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ABSTRACT

The integration of topology optimization (TO) and additive manufacturing (AM) technologies can create signif-
icant synergy benefits, while the lack of AM-friendly TO algorithms is a serious bottleneck for the application
of TO in AM. In this paper, a TO method is proposed to design self-supporting structures with an explicit
continuous self-supporting constraint, which can be adaptively activated and tightened during the optimization
procedure. The TO procedure is suitable for various critical overhang angles (COA), which is integrated with
build direction assignment to reduce performance loss. Besides, a triangular directional self-supporting constraint
sensitivity filter is devised to promote the downward evolution of structures andmaintain stability. Two numerical
examples are presented; all the test cases have successfully converged and the optimized solutions demonstrate
good manufacturability. In the meanwhile, a fully self-supporting design can be obtained with a slight cost in
performance through combination with build direction assignment.
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1 Introduction

Additive manufacturing (AM) is a free-form manufacturing technique that builds parts in
layers by depositing fine powder material, which is advantageous in building parts with complex
shapes without specific tooling or fixturing [1]. However, the AM is not an economical tech-
nology for conventional design, and the advantages can only be brought into play adequately
through the elaborate design of high-performance structures. Topology optimization (TO) is an
advanced structural design method that can be adopted to find the optimal material distribution
within a given design domain under certain constraints. The state-of-the-art TO methods include
homogenization method [2], solid isotropic material with penalization (SIMP) [3,4], evolutionary
structural optimization (ESO) [5], level set method [6], moving morphable components (MMC) [7]
and moving morphable void (MMV) [8]. The integration of TO and AM technologies shows the
potential to create significant synergy benefits [1].
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In general, the results produced by conventional TO methods may not be built directly
via AM. There are some manufacturing limitations that should be catered, such as minimum
feature size, minimum slot distance, overhang limitation, material anisotropy, and microstructure
control [1,9]. The lack of AM-friendly TO algorithms is a serious bottleneck for the application of
TO in AM [10]. Liu et al. [1] and Zhu et al. [11] summarized the state-of-art researches conducted
on the integration of TO and AM for a variety of topics in recent years.

Overhang constraint is one of the most troublesome manufacturing limitations that are
inherent within AM. When the overhang portions of a structure have inclination angles smaller
than the critical overhang angle (COA), auxiliary supports are required to provide mechanical
support and/or promote heat dissipation, otherwise the part will collapse during the AM process.
Thomas [12] identified 45◦ as the COA for the parts manufactured with 316L stainless steel
powder using SLM, while Wang et al. [13] found out that the overhang surfaces can always be
well-printed if the overhang angles exceed 34◦. Leary et al. [14] adopted 40◦ as the COA for
those parts manufactured by fused deposition modelling (FDM). The auxiliary supports need to
be removed after manufacturing, which will extend the build time, and increase material cost. The
ideal approach is to integrate the COA restriction in the TO process, so that the solutions are
self-supported and eliminates the need for additional supports.

Within the SIMP framework, Serphos [9] integrated the geometrical restriction in the opti-
mization process through three strategies: multiple objective functions, global explicit constraint
and density filter. Gaynor et al. [15,16] presented a support region projection to ensure a fea-
ture that is adequately supported, Then, Johnson et al. [17] made some improvements to allow
for specifying COAs through an updated support region. Langelaar [18,19] introduced a self-
supporting filter to rigorously exclude the geometries that violate the overhang angle criteria.
Zhao et al. [20] devised an explicit quadratic continuous constraint to represent the self-supporting
requirement. Qian [21] developed a Heaviside projection integral form with explicit geometric
meanings based on the density gradient. Then, Wang et al. [22] introduced an approach that
can be taken to optimize the build direction and topological layout simultaneously. van de Ven
et al. [23,24] introduced an overhang filter with which the overhang regions can be detected by
an anisotropic speed function. Garaigordobil et al. [25] proposed an overhang constraint based
on an edge detection algorithm developed in the field of image analysis and processing. Zhang
et al. [26] developed a method that can be applied to estimate the structural boundary normal by
fitting local element density distribution with linear surfaces. Luo et al. [27] controlled the minimal
overhang angle only in the enclosed voids to reduce the performance loss, and the inward-pointing
normal is evaluated by the density gradient.

