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ABSTRACT

Integrated energy system optimization scheduling can improve energy efficiency and low carbon economy.
This paper studies an electric-gas-heat integrated energy system, including the carbon capture system, energy
coupling equipment, and renewable energy. An energy scheduling strategy based on deep reinforcement learning
is proposed tominimize operation cost, carbon emission and enhance the power supply reliability. Firstly, the low-
carbon mathematical model of combined thermal and power unit, carbon capture system and power to gas unit
(CCP) is established. Subsequently, we establish a low carbon multi-objective optimization model considering
system operation cost, carbon emissions cost, integrated demand response, wind and photovoltaic curtailment,
and load shedding costs. Furthermore, considering the intermittency of wind power generation and the flexibility
of load demand, the low carbon economic dispatch problem is modeled as a Markov decision process. The twin
delayed deep deterministic policy gradient (TD3) algorithm is used to solve the complex scheduling problem. The
effectiveness of the proposed method is verified in the simulation case studies. Compared with TD3, SAC, A3C,
DDPG and DQN algorithms, the operating cost is reduced by 8.6%, 4.3%, 6.1% and 8.0%.

KEYWORDS
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1 Introduction

In recent years, with the development of the world economy and the increasing depletion of
fossil fuels, the problem of insufficient energy supply has become increasingly prominent [1,2].
On 05 March, 2021, China pointed out in the government work report that CO2 emissions
would be at the peak by 2030 and achieve carbon neutrality by 2060. As an important carrier
for the development of the energy internet, the integrated energy system (IES) can promote the
coordination and complementation of various energy sources [3,4]. Meanwhile, the IES has made
significant contributions to building clean, low-carbon and efficient energy systems. However,
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with the deepening of energy coupling, the IES is confronted with enormous challenges due to
fluctuating wind and PV power outputs and the uncertainty of multi-energy demands [5–7].

The operation economy and power supply reliability are two essential factors in energy
management and optimization of the IES [8–10]. Power supply reliability is an important indicator
to measure the stable operation of the power grid, and economic benefit is an important goal in
the development of IES [11].

Regarding the low-carbon operation of IESs, Wang et al. [12] proposed an optimal scheduling
model based on the carbon trading mechanism. IES operators can purchase or sell carbon quotas
in the carbon trading market. The results show that considering carbon trading can reduce the
operation cost of the IES. Zhai et al. [13] proposed an economic dispatch method for low-carbon
power system considering the uncertainty of electric, thermal and cold loads. Yang et al. [14]
proposed an optimal scheduling model for the combination of the microturbine (MT) and power
to gas (P2G) units. The typical load scenarios are obtained by scenario generation and reduction
techniques to improve wind power consumption and reduce carbon dioxide emissions. Although
the above literature can realize the low-carbon operation of the system, the flexible resources of
the demand side are not considered.

Considering integrated demand response (IDR) in IES can promote renewable energy con-
sumption and reduce carbon emissions. Bahrami et al. [15] established a power system scheduling
model considering demand response (DR) resources and carbon trading and verify its effectiveness
in promoting wind power consumption and reducing carbon emissions. Zeng et al. [16] introduced
the split-flow carbon capture power plant and DR into the IES to achieve low carbon.

Although remarkable results are achieved in the economic dispatch of the IES, the above
models are solved by traditional methods, and the optimization effect is dependent on the pre-
diction accuracy of sources and loads. With the development of the artificial intelligence (AI)
technique, reinforcement learning (RL) has been paid more attention to the optimal control of
power system [17–20]. The RL model can accumulate experience and improve policies by contin-
uous interaction with the environment. In particular, the deep reinforcement learning algorithm
combining deep neural network and reinforcement learning is of better adaptive learning ability
and optimized decision-making ability for nonconvex and nonlinear problems [20–22]. In [23],
microgrid (MG) real-time energy management based on deep reinforcement learning was pro-
posed, and MG energy management is described as a Markov decision process (MDP) to minimize
the daily operating cost. In [24], the energy management of IES was described as a constrained
optimal control problem and solved by the asynchronous advantage actor critic algorithm.

The above studies provided the foundation for the application of the DRL approach in the
IES. However, most of the above models only consider the economy and security of IES, without
consideration of carbon dioxide emissions and other indicators in the system. In addition, in the
face of collaborative optimization of multi-energy and energy storage, the model training may be
time-consuming and prone to non-convergence.

This paper proposes a TD3-based integrated energy system source-load coordination opti-
mization scheduling framework. Firstly, a combined optimization model of combined thermal
and power (CHP), power to gas (P2G) and carbon capture system (CCS) is established, which
can realize thermal-power decoupling and reduce carbon emissions. Secondly, the multi-objective
optimization problem of IES is described as a Markov decision process, the environmental model
of IES is established, and the action space, state space and reward function of the agent are
designed. Finally, the low-carbon economic dispatch problem is solved by the twin delayed deep



CMES, 2022, vol.132, no.1 321

deterministic policy gradient (TD3), and the convergence ability and stability of this method are
analyzed. Finally, the effectiveness of this method in the low-carbon economic dispatch of the
IES is validated.

