
lotus field. The calculation result of F2 was processed as a binary result for later subsequent calculation, in
which region IV is turned to 1 and the others are turned to 0, as shown in Fig. 5.

Figure 3: The binarized result of F1

Figure 4: Gray-level histogram image of the result of F2
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4.3 Calculation Results of F3

We used the NDVI to separate lotus field from grassland and early season rice. We used ENVI software
to calculate the results, F3 multiplied by the binarized F1, F2, and NDVI, and the result range was −027 to
0.53. The gray-level histogram image of the F3 result, which is shown in Fig. 6, has only one peak. We used
the Otsu algorithm in combination with the samples for statistical analysis. The resultant box plot is shown in
Fig. 7. The threshold was determined to be 0.314, which divides F3 into two regions, region I and region II.
Region I is mainly grassland and early season rice, and region II is our target lotus field. The binarized result
is shown as Fig. 8.

Figure 5: The binarized result of F2

Figure 6: Gray-level histogram image of the result of F3
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4.4 Post-Classification
Using the value of F3, we constructed a decision tree in the ENVI modeler to extract lotus fields and

subjected the results to majority and clump cluster sieve analysis. The extraction results for lotus fields
are shown in Fig. 9.

4.5 Accuracy Evaluation
To evaluate the accuracy of the lotus field extraction, we used a UAV to photograph the study area,

drew the vector range of the lotus fields, used the create random points function in ArcGIS to create
500 sample points randomly in both lotus and non-lotus fields to verify the extraction results, and
replaced the duplicate sample points with training sample points. We then used a confusion matrix
(Table 5) to evaluate the accuracy of the results. The overall accuracy of the classification was 96.3%,
with a kappa coefficient of 0.926.

Figure 7: Sample statistical box-plot diagram of F3 calculation results

Figure 8: The binarized result of F3
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We compared the extraction results for lotus fields with the results of K-means classification,
Mahalanobis distance, and support vector machine algorithm analyses. The extraction accuracies of these
methods (Table 6) were 75.5%, 87.8%, and 92.9%, respectively, and the kappa coefficients were 0.51,
0.758, and 0.858, respectively. Therefore, our model had the greatest accuracy.

Figure 9: The extraction results for lotus fields

Table 5: Confusion matrix evaluation

Type Lotus fields Non-lotus fields

Lotus fields 472 28

Non-lotus fields 9 489

Table 6: Classification accuracy of different methods

Classification method OA Kappa coefficients

Method of this article 96.3% 0.926

K-means 75.5% 0.51

Mahalanobis distance 87.9% 0.758

Support vector machine 92.9% 0.858
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5 Discussion

Remote sensing has played an increasingly important role in ground feature extraction and monitoring
since the launch of various satellites. Specific crops can be monitored for the development of precision
agriculture. This can be conducted using two standard methods: constructing a model after extracting
ground features from hyperspectral images based on the relationship between remote sensing images and
specific ground features, as well as by extracting features based on the seasonal differences in the ground
features of different crops from remote sensing images. These two types of method are highly accurate
for feature extraction, but they have some limitations. The resolution of hyperspectral data is usually low,
and the extraction accuracy is not sufficiently high for small sporadically distributed features, such as
lotus fields in precision agriculture. Moreover, it is difficult to obtain multi-period, high-precision, high-
quality optical remote sensing image data in cloudy areas, and the combination of multi-temporal remote
sensing images and vegetation growth phenology is also not necessarily applicable. Therefore, it is
important to make full use of single-season images to extract specific features in specific areas with
higher accuracy. The method used to construct our model can serve as a reference for other minor crops.

Although the experiment demonstrated high classification accuracy, some misclassifications could not
be resolved. We extracted and analyzed the image data that were incorrectly classified as lotus field. The
incorrect classification areas were some portions of grass growing in water and aquatic plant wetlands,
which have the same spectral and textural information as lotus field. Although the proportions of these
categories in the image was not high, they can greatly affect the accuracy of the image classification,
especially for large areas of wetlands. Therefore, the applicability of our method could be affected.

Figure 10: The testing area of the GF-1 remote sensing image
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To test the accuracy and robustness of the lotus field extraction method further, we transferred it to the
GF-1 remote sensing image of April 28, 2020. During this period, lotus leaves had emerged, but their growth
was worse than in July, and the early season rice was still in its seedling stage. We tested in two areas. As
shown in Fig. 10, area I contained a large area of wetlands (green represents wetland vegetation in the true
color remote sensing image), but area II did not. We used the three-step lotus field extraction method for the
test. The results showed that the correct extraction accuracy of lotus field in area I was only 62%, with a
kappa coefficient of 0.086, whereas the extraction accuracy of lotus field in area II was as high as 95.5%,
with a kappa coefficient of 0.91. Therefore, the method used in this research to extract lotus field has
high extraction accuracy in non-wetland, areas but that there are limitations in areas containing large
wetland areas with vegetation. To explore the lotus field extraction in large wetland areas, we
incorporated texture features into an auxiliary analysis. We used the occurrence measures tool in ENVI
software to calculate four texture feature types, i.e., data range, mean, variance, and entropy. The value of
the variation greatly improved the classification accuracy. The correct extraction accuracy of lotus field
increased from 62% to 83.3%, and the kappa coefficient increased from 0.086 to 0.666.

6 Conclusion

This study proposes a new method for extracting lotus fields from GF-1 satellite remote sensing data, by
analyzing the spectral characteristics of different land types, suppressing background information, increasing
the difference between target and non-target features, and setting a threshold to extract target information.
The extraction of lotus fields had an accuracy of 96.3% and kappa coefficient of 0.926, which were better
than those of the traditional unsupervised K-means classification, a supervised classification maximum
likelihood method, and the Mahalanobis distance method. This method enables the extraction of
fragmented land types under the requirements of precision agriculture when it is not convenient to use
multi-temporal remote sensing images in cloudy and rainy areas. However, the method is not applicable
in areas containing large wetland area with vegetation. Nonetheless, despite the limitations of the method
in these areas, the accuracy can be improved by adding texture information. Solving this problem of
wetland vegetation will be a focus of our subsequent research. The mature research method will be highly
applicable to the monitoring of lotus field. Monitoring results obtained through many years can facilitate
analysis of the changing trends of lotus field planting area.
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