In addition to the SIMP frameworks, Mirzendehdel et al. [28] put forward a topological
sensitivity approach for constraining support structure volume with in the level set framework. Liu
et al. [29] proposed a multi-level set interpolation to address the support-free manufacturability
constraint. By adopting polygon-featured holes as the basic design primitives, Zhang et al. [30]
introduced the overhang constraints directly into the geometry description. Wang et al. [31]
proposed a new form of overhang constraint in the level set framework, which is expressed
as a single domain integral instead of point-wise constraints. Based on the MMC and MMV
frameworks, Guo et al. [32] addressed the overhang limitation by constraining the angle of the
curve boundaries. Zhao et al. [33] proposed a density filter within homogenization theory-based
method to ensure that the porous structure satisfies the self-supporting constraint. Wang et al. [34]
presented a B-spline based method to design self-supporting structures, in which an overhang
angle constraint and a triangle constraint are presented.
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This article presents an extension and improvement of the work presented in Zou et al. [35],
in which an explicit self-supporting constraint model is constructed. The non-trivial improve-
ments made in this article are as follows. Firstly, the improved method is applicable to various
values of COA other than 45◦. Secondly, the TO optimization process is combined with build
direction assignment to reduce the performance loss. Thirdly, an adaptive explicit continuous
constraint is devised to control the stability of structural evolution. Lastly, a triangular direc-
tional self-supporting constraint sensitivity filter is proposed to promote the downward evolution
of structures and maintain stability. Furthermore, the volume preserving Heaviside projection
filter [36] is adopted to suppress the gray elements and ensure the stability of optimization.

The remainder of this article is organized as follows. Section 2 introduces the formulation of
the adaptive explicit self-supporting constraint in the SIMP framework. Section 3 introduces the
problem formulation and TO procedure combined with build direction assignment. In Section 4,
two numerical examples are presented to demonstrate the effectiveness of the proposed method.
The conclusions are drawn in Section 5.

2 Self-Supporting Constraint Formulation in SIMP Framework

2.1 Brief Introduction of SIMP
The SIMP method is a widely used TO method, in which the elements of the discretized

design space are assigned with continuous variables such as material density. The material prop-
erties such as Young’s modulus are a function of the element density given by the interpolation
scheme. In general, a penalization factor is introduced by raising the density to the power of
this penalization factor to ensure black-and-white solutions. Besides, filtering methods should be
applied to avoid checkerboards and mesh-dependency solutions. Compliance minimization is one
of the most common TO problems applied for weight saving in various industries, which can be
formulated as Eq. (1):

find ρ

min c=UTKU
s.t. K(ρ̄)U(ρ̄)= F

V(ρ̄)/V0 ≤Vf
0≤ ρ ≤ 1

(1)

where c represents the compliance, F indicates the force vector and U denotes the nodal displace-
ment vector. ρ and ρ̄ refer to the design variable and physical density, respectively. K denotes the
global stiffness matrix. V and V0 are the material volume and design domain volume, respectively,
and Vf is the prescribed volume fraction.

A SIMP interpolation scheme proposed in Sigmund [37] is introduced to ensure black-and-
white solutions, as formulated in Eq. (2):

Ee(ρ̄e)=Emin+ρ̄
p
e (E0−Emin) (2)

where E0 is the Young’s modulus after the interpolation. Emin is the stiffness of void material to
void singularity of the stiffness matrix, which is generally considered as Emin = 10−9. p denotes
the penalization factor, which is taken as 3 generally.

