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ABSTRACT

An iterative learning control algorithm based on error backward association and control parameter correction has
been proposed for a class of linear discrete time-invariant systems with repeated operation characteristics, param-
eter disturbance, and measurement noise taking PD type example. Firstly, the concrete form of the accelerated
learning law is presented, based on the detailed description of how the control factor is obtained in the algorithm.
Secondly, with the help of the vector method, the convergence of the algorithm for the strict mathematical
proof, combined with the theory of spectral radius, sufficient conditions for the convergence of the algorithm is
presented for parameter determination and no noise, parameter uncertainty but excluding measurement noise,
parameters uncertainty and with measurement noise, and the measurement noise of four types of scenarios
respectively. Finally, the theoretical results show that the convergence rate mainly depends on the size of the
controlled object, the learning parameters of the control law, the correction coefficient, the association factor and
the learning interval. Simulation results show that the proposed algorithm has a faster convergence rate than the
traditional PD algorithm under the same conditions.
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1 Introduction

The system has gradually become one of the most highly debated research topics in the field
of control in recent years [1]. The system is a type of important hybrid system that consists
of a set of differential equations, finite differences, and switching rules that change based on
actual environmental factors, enabling the whole system to switch between different subsystems to
adapt to the demands of different conditions on the system and improve system performance [2].
Therefore, the system is widely used in practical engineering systems, such as traffic control
systems [3], power systems, circuit systems [4], network control systems [5], etc. At present, many
research results related to the system are focused on the system’s stability [6], but the research
results on the output tracking control of the system are very limited [7]. The reason is that the
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tracking control of the system is much more difficult to achieve than the stabilization and stability
problem.

Iterative learning control [8] has a simple structure, does not require specific model parameters,
and can make the behavior of the executed object meet the expected requirements only after
enough iterations in a limited interval. This learning algorithm has been widely employed in
the control of rigid robot arms [9], batch processing in the process industry [10], aerodynamic
systems [11], traffic control systems [12], electrical and power systems, and other areas due to
the characteristics as mentioned earlier [13]. However, most scholars focus on non-system control
problems, and research on system iterative learning control problems is limited [14].

In industrial applications, the controlled system parameters are usually time-varying, so the
classical PID and combined PID-like control schemes are particularly inflexible when dealing with
the system with uncertain factors [15–17]. In addition, the analysis and design process of some
existing modern control schemes [18] is complex and difficult. The designed control algorithm and
structure should be simple enough and easy to implement to solve these problems. The control
scheme should contain the characteristics of nonlinearity, robustness, flexibility and learning abil-
ity. With the rapid development of intelligent control technology to solve the uncertainty and
complexity of the controlled object, some neural network models and neural network training
schemes have been applied to the design of system controllers [19]. For example, as a feedforward
controller, Plett [20] discussed how neural networks learn to imitate the inverse of the controlled
object. However, the neural network has the disadvantages of slow learning speed and weak
generalization ability, and there is no systematic method to determine its topology. Suppose there
is not a timely manner sable control and compensation. In that case, the system noise and random
interference will appear in the input end of the controller, which will greatly reduce the stability
of the adaptive process and seriously affect the control accuracy. Adaptive filtering has been
widely developed [21,22], and neural network is the most commonly used in all kinds of nonlinear
filtering. However, it is highly nonlinear in terms of parameters [23–25].

Above mentioned scholars are studying the model uncertainty in different fields such as
model prediction, system identification [26], fault detection [27], motor control [28], and nonlinear
control [29]. Still, there is no specific control algorithm for satisfactory fast error convergence and
specific to consider the system coupling, uncertainty, time-varying characteristics, measurement
noise and other factors. Adaptive control strategy is proposed in these literature [30–32] which can
compensate at some extent. An adaptive control is mainly used to deal with complex nonlinear
systems with unknown parameters. Based on Lyapunove stability theory, parameter novelty law
is designed to achieve system stabilization and progressive tracking of target trajectory [33,34].
Both some special nonlinear systems linearized to parameters [35,36] and nonlinear systems with
general structures [37] have achieved remarkable development. For systems that cannot be modeled
or contain un-modeled states, literature [38,39] proposed the model-free adaptive control theory.
However, these adaptive control methods cannot solve the problem of complete tracking over a
finite time interval [40].