2 IES Model and Problem Description

Low-carbon operation optimization of the IES aims to improve the economic and environ-
mental benefits of the system with the constraint of safe operation of the system. This paper
studies a multi-objective optimization problem with optimal economic cost, carbon emissions, and
reliability of system operation. The structure of the IES studied in this paper is shown in Fig. 1.
The power grid includes combined thermal and power (CHP), carbon capture system (CCS), wind
power, photovoltaic, battery storage (BS) and electricity load. The gas network comprises the
natural gas station, gas storage (GS) and gas load. The thermal supply network mainly consists
of thermal storage (HS) and thermal load. The energy conversion equipment mainly includes gas
turbine, P2G and MT.
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Gas Load
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Figure 1: Structure diagram of the IES

2.1 IES Equipment
(1) CHP-CCS-P2G (CCP) Mathematical Model

The CHP units provide electric power and thermal power in the IES. The CHP has high
carbon emissions and thermoelectric coupling characteristics, which causes severe environmental
pollution. Therefore, according to the literature [25], the optimization model of CCP is established
to reduce carbon emissions and improve the economic benefits of the IES. The principle of the
CCP is shown in Fig. 2. P2G converts the electric power generated by CHP into natural gas,
which strengthens the connection of the power-thermal-gas system and reduces the power output
of CHP. The electric power consumed by P2G and CCS is directly taken from electric power
generated by CHP. To reduce carbon emissions of CHP and carbon source cost of P2G, the CO2
is captured by CCS, and transmitted to P2G for recycling.
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Figure 2: The principle of CCP combined optimization model

The electric power output of the CCP can be calculated by Eq. (1).

PCCP,t =PCHP,t−PP2G,t−PCCS,t, (1)

where PCCP,t is the electric power output of the CCP at time t, PCHP,t is the electric power
generated by CHP, PP2G,t is the electric power consumed by P2G, PCCS,t is the electric power of
CCS.

The gas power output of the CCP can be calculated by Eq. (2).

GCCP,t =GP2G,t= ηP2GPP2G,t, (2)

where GCCP,t is the gas power output of the CCP at time t, GP2G,t is the gas power output of
the P2G, ηP2G is the conversion efficiency of P2G.

The electric power and ramp rate constraints of CCP can be described by Eqs. (3) and (4).

Pmin
CCP =Pmin

CHP−Pmax
P2G −Pmax

CCS ≤PCCP,t ≤Pmax
CHP−Pmin

P2G −Pmin
CCS =Pmax

CCP, (3)

ΔPmin
CCP =ΔPmin

CHP−ΔPmax
P2G −ΔPmax

CCS ≤PCCP,t+1−PCCP,t ≤ΔPmax
CHP−ΔPmin

P2G −ΔPmin
CCS =ΔPmax

CCP, (4)

where Pmin
CCP,P

min
CHP,P

min
P2G and Pmin

CCS are the lower limits of electric power of CCP, CHP, P2G and
CCS, Pmax

CCP,P
max
CHP,P

max
P2G and Pmax

CCS are the upper limits of electric power of CCP, CHP, P2G and

CCS, �Pmin
CCP,�P

min
CHP,�P

min
P2G and �Pmin

CCS are the lower limits of electric power ramp rate of CCP,
CHP, P2G and CCS, �Pmax

CCP,�P
max
CHP,�P

max
P2G and �Pmax

CCS are the upper limits of electric power
ramp rate of CCP, CHP, P2G and CCS.

The thermal power and ramp rate constraints of CCP can be described by Eqs. (5) and (6).

Hmin
CCP =Hmin

CHP ≤HCCP,t ≤Hmax
CHP =Hmax

CCP, (5)

ΔHmin
CCP =ΔHmin

CHP ≤HCCP,t+1−HCCP,t,≤ΔHmax
CHP =ΔHmax

CCP, (6)

where HCCP,t+1 and HCCP,t are the thermal power output of the CCP at time t and t + 1,

Hmin
CCP and Hmin

CHP are the lower limits of thermal power of CCP and CHP, Hmax
CCP and Hmax

CHP are

the upper limits of thermal power of CCP and CHP, Hmin
CCP and �Hmin

CHP are the lower limits of
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thermal power ramp rate of CCP and CHP, �Hmax
CCP and �Hmax

CHP are limits of thermal power
ramp rate of CCP and CHP.

The gas power and ramp rate constraints of CCP can be described by Eqs. (7) and (8).