2.2 Adaptive Self-Supporting Constraint Formulation
The continuous characteristics of the design domain, such as element density gradient, can

be relied on to identify the structural boundary and inclined angles, while this additional step is
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expected to make the optimization problem overly complex. In this article, the discrete element
density is adopted to identify the unsupported elements. This article only considers the 2D
rectangular region problems, in which all four sides of the design domain can be considered as
the potential baseplate. They are denoted respectively as B, R, U, and L, as shown in Fig. 1. In
order to adapt to various COAs, the design domain is discretized into rectangular elements, in
which the element aspect ratio b/a is made adjustable according to the magnitude of COA and
build direction. Take the bottom side as an example. Each solid element should be sufficiently
supported by the three adjacent elements in the underlying layer.

Figure 1: Definition of supporting regions

The mathematical model of self-supporting criterion is defined as:

ρi,j ≤ ρmax
i,j =max(ρi−1,j−1,ρi−1,j,ρi−1,j+1)≈ (ρpn

i−1,j−1
+ρpn

i−1,j
+ρpn

i−1,j+1
)

1
pn −ρi,j× (3

1
pn − 1) (3)

where ρi,j is the density of element (i, j) and ρmax
i,j is the maximum density of the supporting

elements. A smooth P-norm approximation is performed to represent the maximum function, and
a linear penalization is performed to reduce the approximation error [35], in which the parameter
pn controls the approximate accuracy and smoothness.

Eq. (3) can be used to judge the supporting status of each elements, and then an explicit
constraint function ϕ(ρ) is devised as Eq. (4) to quantify the global degree of self-supporting
constraint violation, which will be added to the TO formulation.

ϕ(ρ)=
∑

ϕi,j ≈
∑

Ae(ρi,j−ρmax
i,j )ρ0.5

i,j
1

1+e−k(ρi,j−ρmax
i,j −α)

≤ 0 (4)

where parameter α is adopted to exclude the interference caused by density gradual transition
and approximation errors, and it should be small enough to recognize the differences of density
between each layer. Ae is the element area, which is used to make the constraint values evaluated
in different build directions comparable. Parameter k is used to control the functional steepness.
It is worth noting that ϕi,j ≈ 0 when k is large enough, and ρi,j−ρmax

i,j < α.

For a clear black-and-white topology, it can be seen clearly that ϕ(ρ)= 0 for self-supported
design. While in practical numerical applications, the intermediate density elements are unavoid-
able in SIMP, and a density gradual transition will exist between the solid and void regions caused
by the density filters. In addition, due to the approximation error, the value of ϕ(ρ) will be small
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but not zero even for a self-supported design. To deal with this problem, the constraint is slacked
by a positive number ε, which is restated as follows:

ϕ(ρ)=
∑

ϕi,j ≈
∑

Ae(ρi,j−ρmax
i,j )ρ0.5

i,j
1

1+e−k(ρi,j−ρmax
i,j −α)

≤ ε (5)

Different from the compliance, the self-supporting constraint is a local feature. In the early
optimization iterations, there exist a large number of intermediate elements, and the structural
boundary is blurry. In this circumstance, the constraint evaluation is inaccurate and meaningless.
In order to make the optimization process more stable and prevent the local optimal solution
with poor performance, a reasonable idea is to make the upper bound of constraint assigned and
tightened adaptively during the optimization process. Therefore, the value of ε is large enough first
to keep the self-supporting constraint inactivated until the structural compliance becomes stable.
Then, the constraint is activated artificially and the following scheme is used for ε to decrease
from ϕ0 to δϕ0 gradually:

ε = ϕ0(
1− δ

γ (loop−loop0)/10 + δ) (6)

where loop0 and ϕ0 represent the number of iteration and the corresponding value of ϕ(ρ)

when self-supporting constraint is activated, respectively. loop is the iteration number, and γ is
a parameter that is larger than 1 and controls the decreasing rate of ε. δ is a properly selected
positive number that is less than 1, which will be studied in the numerical examples.