This paper emphases on a class of discrete time-invariant arbitrary systems that perform
repeating tracking tasks on an expected trajectory in a finite time interval based on the above
analysis. A PD type is taken as an example, under the condition that the switching sequence
is randomly determined, and the iteration is unchanged, by applying characteristics of iterative
learning control, provide a discrete iterative learning control algorithm with error backward asso-
ciation to correct control quantity of the next iteration. Combined with the theory of hypervector
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and spectral radius, the algorithm’s convergence is discussed, and sufficient conditions for the
algorithm’s convergence are given theoretically.

The article can be divided in different sections in order to demonstrate the contribution
briefly. The Main contribution and results are comprised in the following sections. Problem
formulation is briefly described in Section 2. The convergence analysis, theory of hypervector,
spectral radius, and the sufficient conditions for the error convergence are elaborated in Section 3.
Then the following Section 4 has showed the numerical example for the validity of the proposed
algorithm. Finally, the results summarization of this paper is described in Section 5.

2 Problem Formulation

Consider the following class of linear discrete time-invariant single input and single output
systems with repetitive parameter perturbation and measurement noise over a finite period:{
xk(t+ 1)= (A+�A(t)xk(t)+ (B+�B(t))uk(t))
yk(t+ 1)=Cxk(t+ 1)+ nk(t+ 1) (1)

where t ∈ {0, 1, . . . ,N− 1}, N ∈Z+, a subscript k is the number of iterations, xk(t) ∈Rn, uk(t) ∈R,
yk(t) ∈R are the state, input and output of the system, respectively. The A, B and C are constant
matrices of the corresponding dimension satisfying the condition. nk(t+ 1) ∈R is the measurement
noise of the system, �A(t) and �B(t) is the uncertainty matrix of the system and the uncertainty
input matrix at the time t, such that

�A(t)=E1P(t)F1
�B(t)=E2Q(t)F2

Here, (E1,F1) and (E2,F2) are constant matrices of the corresponding dimension satisfying
the condition, define the structure of the uncertain state matrix and the uncertain input matrix;
P(t) and Q(t) are unknown matrices, satisfying PT (t)P(t)≤ I and QT (t)Q(t) ≤ I .

In the iterative learning process of the system (1), the expected trajectory is set as yd(t+ 1),
and the iteration is unchanged, the corresponding expected state is xd(t), and the corresponding
predicted control input is ud(t), Following assumptions are made:

Assumption 1. In each system iteration, the initial state is equal to the ideal initial state, i.e.,
xk(0)= xd(0).

Assumption 2. Expects trajectory yd(t+ 1)t ∈ {0, 1, . . . ,N− 1} is given in advance, independent
of the number of iterations.

Assumption 3. For any given desired trajectory yd(t+ 1), there is an expected state yd(t) and
an expected control signal ud(t), so that{
xd(t+ 1)=Axd(t)+Bud(t)
yd(t+ 1)=Cxd(t+ 1), t∈ {0, 1, . . .N− 1} (2)
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Basing on system (1), define Ā= A+�A(t), B̄ = B+ �B(t), output signal of k iteration at
time [1,N] could be represented as

yK(1)=Cxk(1)+ nk(1)=CĀxk(0)+CB̄uk(0)+ nk(1)

yK(2)=Cxk(2)+ nk(2)=CĀ
2
xk(0)+CĀB̄uk(0)+CB̄uk(1)+ nk(1)

...

yK(N)=Cxk(N)+ nk(N)=CĀ
N
xk(0)+CĀ

N−1
B̄uk(0)+CĀ

N−2
B̄uk(1)

+ · · · +CB̄uk(N − 1)+ nk(N) (3)

For ease of description, write the above expression in the form of a hypervector, and introduce
a hypervector:

Uk = [uk(0),uk(1), . . . ,uk(N − 1)]T

Yk = [yk(1),yk(2), . . . ,yk(N)]T

Nk = [nk(1),nk(2), . . . ,nk(N)]T

The above equation can be description as

Yk = (G+�G)Uk+Vxk(0)+ nk (4)

where

G=

⎡⎢⎢⎢⎢⎢⎢⎣
CB 0 0 · · · 0
CAB CB 0 · · ·0
CA2B CAB CB · · · ...
...

...
...