Gmin
CCP =Gmin

P2G ≤GCCP,t ≤Gmax
P2G =Gmax

CCP, (7)

ΔGmin
CCP =ΔGmin

P2G ≤GCCP,t+1 −GCCP,t ≤ΔGmax
P2G =ΔGmax

CCP, (8)

where GCCP,t+1 and GP2G,t are the gas power output of the CCP at time t and t+1,

Gmin
CCP and Gmin

P2G are the lower limits of gas power of CCP and P2G, Gmax
CCP and Gmax

P2G are the

upper limits of gas power of CCP and P2G, �Gmin
CCP and �Gmin

P2G are the lower limits of gas power
ramp rate of CCP and P2G, �Gmax

CCP and �Gmax
P2G are the upper limits of gas power ramp rate of

CCP and P2G.
(2) MT Mathematical Model
MT driven by natural gas is the essential equipment of the IES [25]. The mathematical model

of MT is shown by Eqs. (9) and (10).

PMT ,t =GMT ,t · ηMT , (9)

HMT ,t =GMT ,t · (1− ηMT − ηloss) , (10)

where PMT,t and HMT,t are the electric and thermal power of MT at time t, GMT,t is the natural
gas consumption power of MT, ηMT is the power generation efficiency of MT, ηloss is the energy
loss coefficient of MT.

The power and ramp rate constraints of MT can be described by Eqs. (11)–(14).

Pmin
MT ≤PMT ,t ≤Pmax

MT , (11)

Hmin
MT ≤HMT ,t ≤Hmax

MT , (12)

ΔPmin
MT ≤PMT ,t−PMT ,t−1 ≤ΔPmax

MT , (13)

ΔHmin
MT ≤HMT ,t−HMT ,t−1 ≤ΔHmax

MT , (14)

where Pmin
MT and Pmax

MT are the lower limits and upper limit of electric power of the MT, Hmin
MT and

Hmax
MT are the lower limits and upper limits of thermal power of the MT, �Pmin

MT and �Pmax
MT are

the lower limits and upper limit of electric power ramp rate of the MT, �Hmin
MT and Hmax

MT are the
lower and upper limits of thermal power ramp rate of MT.

(3) Energy Storage Battery Model
The mathematical model of battery storage is expressed by Eqs. (15)–(17) [8].

SOCt+1 = SOCt+ ach,tηch
PBS,ch,t
QBS

�t+ ax,disch,t
PBS,disch,t

ηdisch
�t, (15)

ach,t,adisch,t = {0, 1} ,∀t ∈T , (16)

ach,t∧ adisch,t = 0,∀t∈N, (17)

where SOCt+1 and SOCt are the states of charge of the BS at time t + 1 and t, PBS,ch,t and
PBS,disch, are the charging and discharging power of BS at time t (PBS,ch,t ≥ 0, PBS,disch,t ≤ 0).
QBS is the capacity of BS, ηch and ηdisch are the charging and discharging efficiency of BS, �t
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is the time interval, ach,t and adisch,t are the charging and discharging state parameters, ach,t = 1
represents the charging operation of the BS at time t, and similarly, adisch,t = 1 represents the
discharging operation of the energy BS at time t.

The energy storage equipment is limited by the following charging and discharging power
constraints and capacity constraints in Eqs. (18)–(21).

SOCmin ≤ SOCt ≤ SOCmax, (18)

0≤PBS,ch,t ≤Pmax
BS,ch, (19)

0≥PBS,disch,t ≥Pmax
BS,disch, (20)

SOC1 = SOCT , (21)

where SOCmin and SOCmax are maximum and minimum SOC values of the BS, Pmax
BS,ch and

Pmax
BS,disch are maximum charging and discharging power of the BS, SOC1 and SOCT are the initial

and final values of the BS.

2.2 IES Model
(1) Electric Network Model

The power flow constraints can be formulated by Eq. (22) [18].⎧⎪⎨
⎪⎩
Pi,t =Ui,t

∑
j∈i
Uj,t

(
Gij cos θij,t+Bij sin θij,t

)
Qi,t =Ui,t

∑
j∈i
Uj,t

(
Gij sin θij,t−Bij cos θij,t

) , (22)

where Pi,t is the active power of node i at time t, Qi,t is the reactive power of node i at time t,
Ui,t and Uj,t are the voltage values of nodes i and j, Gij is the electric conductance between nodes
i and j, Bij is the electrical susceptance between nodes i and j, θij,t is the phase angle difference
between nodes i and j.

(2) Natural Gas Network Model
The mathematical description of the natural gas network mainly includes pipe flow, compres-

sor and gas flow models. The pipe flow equation of natural gas is obtained by Eqs. (23) and (24).

Gmn=Zmnσmn
√

σmn
(
Φ2
m−Φ2

n
)
, (23)

σmn=
{
1, Φm > Φn
−1, Φm ≤Φn

, (24)

where Gmn is the steady-state flow rate of natural gas pipeline mn, Zmn is the pipeline constant,
which depends on various factors (e.g., inner diameter, length, friction coefficient and temperature
of the pipeline), �m and �n are the pressure of nodes m and n, σ is the flow direction coefficient
of natural gas.
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The mathematical model of the compressor can be described by Eq. (25).

Pcom =ZcomGcom,mn

[
(Φn/Φm)Dcom − 1

]
, (25)

where Pcom is the electric power of the compressor, Zcom is the compression ratio, Gcom,mn is the
gas flow through the compressor, Dcom is the compressor parameter.