3 Numerical Implementation

3.1 Topology Optimization Formulation Combined with Build Direction Assignment
The formulation of minimum compliance structural topology optimization subject to volume

constraint and self-supporting constraint is demonstrated in Eq. (7), which is combined with build
direction assignment to reduce performance loss. The structural compliance, volume constraint
and self-supporting constraint are evaluated based on the physical density ρ̄ .

findρ,d

min c=UTKU=
N∑
e=1

Ee(ρ̄e)uTe k0ue

s.t. K(ρ̄)U(ρ̄)= F
V(ρ̄)/V0 ≤Vf

ϕ(ρ̄,d)=∑
ϕi,j ≈

∑
Ae(ρ̄ i,j− ρ̄max

i,j )ρ̄0.5
i,j

1

1+e−k(ρ̄i,j−ρ̄max
i,j −α)

≤ ε

0≤ ρ ≤ 1

(7)

where variable d is the build direction. For simplicity, only the 4 build directions, denoted as
B, R, U, and L in Fig. 1, are taken into consideration. Nevertheless, test results show that the
performance loss can be reduced in a large extent.

To avoid the formation of checkerboard patterns, intermediate field of densities ρ∗ is obtained
using linear filter [37] as follows:

ρ∗
e =

1∑
i∈Ne

Hei

∑
i∈Ne

Heiρi,Hei =max(0,R1−�(e, i)) (8)
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where Hei is the weight factor, Ne is the set of elements i for which the center-to-center distance
(e, i) to element e is smaller than the filter radius R1.

Since the linear filter averages the density distribution and is not good to obtain an
ideal black-and-white design, the volume preserving Heaviside projection filter proposed by Xu
et al. [36] is applied after the linear filter in Eq. (8) to obtain the physical density ρ̄.

ρ̄e =
{
η[e−β(1−ρ∗

e /η) − (1−ρ∗
e /η)e−β ] 0≤ ρ∗

e < η

(1− η)[1− e−β(ρ∗
e−η)/(1−η) + (ρ∗

e − η)e−β/(1− η)]+ η η < ρ∗
e ≤ 1

(9)

where β is a parameter controls the smoothness of the approximation. The Heaviside function has
such a property: if 0≤ ρ∗

e <η, ρ̄e is equal to zero; if η <ρ∗
e ≤ 1, ρ̄e is equal to one; if ρ∗

e equals
to η, ρ̄e is η. A continuation scheme is used where the parameter β is gradually increased during
optimization to avoid local minima. The value of η is determined by bi-section search method
to ensure the volumes before and after filtering are the same. This Heaviside projection filter in
Eq. (9) can suppress the gray elements at the structural boundary, which will make the structural
boundary clear while ensuring the stability in optimization.

In addition, it should be noted that the self-supporting constraint ϕ is a function of element
densities ρ̄ and build direction d . When the constraint values are evaluated in different build
directions, as shown in Fig. 1, the design domain should be remeshed according to the element
aspect ratio and build direction, with the element densities reassigned by interpolation in line with
the current design.

3.2 Sensitivity Analysis and Triangular Directional Sensitivity Filter
The optimization problem is solved by the gradient based algorithm Method of Moving

Asymptotes (MMA) proposed by Svanberg [38]. As for the sensitivity analysis of objective func-
tion c and volume constraint V , reference can be made to Andreassen et al. [39]. The sensitivities
of self-supporting constraint ϕ are derived as follows. Considering that the linear density filter and
Heaviside projection operation are applied, the chain rule is adopted to compute the derivatives
of ϕ(ρ) with respect to the design variables.