. . . 0
CAN−1B CAN−2B · · · CAB CB

⎤⎥⎥⎥⎥⎥⎥⎦ .

�G=

⎡⎢⎢⎢⎢⎢⎣
C�B(0) 0 0 · · · 0
∗ C�B(1) 0 · · · 0

∗ ∗ C�B(2) · · · ...
...

...
...

. . . 0
∗ ∗ ∗ · · · C�B(N − 1)

⎤⎥⎥⎥⎥⎥⎦ .

V = [CĀ,CĀ
2
,CĀ

3
, . . .CĀ

N
]T

*represents an uncertain value by the dynamics and uncertain parameters of the system (1).

System (1), under the condition that assumption 1–3 satisfied, considers a control rule of error
backward association and subsequent control quantity correction:

The correction of the error before time t to the control quantity at the current time t

ũk(t)= uk(t)+L
t∑

i=0

ek(i+ 1)e
K
(
i−t+1
N

)2
, t ∈ {0, 1, . . . ,N− 1} (5a)
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The learning control rule of PD type iterative as

uk+1(t)= ũk(t)+βek(t)+ γ ek(t+ 1) (5b)

where uk+1(t) is the control quantity at time t of the k+1th iteration, uk(t) is the control quantity
at time t of the kth iteration, ũk(t) is the correction of the control quantity at time t in the kth
iteration. β is the proportional gain of PD type learning rule, and γ is the differential gain of
PD type learning rule. ek(t+ 1) = yd(t+ 1)− yk(t+ 1) is defined as the tracking error. The goal
of iterative learning control is to find a control signal sequence {uk(t)} through a certain learning
algorithm, so that the output trajectory yk(t+ 1) of the controlled system (1) under the control of
this sequence can converge to the expected trajectory yd(t+ 1) asymptotically with the increasing
number of iterations, namely lim

k→∞
|ek(t+ 1)| = 0, t ∈ {0, 1, . . . ,N− 1}.

The correction of control quantity (5a) is explained in detail below, as shown in Fig. 1. In the
learning process of the kth iteration, the error ek(1) at point 1 will correct the control quantity
of N moments in the process of the k + 1th iteration, and the correction amount is shown in
Table 1.

1 2 3

...

4 N

1 2 3

...

4 N

kth

(k+1)th

t

Figure 1: ek(1) corrected the control quantity at a certain time in the process of the k+1 iteration

Table 1: The quantity of association correction of ek(1) to the control quantity at each moment
in the next iteration

1 2 3 · · · N − 1 N

Lek(1)e
K
(

1
N

)2
Lek(1)e

K
(

0
N

)2
Lek(1)e

K
(

1
N

)2
· · · Lek(1)e

K
(
N−3
N

)2
Lek(1)e

K
(
N−2
N

)2

ek(2) at point 2 corrected the control quantity of N − 1 moments in the process of k+ 1th
iteration, as shown in Fig. 2. The correction quantity is shown in Table 2.

1 2 3

...

4 N

1 2 3

...

4 N

k th

(k+1)th

t

Figure 2: ek(2) at point 2 corrected the control quantity of N− 1 moments in the process of the
k+ 1 iteration
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Table 2: The quantity of association correction of ek(2) to the control quantity at subsequent
moments

2 3 4 · · · N− 1 N

Lek(2)e
K
(

1
N

)2
Lek(2)e

K
(

0
N

)2
Lek(2)e

K
(

1
N

)2
· · · Lek(2)e

K
(
N−4
N

)2
Lek(2)e

K
(
N−3
N

)2

According to this method, up to the point, its error is ek(N) and it only corrects the control
quantity of moment N in the k + 1 iteration as shown in Fig. 3. The correction quantity is

Lek(N)e
K
(

1
N

)2
.

1 2 3

...

4 N

1 2 3

...

4 N

k th

(k+1)th

t

Figure 3: ek(N) will correct the control quantity of moment N in the k+ 1 iteration

According to the above analysis, the correction quantity of each error to the control quantity
of following moments can be plotted. The correction ũk(t) is the accumulation of the correction
for all previous moments (see Table 3), as

ũk(0)= uk(0)+Lek(1)e
K

(
1
N

)2

ũk(1)= uk(1)+Lek(1)e
K

(
0
N

)2

+Lek(2)e
K

(
1
N

)2

ũk(2)= uk(2)+Lek(1)e
K

(
1
N

)2

+Lek(2)e
K

(
0
N

)2

+Lek(3)e
K

(
1
N

)2

...