The gas flow constraints of the natural gas network can be described by Eqs. (26) and (27).

Zmin
com ≤Zcom =Φn/Φm ≤Zmax

com , (26)

Φmin
n ≤Φn ≤Φmax

n , (27)

where Zmin
com and Zmax

com are the lower and upper limits of the compression ratio of the compressor,

�min
n and �max

n are the lower and upper limits of natural gas pressure at node n.
(3) Thermal Network Model
The thermal network model mainly includes the hydraulic model and thermodynamic

model [26]. The hydraulic model is described by Eq. (28).{
AkM =Mk
BH = 0

, (28)

where Ak is the node-to-branch incidence matrix of the thermal network, M is the water flow
matrix of the pipeline, and Mk is the water flow matrix of the node k, B is the loop-to-branch
incidence matrix of the thermal network, H is the pipeline pressure loss matrix.

The thermodynamic model of the thermal supply network is expressed by Eq. (29).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hk =CHmk
(
Tk,s−Tk,o

)

Tk,out
∑
u∈E

mu =
∑
l∈Y

mlTkl,in

Tend =
(
Tstart−Tg

)
e−εL/cHm+Tg

, (29)

where Hk is the thermal power of node k of the thermal network, CH is the thermal capacity
of water, mk is the water flow out of node k, Tk,s and Tk,o are the temperature of water flowing
into and out of node k, E and Y are the upstream and downstream pipeline sets of node k, mu
and ml are the water flow of pipelines u and l, Tk,out is the initial temperature of the downstream
pipeline, Tkl,out is the terminal temperature of downstream pipeline l, Tstart and Tend are the initial
and terminal temperature of the pipeline, Tg is the ambient temperature, ε is the thermal transfer
coefficient of the pipeline, and L is the pipeline length.

2.3 IDR Model
As a flexible resource, IDR is conducive to achieving low-carbon economic operation and

improving the operation reliability of the IES. IDR can reduce energy demand during peak load
periods by reducing, converting and shifting electric power demand. Renewable energy is used to
replace high carbon emission units.
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The consumption of transferable electric load in the peak demand period is shifted to other
periods. The sum of all transferred load is within a certain little range to satisfy the load demand.
The transferable load complies with the following operating constraints:{
P′
Load,i,t=PLoad,i,t−PTra,i,t

P′
Load,i,t+υ =PLoad,i,t+υ +PTra,i,t

, (30)

δmin
Tra,iPLoad,i,t ≤PTra,i,t ≤ δmax

Tra,iPLoad,i,t, (31)

where P′
Load,i,t and P′

Load,i,t+υ
are the electric load of node i after transfer at time t and t+υ,

PLoad,i,t and PLoad,i,t+υ are the electric load of node i before transferring at time t and t+υ, PTra,i,t
is the electric load of node i transferred from time t to time t+υ, δmin

Tra,i and δmax
Tra,i are the maximum

and minimum proportional coefficients of the transferable load of node i.

Interruptible loads comply with the following operating constraints in Eqs. (32) and (33).

P′
Load,i,t=PLoad,i,t−PInt,i,t, (32)

δmin
Int,iPLoad,i,t ≤PInt,i,t ≤ δmax

Int,iPLoad,i,t, (33)

where PInt,i,t is the electric load of node i interrupted at time t, δmin
Int,i and δmax

Int,i are the maximum
and minimum proportionality coefficients of the interruptible load of node i.

Users can convert peak electric load demand to other energy sources. The convertible load
model is shown by Eqs. (34) and (35).

PCon,i,t= φPGGCon,m,t+φPHHCon,k,t, (34)

δmin
Con,iPLoad,i,t ≤PCon,i,t ≤ δmax

Con,iPLoad,i,t, (35)

where PCon,i,ta is the reduced electric load of power grid node i at time t after conversion, GCon,m,ta
is the increased gas load of gas network node m at time t after conversion, HCon,k,ta is the

increased thermal load of thermal supply network node k, δmin
Con,i and δmax

Con,i are the maximum and

minimum proportionality coefficients of the convertible load of node i.

2.4 Objective Function
In this paper, a low-carbon dispatching model of the IES is established to minimize the total

cost of the system. The objective function is expressed by Eq. (36).

F =min (CO+CC +CCWind +CCPV +CIDR+CLS) , (36)

where CO is the system operating cost, CC is the CO2 emission cost, CQF is the wind curtailment
cost, CQG is the PV curtailment cost, CIDR is the IDR cost, and CLS is the load shedding cost.