∂ϕ

∂ρi,j
= ∂ϕ

∂ρ̄ i,j

∂ρ̄i,j

∂ρ∗
i,j

∂ρ∗
i,j

∂ρi,j
(10)

The sensitivity analysis ignores the knock-on effect of unsupported elements, for which the
change in ρ̄i,j will only affect the value of ϕi+1,j−1, ϕi+1,j and ϕi+1,j+1. The first term on the right
side of Eq. (10) can be generally expressed as Eq. (11), in which each term can be computed
according to Eqs. (3) and (5) by derivative product rule.

∂ϕ

∂ρ̄i,j
=∂ϕi+1,j−1

∂ρ̄ i,j
+ ∂ϕi+1,j

∂ρ̄i,j
+∂ϕi+1,j+1

∂ρ̄i,j
(11)

As for the second and third terms on the right side of Eq. (10), reference can be made to Xu
et al. [36] and Andreassen et al. [39], respectively. It can be easily found out that the sensitivity
values are nonpositive, which means that the constraint value is reduced by increasing the element
densities below the unsupported elements, and self-supporting is realized by gradual downward
evolution of structural boundaries.
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In order to promote the downward evolution of structural boundaries and avoid tiny support-
ing structures, a directional self-supporting sensitivity filter is proposed in this article. Used in the
previous works, a semicircular directional sensitivity filter will inherently lead to some unsupported
elements at the bottom of semicircle, and cause disturbance to some degree. In this article, a
triangular directional self-supporting constraint sensitivity filter is devised as follows:

∂ϕ

∂ρe
= 1∑

i∈Ne

Hei

∑
i∈Ne

Hei
∂ϕ

∂ρi
,Hei =max(0,R2−�(e, i)) (12)

where Ne is the set of elements within the triangular as shown in Fig. 2a. Hei is a weight factor.
The unit of R2 and distance (e, i) is the number of elements, so that the actual shape of the
triangle varies according to the element aspect ratio. As the example illustrated in Fig. 2b, the
solid element is unsupported. Through the action of the proposed directional sensitivity filter,
the modified sensitivities are all negative in the upside down triangle area, which promotes the
downward evolution and avoids tiny supporting structures.

Figure 2: The illustration of the triangular directional self-supporting sensitivity filter

3.3 Topology Optimization Procedure
A flowchart of the TO optimization procedure with self-supporting constraint that is com-

bined with build direction assignment is demonstrated in Fig. 3. Firstly, the value of ε is large
enough to keep the self-supporting constraint inactivated, which means that the design space
is optimized for minimum compliance in the early stage of optimization. If the change rate
of compliance less than 0.01, the constraint values are evaluated in different build orientations
as described in Section 3.1, and assign the build direction to the orientation that owns the
minimum self-supporting constraint value. Then, the design domain is remeshed if necessary,
and the element densities are reassigned by means of interpolation in line with the current
design, and the self-supporting constraint is activated as described in Eq. (6). If the change rate
of both compliance c and ϕ(ρ) is less than 0.001 in 6 continuous iterations, the optimization
process is terminated. Otherwise, ρ and ε are updated according to Eq. (6) until the condition of
convergence is satisfied.
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Figure 3: Flowchart of the topology optimization procedure

4 Numerical Examples

Two numerical examples are discussed in this chapter to demonstrate the effectiveness of
the developed optimization process. The material is isotropic with Young’s modulus E0 = 1 and
Poisson’s ratio ν =0.3. The self-supporting constraint parameters are set as k=150, α =0.03. The
parameter pn is set to 60. The initial relative densities are all set to 0.5. The move limit is set to
0.1. The width a of elements is fixed to unit length, and the height b of elements is adjustable
according to the magnitude of COA and build direction. For simplicity, the filter radius R1 and
R2 are made equal in all optimizations, so that the dimensions of filtering area are the same in
width direction.

4.1 MBB Beam
The problem statements and boundary conditions of the MBB beam problem are illustrated

in Fig. 4. The design domain is a rectangular area with a width of 150 and height of 50. A
unit load is applied on the middle point of the top of the design domain. The initial value of
Heaviside projection parameter β is set to 1 and doubled every 50 iterations.