ũk(N − 1)= uk(N − 1)+Lek(1)e
K

(
N− 2
N

)2

+Lek(2)e
K

(
N− 3
N

)2

+ · · · +Lek(N)e
K

(
1
N

)2

(6)

which is consistent with Eq. (5a).
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Table 3: Correction of the control quantity by the error at each moment

t+ 1 1 2 3 · · · N − 1 N

ek(1) Lek(1)e
K
(

1
N

)2
Lek(1)e

K
(

0
N

)2
Lek(1)e

K
(

1
N

)2
· · · Lek(1)e

K
(
N−3
N

)2
Lek(1)e

K
(
N−2
N

)2
ek(2) 0 Lek(2)e

K
(

1
N

)2
Lek(2)e

K
(

0
N

)2
· · · Lek(2)e

K
(
N−4
N

)2
Lek(2)e

K
(
N−3
N

)2
ek(3) 0 0 Lek(3)e

K
(

1
N

)2
· · · Lek(3)e

K
(
N−5
N

)2
Lek(3)e

K
(
N−4
N

)2
... 0 0

...
...

...
...

ek(N) 0 0 0 0 0 Lek(N)e
K
(

1
N

)2
uk(t) uk(0) uk(1) uk(2) · · · uk(N− 2) uk(N − 1)
ũk(t) ũk(0) ũk(1) ũk(2) · · · ũk(N− 2) ũk(N − 1)

3 Convergence Analysis

Lemma 1 Let Ak, B ∈Cn×n, (k= 0, 1, 2, . . .), lim
k→+∞

Ak =B, then lim
k→+∞

||Ak|| = ||B||.

Proof With triangle inequality of norm, 0 ≤ |||Ak|| − ||B||| ≤ ||Ak−B||, when.k → +∞,
lim

k→+∞
Ak = B, so lim

k→+∞
||Ak−B|| = 0, from the squeeze criterion lim

k→+∞
|||Ak|| − ||B||| = 0, so

lim
k→+∞

||Ak|| = ||B||, where || • || is the norm of matrices on Cn×n. Particularly, when lim
k→+∞

Ak = 0,

we have lim
k→+∞

||Ak|| = 0.

Lemma 2 Let A ∈Cn×n, if lim
k→+∞

Ak = 0, then A is called convergent matrix, the necessary and

sufficient condition of its convergence is ρ(A) < 1.

Proof Necessity. Let A to be a convergency matrix, because of properties spectral radius,
(ρ(A))k = ρ(Ak)≤ ||Ak|| where || • || is the norm of matrices on Cn×n, So lim

k→+∞
(ρ(A))k = 0 and

ρ(A) < 1.

Sufficiency. Since ρ(A) < 1, there exists a positive number ϑ , such that ρ(A) + ϑ < 1,
Therefore, there exists a norm of matrices on Cn×n say || · ||m, such that ||Am|| ≤ ρ(A) + ϑ < 1.
Since ||Ak||m ≤ ||A||km it can imply that lim

k→+∞
||Ak||m = 0, so lim

k→+∞
Ak = 0.

3.1 Case of a Determined Model Without Measurement Noise
Theorem 1 Consider a linear discrete time-invariant system (1) with single-input and single-

output. If assumption 1–3 is satisfied, the system model is determined, and no measurement noise
is obtained; �B(t)= 0, nk = 0, When PD-type accelerated iterative learning control algorithm (5)
with association correction is adopted, if the selected learning parameter matrix satisfies

ρ =
∣∣∣∣∣1−

[
Le

K
(

1
N

)2
+ γ

]
CB

∣∣∣∣∣< 1, t ∈ {0, 1, . . . ,N− 1} (7)
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Then the output trajectory uniformly converges to the expected trajectory, that is, when k→
∞, yk(t+ 1)→ yd(t+ 1), t ∈ {0, 1, . . . ,N− 1}.