(1) System Operating Cost
The system operating cost includes CCP operating cost and MT operating cost, which can be

described by Eq. (37).
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

CO =CCCP+CMT

CCCP =
N∑
x=1

[(
aCHP,xP2

CHP,x,t+ bCHP,xPCHP,x,t+ cCHP,x
)
+ (

aCCS,xPCCS,x,t+ bCCS,xZCCS,x,t
)

+ (
aP2G,xPP2G,x,t+ bP2G,xZP2G,x,t

)]
CMT =

N∑
x=1

aMT ,xPMT ,x,t

,

(37)

where CCCP and CMT are the operating costs of CCP and MT, aCHP,x, bCHP,x and cCHP,x are
the operating cost coefficients of CHP, aCCS,x and aP2G,x are the operating cost coefficients of
CCS and P2G, ZCCS,x,t is the carbon emissions captured by CCS at time t, ZP2G,x,t is the carbon
consumed by P2G x at time t, bCCS,x is the cost coefficient of CO2 capture of CCS, and bP2G,x
is the cost coefficient of CO2 purchase of P2G.

(2) Carbon Trading Cost
The carbon emissions of the system come from CHP and MT, and the part of them is

absorbed by CCS. The carbon trading cost can be described by Eq. (38).

CC = λ

N∑
x=1

(
ZCHP,x,t+ZMT ,x,t−ZCCS,x,t−ZQ,t

)
, (38)

where λ is the carbon trading cost coefficient, ZCHP,x,t is the carbon generated by CHP x at time
t, ZMT,x,t is the carbon generated by MT, and ZQ,t is the carbon emission quota.

(3) Wind Curtailment Cost
The wind curtailment cost can be described as Eq. (39).

CCWind = aCWindPCWind,t, (39)

where aCWind is the penalty cost coefficient of wind power curtailment, PCWind,t is the wind power
curtailment at time t.

(4) PV Curtailment Cost
The PV curtailment cost can be calculated by Eq. (40).

CCPV = aCPVPCPV ,t, (40)

where aCPV is the penalty cost coefficient of PV curtailment, PCPV,t is the PV curtailment at
time t.

(5) IDR Cost

The IDR cost is obtained by Eq. (41).

CIDR=
∑

i∈�IDR

(
aTraPTra,i,tab + aIntPInt,i,ta + aConPCon,i,ta

)
(41)

where �IDR is the set of nodes participating in demand response, aTra, aInt and aCon are the cost
coefficients of transferable load, interruptible load and convertible load.
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(6) Power Supply Reliability

To improve the power supply reliability of the IES, this paper uses the loss of power supply
probability (LPSP) as the standard to measure the power supply reliability. The power supply
reliability is calculated by Eq. (42).

LPSPt = PLS,t
PLoad,t

, (42)

where PLS,t is the load shedding power at time t.

The load shedding cost can be calculated by Eq. (43).

CLS = aLSPLS,t, (43)

where aLS is the load shedding cost coefficient.

2.5 Objective Function
To meet the demand of electric-gas-heat load in each operation period, the system balance

constraints are given by Eq. (44).⎧⎪⎪⎨
⎪⎪⎩

PCCP,i,t+PPV ,i,t+PWind,i,t+PBS,disch,i,t+PBS,ch,i,t =
PLoad,i,t−PTra,i,t−PInt,i,t−PCon,i,t−PLS,i,t
GG,m,t+GCCP,m,t−GMT ,m,t =GLoad,m,t+GCon,m,t
HCCP,k,t+HMT ,k,t =HLoad,k,t+HCon,k,t

, (44)

where PPV,i,t and PWind,i,t are PV and wind energy output power of power grid node i at time
t, GG,t is the purchased gas power of gas network node m, while PLoad,i,t, GLoad,m,t and HLoad,k,t
are electric load, gas load and heat load.

3 Deep Reinforcement Learning Model for Low Carbon Economic Dispatch of the IES

In this paper, the multi-objective optimization problem of low-carbon economic dispatch of
the IES is solved by the DRL method. In this section, the optimal problem of low-carbon
economic dispatch of the IES is transformed into a DRL framework and solved by the TD3
algorithm.

3.1 Problem Transformation
Reinforcement learning is the process of interacting with the environment, obtaining feedback,

updating strategy, iterative until learning the optimal strategy [23]. This environmental interaction
is described by the Markov decision process (MDP), which consists of five elements: state space
S, action space A, transfer function T , reward function P and discount factor γ .

(1) State Space

The observed state of the IES is shown in Eq. (45), including the state of charge SOCt of
battery storage, wind power output Pwind,t, PV output PPV,t, electric load PLoad,t, gas load GLoad ,
heat load HLoad,t and time t.

st =
(
SOCt,PWind,t,PLoad,t,GLoad,t,HLoad,t, t

)
. (45)
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(2) Action Space

The action space of the IES is shown in Eq. (46), including electric power output PCCP,t and
gas power output GCCP,t of the CCP, electric power PMT,t of gas turbine, output power PBS,t of
energy storage battery, and electric power PIDR,t of the IDR.

at =
(
PCCP,t,GCCP,t,PMT ,t,PBS,t,PIDR,t

)
. (46)

(3) Reward

The reward function is set to guide the agent to acquire the maximum cumulative reward from
the current action. Therefore, as the reinforcement learning agent generally employs maximizing
cumulative reward, the reward is a negative value of the objective function. The reward function
can be described by Eq. (47).