For comparison, the MBB problem is first optimized without the self-supporting constraint.
The volume restriction is taken to be 40% of the domain, and density filter is applied with a
radius of 3.5. The optimal free design is depicted in Fig. 5 with compliance cref = 229.20, which
is treated as a reference for the results with self-supporting constraint. It is easy to find out that
the dome and bottom of the structures are totally horizontal, which cannot be manufactured in
vertical direction. As a result of Heaviside projection, the transition zone becomes very narrow
and leads to a clear structural configuration.
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Figure 4: The design domain of MBB beam example

Figure 5: Optimum design for the MBB beam without self-supporting constraint, cref = 229.20

When the self-supporting constraint is considering, the COA is first set to 45◦, while parame-
ter γ and δ are set to 1.3 and 0.1, respectively. The initial build direction is in orientation B. As
the self-supporting constraint is inactivated until the build direction is assigned, the initial build
direction has little effect on the optimized result. Fig. 6 gives the design evolution history with
self-supporting constraint, in which the green blocks represent the baseplate according to the build
direction. Fig. 7 illustrates the convergence curves of compliance and self-supporting constraint
value. Fig. 6g shows the optimum design after 235 iterations with ϕ =2.15, and the final build
direction is in orientation R. The minimum compliance c is 238.85, which is only 4.2% higher
than the optimum result of free design.

Figure 6: Design evolution history of the MBB beam with self-supporting constraint
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Figure 7: Convergence curves of compliance and self-supporting constraint

To illustrate the evolution of structural boundaries, the main unsupported structures are
indicated by red ellipses, and the moving directions are indicated by red arrows, as shown in
Fig. 6. As can be seen from these results, the boundaries of the unsupported structures move
gradually to the baseplate with the increase of iteration steps.

To illustrate the final result more clearly, the COA is marked by red dash lines. It can be
noted that the self-supporting constraint becomes active in the final design, which indicates the
validity of the proposed method.

The iteration curve of compliance is quite stable except for the fluctuations caused by the
periodic increase of the Heaviside parameter β . Nevertheless, the fluctuations are very small by
adopting the volume preserving Heaviside filter. However, the iteration curve of self-supporting
constraint fluctuates in a large scale, which decreases significantly at iteration 40. The main reason
for this is that the build direction has been assigned and self-supporting constraint is reevaluated.
Besides, as the self-supporting constraint is imposed on the gradual density transition region
at the structural boundary, which leads to a certain degree of fluctuations with the evolution
of structural configuration. Nevertheless, the fluctuations are insignificant in the later period of
optimization, which is mainly attributed to the triangular directional sensitivity filter. As the
structural configuration eventually becomes clear, the constraint values become stable as well.

To investigate the effect of parameter δ on the solutions, the MBB beam is optimized with
δ of 0.3, 0.5, 0.7, and 0.9, respectively. The values of all other parameters are the same as
before. All optimizations are converged, and the final build directions are all in orientation R. For
comparison, the solutions are rotated 90◦ clockwise, as shown in Fig. 8, where the elements in
red indicate the structural boundaries that cannot be successfully printed. As suggested by these
results, the constraint value ϕ increased almost linearly with the increase of δ. In fact, as the
elements in red cannot be successfully printed, the adjacent solid elements above the red elements
cannot be manufactured successfully either. As described in Section 2.2, the parameter δ controls
the final upper bound of self-supporting constraint, and 0.1 is used in the following cases.
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Figure 8: Optimum solutions for the MBB beam for different values of δ

In order to fully demonstrate the performance and robustness of the proposed algorithm,
the optimizations with varying filter radius and COA are studied. In general, the optimization
with large COA is hard to converge as the manufacturing constraint becomes very stringent,
while high overhang angles are usually easy to print. For simplicity but without the loss of
generality, a parameter study for 30◦–60◦ is performed. The MBB beam is solved with filter radius
R of 3.5 and 4.5 and COA of 30◦, 45◦, and 60◦. The performance of the proposed method
in maintaining the structural performance is measured by compliance ratio, c/cref , which is the
structural compliance computed with or without self-supporting constraint.

All optimizations converged and realized self-supported successfully, with the optimized solu-
tions and performances shown in Fig. 9, in which the baseplate is also presented by green blocks.
It can be seen that the final build direction varies with different COAs, which is natural as the
COA has direct influence on the constraint value ϕ. Besides, it is worth noting that the build
directions are different for filter radius of 3.5 and 4.5 when COA =30◦. In addition, the results
suggest that a smaller filter radius will result in finer structures, which is consistent with what has
been seen in any free-form topology optimization.

As can be seen in Fig. 9, the compliance ratio c/cref is much smaller than the results in [35],
which validates the effectiveness of the proposed TO procedure combined with build direction
assignment. As expected, the result obtained when COA =30◦ and filter radius is 3.5 is almost
the same as the freely optimized result shown in Fig. 5. With the increase of COA, the constraint
becomes stricter and makes the solutions deviate significantly from the free design results, which
leads to greater performance loss. In addition, it can be noticed that the elements size with
COA = 30◦ is larger than that of 60◦. The reason for this is that the values of element height
b are different. As the width a of elements is fixed to unit length, the elements height b is

√
3

for COA=30◦ when the build direction changes to horizontal direction, while it is only 1/
√
3 for

COA=60◦.
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Figure 9: Optimum solutions for the MBB beam with various COAs and filter radiuses

4.2 Cantilever Beam
The second case is a cantilever beam problem with two subcases, as shown in Fig. 10. The

design domain is a 150× 50 rectangular area, while in the general domain at right there is a
prescribed circular hole at the center of design domain. Both models are fixed on the left edge
with a unit external force exerted on the middle point of the right edge. The initial value of
Heaviside projection parameter β is set to 0.25 and doubled every 50 iterations.

Figure 10: The design domain of cantilever beam example

The two cases are both first optimized without the self-supporting constraint. The allowable
volume fraction is set to 30%, and filter radius is set to 3.5. The results are depicted in Fig. 11,
and the compliance is 275.74 and 307.89, respectively. The prescribed hole will provide a chal-
lenge for evolving self-supported structures, which is conducive to testing the weaknesses of the
proposed method.

When the self-supporting constraint is considering, the COA is first set to 60◦, while param-
eters γ and δ are set to 1.1 and 0.1, respectively. As mentioned before, a smaller value 0.25
is adopted as the initial Heaviside parameter β . The is because a smaller β will lead to a
wider gradual density transition region, which is conducive to the gradual evolution of structural
boundaries. The optimization of rectangular domain case converges at iteration 270 with ϕ = 4.73,
and the final build direction is in orientation L. The optimal compliance c is 310.4 with a
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compliance ratio of 111.0%. Fig. 12 illustrates the design evolution history, and Fig. 13 presents
the convergence curves of compliance and self-supporting constraint value.

Figure 11: Optimum designs for the cantilever beam without self-supporting constraint

Figure 12: Design evolution history of the cantilever beam with self-supporting constraint

Similarly, the evolution of structural boundaries is indicated by red ellipses and red arrows,
while the COA is marked by red dash lines. As can be seen from these results, the unsupported
structures move toward to the baseplate gradually until the structure becomes fully self-supported.
Compared with the reference design, the number of staggered structures is smaller and the
structural layout is clean and simple.