Rt =− (CO+CC +CCWind +CCPV +CIDR+CLS)+ r0, (47)

where r0 is a manually set constant, which is used to ensure that the cumulative reward of the
agent changes from a negative value to a positive value in the learning process.

The punishment reward mainly includes two parts, agent action amplitude penalty and agent
action change rate punishment, Which can be shown by Eq. (48).

χt =
T∑
t=1

∑
ai

[
κ11,imax

(
ai,t+1− ai,t− a11,i,max, 0

)+ κ12,imax
(
ai,t− ai,t+1 − ai,12,min, 0

)

+κ21,imax
(
ai,t− ai,21,max, 0

)+ κ22,imax
(
ai,t+1− ai,22,min, 0

)]
, (48)

where κ11,i, κ12,i are the upper and lower penalty coefficients of the agent’s climbing action,
a11,i,max, ai,12,min are the upper and lower climbing limits of the action, κ21,i, κ22,i are the upper
and lower penalty coefficients of the agent’s action, ai,21,max, ai,22,min are the upper and lower
limits of the action.

3.2 Problem Solving Based on TD3 Algorithm
In this paper, the multi-objective optimization problem of low-carbon economic dispatch of

the IES is solved by the DRL method. In this section, the optimal problem of low-carbon
economic dispatch of the IES is transformed into a DRL framework and solved by the TD3
algorithm. TD3 is a DRL algorithm based on the actor-critic framework and DDPG. The
principle of the TD3 algorithm is shown in Fig. 3. The actor-critic framework adopts two neural
networks. The actor generates action according to state, and critic inputs state and action to
generate Q value and learns reward and punishment mechanism to evaluate the behavior selected
by the actor. The agent updates relevant parameters in the continuous state by updating the
strategy of the actor and achieves the single-step update effect.

In the DDPG algorithm, the actor generates deterministic actions according to the policy
function at = πθ (st). The parameter of the actor-network is θ , and the optimization objective can
be described by Eqs. (49) and (50) [17].

J (πθ )=E [Q (st,πθ (st))] , (49)

∇θJ (πθ )=∇θE [Q (st,at)]
=E

[∇θπθ (st)∇aQ (st,at)
∣∣at=πθ (st)

]
,

(50)
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where Q (st,at) is the action-value function, which indicates the expected reward value of the
selected action at in the state st.

The critic is a Q function, which is used to fit the state-action value. The critic evaluates the
action in the current state and provides gradient information for the actor. The target is calculated
by Eq. (51).

yt= r (st,at)+ γQϕ′ (st+1,πθ (st+1)) (51)

where Qϕ ′ is the target Q network, yt is the target value of the critic network.

Critic network 1 
  parameter: 1ϕ

 Critic network 2 
paramete: 2ϕ

Target Critic network 1 
       parameter: 1ϕ′

 Target critic network 2 
paramete: 2ϕ′

Actor network 
  parameter:θ

  loss function 1
Lϕ

  loss function 2
Lϕ

 Target actor network 
paramete:θ′

Observation process

IES Agent

Reward rt

State st

st+1

rt+1

Photovoltaic Wind power Battery 
storage

Electricity Load Gas Load Heat Load

Add noise

Replay Buffer

Sample a mini-batch 
from the memory

Policy gradient Soft updat

Soft updat

Soft updat

Actor

Critics

(St , at , rt , St+1)

(St , St+1)

Figure 3: The principle of the TD3 algorithm

In DDPG, there is an overfitting phenomenon of the Q network, leading to the overestimation
of the Q value. Under this circumstance, the policy network will affect the final performance
by learning wrong information. TD3 algorithm can solve the overestimation problem of DDPG,
restrict the overfitting of the Q network and reduce the deviation. Therefore, based on the DDPG
framework, the improvements of TD3 are as follows:

(1) Clipped double-Q learning under actor-critic framework [27]. In the DDPG algorithm,
both target actor-network and target critic network adopt the “soft update” method, which makes
the actual network similar to the target network. It is difficult to separate the action selection
and policy evaluation. Therefore, in the TD3 algorithm, the target value is obtained by clipping
double-Q learning, and the Q value is constrained by two Q networks. Besides, corresponding
minimum Q value in two Q networks are adopted to calculate the target Q value. According to
the actor network πθ , the target value y2t of the critic network Qϕ2 is equal to y1t as shown in
Eq. (52).

y1t = r (st,at)+ γ min
i=1,2

Qϕ′ (st+1,πθ (st+1)) . (52)
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(2) Smoothen the target action. In the continuous action space, it is usually expected that the
same actions can have similar values [25]. Therefore, the action output of the agent is smoothened
by adding random noise to the target action. The value function is updated by Eqs. (53) and (54).

yt = r (st,at)+ γ min
i=1,2

Qϕ ′ (st+1,πθ (st+1)+ ε) , (53)

ε ∼ clip (N (0,σ) ,−c, c) , (54)

where ε is the random noise.

(3) Delay the update of the policy network. Policy network cannot be trained according to
poor performance Q network evaluation [28]. Therefore, in TD3, the actor is updated after the
critic is updated for n times. The target network parameters are updated by Eq. (55).

θ ′ = (1− τ ) · θ ′ + τθ ,
ϕ′ = (1− τ ) ·ϕ′ + τϕ, (55)

where τ is the soft update rate.

4 Case Study

The simulation environment is established in the Gym toolkit of Open AI. The simulation
structure of the IES in this paper is composed of IEEE 39-bus power system, 6-bus heating system
and 20-bus natural gas system [1]. The natural gas price is 33 C//m. TD3 algorithm uses the neural
network to fit actor and critic network. The number of hidden layers of the actor network is 3,
and the number of neurons is 400, 200, 200. The hidden layer of the critic network is 3, and the
number of neurons is 200, 100, 100. Simulation parameters of the IES are shown in Table 1 [5–7].

Table 1: Simulation parameters of the IES

Parameter Value Parameter Value Parameter Value

aCHP,x(USD/MW2) 0.028 bCHP,x(USD/MW) 24.85 cCHP,x(USD/MW) 17.14
aCCS,x(USD/MW) 0.95 aP2G,x(USD/MW) 0.15 bCCS,x(USD/MW) 18.6
aP2G,x(USD/MW) 0.15 bCCS,x(USD/MW) 18.6 bP2G,x(USD/MW) 17.5
aCWind(USD/MW) 36 aCPV (USD/MW) 36 aTra(USD/MW) 45
aInt(USD/MW) 64 aCon(USD/MW) 28 aLS(USD/MW) 28.8
δmin
Tra,i 0.02 δmax

Tra,i 0.15 δmin
Int,i 0.02

δmax
Int,i 0.18 δmin

Con,i 0.02 δmax
Con,i 0.18

λ(USD/MW) 34.5 Pmin
CHP(MW) 5 Pmax

CHP(MW) 60
Pmin
P2G(MW) 0 Pmax

P2G(MW) 15 Pmin
CCS(MW) 1

Pmax
CCS(MW) 0.2 �Pmin

CHP(MW) 0.1 �Pmax
CHP(MW) 25

�Pmin
P2G(MW) 2 �Pmax

P2G(MW) 5 �Pmin
CCS(MW) 0

�Pmax
CCS(MW) 0 Pmin

MT(MW) 5 Pmax
MT (MW) 30

�Pmin
MT (MW) 2 �Pmax

MT (MW) 10 SOCmax 0.95

(Continued)
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Table 1 (Continued)

Parameter Value Parameter Value Parameter Value

SOCmin 0.10 Pmax
BS,ch 10 Pmax

BS,disch 10
ηch 0.90 ηdisch 0.85 γ 0.95
κ11,i 0.16 κ12,i 0.28 κ21,i 0.31
κ22,i 0.22

4.1 TD3 Algorithm Training Process
The data in this paper are taken from Liaoning province, China from 01 November 2020 to

28 February 2021. The training sets include the data from 01 November 2020 to 31 January 2021.
The test sets from 01 February to 28th February are used to verify the optimized results after
training. Training data is shown in Fig. 4.
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Figure 4: Historical sample data of IES

The training results of the TD3 algorithm are shown in Fig. 5. The reward value obtained by
the agent at the initial stage of training is relatively low. The TD3 algorithm gets a stable optimal
solution when the episodes approaching about 3000.
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Figure 5: The cumulative reward value of agents
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4.2 Scenario Analysis
To verify the effectiveness of the proposed multi-objective low-carbon scheduling method, the

scheduling results of five different operating scenarios are compared.

Scenario 1: The optimization objective is the operation cost, and the economy of system
operation is considered in the optimization process.

Scenario 2: CCP combined optimization model is utilized.

Scenario 3: Power supply reliability is considered based on scenario 2.

Scenario 4: IDR is considered based on scenario 2.

Scenario 5: IDR and power supply reliability are considered based on scenario 2.

The optimal scheduling results in different scenarios are shown in Table 2. Compared with
scenario 1, the system operation and total costs in scenario 2 are reduced by $150 and $1416. CCS
captures CO2 emitted by CHP, and transmits it to P2G, thus saving the cost of P2G transmission
and purchasing CO2. Compared with scenario 2, the total cost of the system in scenario 3 is
increased by $996 to meet load requirements after considering system reliability. Compared with
scenario 2, the power load demand in the peak period and the starting capacity of CHP units in
scenario 4 are reduced. Compared with scenario 2, the load rejection of the system in scenario 5
is reduced to 0, and the wind curtailment cost is significantly reduced. At the same time, the PV
curtailment costs are reduced to 0, and the total cost of the IES is reduced by $2201. Therefore,
the method proposed can improve the reliability of the power supply and economic benefits.