It can be noted in Fig. 13 that the fluctuating range of compliance curve is much higher
compared with the MBB example. The reason is that the structure configuration changes a lot
as compared to the free design results. Besides, there are many intermediate density elements
created during the evolution of structural boundaries due to the move limit. The build direction
is assigned at iteration 47, which successively results in a significant reduction in self-supporting
constraint value. It can be found out that the structural layout at iteration 40 is almost the same
as the optimum design in Fig 11a except that there are more intermediate density elements.
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Figure 13: Convergence curves of compliance and self-supporting constraint

Like the first example, the rectangular domain case is also optimized with δ of 0.3, 0.5, 0.7,
and 0.9, respectively. All optimizations converged, and the print direction are all in orientation R.
Similarly, all solutions are rotated 90◦ clockwise, as shown in Fig. 14. According to this figure,
with the increase of δ, the number of unsupported elements increases and the constraint value ϕ

increases correspondingly. In the following cases, the parameter δ is set to 0.1.

Figure 14: Optimized solutions for the cantilever beam for different values of δ

In order to fully demonstrate the performance and robustness of the proposed algorithm, the
rectangular domain case is also solved with a filter radius of 2.5 and 3.5 and a COA of 30◦, 45◦,
and 60◦. All optimizations realize self-supported successfully, with the results shown in Fig. 15.
It can be seen that all build directions are in in orientation L. With the increase of COA, the
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structural configuration changes more significantly compared with the free design result, and lead
to a more significant performance loss. As expected, the result of COA =30◦ is most similar to
the freely optimized result. The influence of filter radius on structure configuration is less obvious
than the first example. Nevertheless, a larger number of intermediate density elements can be
noticed at structure boundaries for the filter radius of 3.5.

Figure 15: Optimum solutions for the rectangular domain with various COAs and filter radiuses

In addition, the cantilever beam with non-designable hole is solved with a COA of 30◦, 45◦,
and 60◦ and an allowable volume fraction of 30% and 40%. The values of all other parameters
are the same as before. The solutions are shown in Fig. 16. It can be seen from the figure that
all solutions are self-supported, and the final build direction is in L orientation. With the increase
of volume fraction, the structural compliance c decreases in a large extent as more elements can
be used for load transfer. Besides, like in the previous cases, the structural configurations change
more significantly compared with the free design results for larger COA, which leads to greater
performance loss. The results demonstrate that the proposed method is effective in dealing with
the structures containing non-designable domains.

From the results as mentioned above, it can be found out that there are barely tiny or
distorted structures in the solutions with self-supporting constraint. This is mainly attributed
to the adaptive explicit continuous constraint, which realizes self-supported through the gradual
evolution of supporting structures, and self-supported is only required at the final convergence
point. The structural layouts are natural and clean, which has a significant meaning in improving
manufacturability and alleviating stress concentration.
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Figure 16: Optimum solutions for the general domain with various COAs and volume fractions

5 Conclusions

In this article, a TO procedure of self-supporting structures that suitable for various COA
is proposed, which is integrated with build direction assignment to reduce performance loss
caused by self-supporting constraint. Besides, a new adaptive explicit continuous self-supporting
constraint function is constructed to quantify the degree of self-supporting constraint violation,
which can be adaptively activated and tightened during the optimization process. In order to
apply it to different COAs and build directions, the design domain is discretized with rectangular
elements in a way that the element aspect ratio can be automatically altered. Besides, the volume
preserving Heaviside projection filter is adopted to improve stability, and a triangular directional
self-supporting constraint sensitivity filter is devised to promote the evolution of supporting
structures and maintain stability.

Two numerical examples are presented to demonstrate the functionality and performance
of the developed optimization procedure. All of the test cases have successfully converged and
achieved self-supported, and the optimized solutions show good manufacturability. With the
increase of COA, results show that the structural configuration changes more significantly com-
pared with the result of free design, which leads to more severe performance loss. Nevertheless,
by combining the TO optimization process with build direction assignment, the performance loss
is reduced in a large extent.

In the future works, we will focus on extending the proposed method to 3D problems, and one
of the main challenges is the computational efficiency. Besides, the definition of self-supporting
criterion can be improved for unstructured meshes, so that the topology optimization can be
performed in arbitrary build direction, and address complicated design cases.
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