Table 1: The optimal scheduling results in different scenarios

Scenario 1 2 3 4 5

CO/$ 190257 190107 191468 188551 190425
CC/$ −15458 −16784 −16871 −16101 −17812
CQF /$ 1024 987 1012 654 621
CQG/$ 278 277 284 0 0
CIDR/$ 0 0 0 951 987
CLS/$ 321 319 109 201 0
Total cost/$ 176422 175006 176002 174256 174221

CO2 emissions in different scenarios are shown in Fig. 6. In the load peak period (20:00–
22:00), scenario 2 emits less CO2 than scenario 1 as the requirements of CO2 of P2G come from
CCS. Scenario 4 has the lowest CO2 emissions due to the less CHP unit output during peak
load periods. Scenario 3 considers the power supply reliability, improves the output of CHP units,
resulting in the highest CO2 emissions. Considering power supply reliability and IDR, scenario 5
has slightly higher carbon emissions than scenario 4, but lower than scenario 2.
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Figure 6: CO2 emissions in different scenarios
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Figure 7: The load shedding rate in different scenarios

The load shedding rate in different scenarios is shown in Fig. 7. The load shedding rates
in scenario 1 are the same as scenario 2, and the CCP combined optimization model does not
affect power supply stability. In CCP combined optimization model, the electric power consumed
by P2G and CCS is directly taken from electric power generated by CHP. The integrated energy
system generates and consumes no additional power. Compared with scenario 1, the operation sta-
bility of the IES in scenario 3 is improved by considering the power supply reliability. Compared
with scenario 1, the load demand in scenario 4 is less during the period (7:00–8:00, 19:00–22:00),
and the power supply reliability is improved after considering the demand response.

The scheduling results of the IES in different scenarios are shown in Fig. 8. In scenario 3,
CHP unit output is significantly higher than other scenarios thanks to the consideration of power
supply reliability. In scenario 4, the outputs of CHP units during peak load period are lower
than those of other scenarios, and the outputs of renewable energy are higher than those of other
scenarios during under load period due to the considerations of power supply reliability and IDR.
In scenario 5, during the underestimation period (0:00–06:00) of load, the peak load demand is
transferred to the underestimation period after demand response, and renewable energy outputs
are significantly higher than those in other scenarios. During the peak load period (19:00–21:00),
CO2 emissions are reduced while maintaining system reliability. The optimization method based
on TD3 can achieve a better control effect in different scenarios.
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Figure 8: (Continued)

4.3 Comparison Analysis
SAC, A3C, DDPG and DQN algorithms are selected to verify the effectiveness of the pro-

posed low carbon optimization model. The parameters of SAC, A3C, DDPG and DQN are taken
from the literature [29–32].
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Figure 8: (Continued)

The reward curves of different comparison methods are shown in Fig. 9. The reward values
obtained by DDPG and SAC algorithms are similar in convergence. The convergence speed of the
A3C algorithm is higher than other methods due to the asynchronous architecture. The proposed
optimization method based on TD3 has the best comprehensive performance and can obtain
higher reward values.
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Figure 8: The power balances of the IES in different scenarios. (a) The power balances of the
IES in scenario 1, (b) the power balances of the IES in scenario 2, (c) the power balances of the
IES in scenario 3, (d) the power balances of the IES in scenario 4, (e) the power balances of the
IES in scenario 5

The optimal scheduling results in different algorithms are shown in Table 3. DQN algorithm
has the highest operating cost due to the discretization of the agent action. The optimization
results of the SAC algorithm and DDPG algorithm are similar, and the wind power curtailment
cost of DDPG is higher than the SAC algorithm. A3C algorithm uses asynchronous mechanism,
so the operating cost is lower than DQN, DDPG, and SAC algorithms. TD3 algorithm has the
lowest cost and, obtains higher carbon emission benefits.
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Figure 9: Reward curve in the training process of different algorithms

Table 3: The optimal scheduling results in different algorithms

Scenario TD3 SAC A3C DDPG DQN

CO/$ 190425 192465 190897 193412 203512
CC/$ −17812 −17697 −17433 −17621 −16985
CQF /$ 621 688 652 712 874
CQG/$ 0 0 0 0 23
CIDR/$ 987 1011 981 1001 1023
CLS/$ 0 0 0 0 0
Total cost/$ 174221 176467 175097 177504 188447

5 Conclusions

In this paper, a multi-objective optimization method based on TD3 is proposed for the low-
carbon scheduling problem of the IES. On the power generation side, we develop the CCP
combined optimization model. IDR and power supply reliability are considered on the power
supply side. Moreover, we describe the multi-objective optimization problem as MDP and use the
deep reinforcement learning method based on TD3 to solve it. The proposed method can achieve
a better control effect in different scenarios. The results show that the proposed method saves the
operation cost of the system and effectively reduces the CO2 emission of the IES. Compared with
TD3, SAC, A3C, DDPG and DQN algorithms, the operating costs are reduced by 8.6%, 4.3%,
6.1% and 8.0%, respectively.
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