Proof According to the iterative learning control algorithm (5), in the k + 1 iteration, the
control quantity at each moment in the interval [0,N− 1] can be represented as

uk+1(0)= uk(0)+Lek(1)e
K

(
1
N

)2

+ γ ek(1)

uk+1(1)= uk(1)+L

⎡⎢⎢⎣ek(1)eK
(
0
N

)2

+ ek(2)e
K

(
1
N

)2
⎤⎥⎥⎦+ γ ek(2)+βek(1)

uk+1(2)= uk(2)+L

⎡⎢⎢⎣ek(1)eK
(−1
N

)2

+ ek(2)e
K

(
0
N

)2

+ ek(3)e
K

(
1
N

)2
⎤⎥⎥⎦+ γ ek(3)+βek(2)

...

uk+1(N − 1)= uk(N − 1)+L

⎡⎢⎢⎣ek(1)eK
(
N− 2
N

)2

+ ek(2)e
K

(
N− 3
N

)2

+ · · · + ek(N − 1)e
K

(
0
N

)2

+ek(N)e
K

(
1
N

)2
⎤⎥⎥⎦+ γ ek(N)+βek(N− 1)

If we introduce the following hypervector

Ek = [ek(1), ek(2), . . .ek(N)]T

Then we have

UK+1 =UK + (LH +�)Ek (8)

where,

� =

⎡⎢⎢⎢⎢⎢⎢⎣

γ

β γ

β γ
. . . . . .

β γ

βγ

⎤⎥⎥⎥⎥⎥⎥⎦
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Since the model is determined and has no measurement noise, i.e., �A(t) = 0, �B(t) = 0,
nk = 0, Eq. (4) can be written as Yk = GUk + Vxk(0). Combining xk+1(0) = xk(0) = xd(0)
(assumption 1) and Eq. (8), the‘ error sequence can be derived as

Ek+1 =Yd −Yk+1 =Yd − (GUk+1+Vxk+1(0))=Yd −G[Uk+ (LH +�)Ek]−Vxk+1(0)
=Yd −GUk−Vxk(0)−G(LH+�)Ek =Ek−G(LH+�)Ek
= [IN×N −G(LH+�)]Ek = [IN×N −G(LH+�)]2Ek−1 = · · ·
= [IN×N −G(LH+�)]k+1E0

According to Lemma 2, the necessary and sufficient condition of lim
k→∞

[IN×N −G(LH+�)]k+1 =
0 is ρ[IN×N −G(LH +�)] = max

i
|λi| < 1, where ρ(M) is the spectral radius of M, λi are

eigenvalues of IN×N −G(LH +�). IN×N −G(LH+�) is a lower triangle matrix as follows:

IN×N −G(LH+�)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−

⎡⎢⎢⎣LeK
(
1
N

)2

+ γ

⎤⎥⎥⎦CB

∗ 1−

⎡⎢⎢⎣LeK
(
1
N

)2

+ γ

⎤⎥⎥⎦CB
∗ ∗ . . .

∗ ∗ ∗ 1−

⎡⎢⎢⎣LeK
(
1
N

)2

+ γ

⎤⎥⎥⎦CB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
It is easy to know that the necessary and sufficient condition for the convergence of the system

is

ρ =
∣∣∣∣∣1−

[
Le

K
(

1
N

)2
+ γ

]
CB

∣∣∣∣∣< 1, t ∈ {0, 1, . . . ,N− 1}.

The theorem is proved. I would like to explain this further about the convergence which is
basically shows the output within the finite time interval t ∈ [0,T] but for different iterations.
For instance, as the number of iterations, k→∞, the system’s tracking error tends to zero. The
system’s output after the input update tries to follow within, finite time interval as specified for this
system t ∈ [0,T]. Ultimately a perfect desired trajectory yd is achieved. The result of the system
simulation is shown for the different iterations in simulation section. When the tracking error
converges after 15 or more number of iterations and tends to zero, the system’s output precisely
follows the desired trajectory yd . So it shows that the proposed algorithm is robust and satisfies

ρ̄ < 1 and k
lim→∞||ek+1(·)||P = 0 is accurate.
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3.2 Case of the Undetermined Model without Measurement Noise
Theorem 2 Consider a linear discrete time-invariant system (1) with single-input and single-

output. If assumption 1–3 is satisfied, the system model is uncertain but there is no measurement
noise, i.e., �A(t) �= 0, �B(t) �= 0, nk = 0. When PD-type accelerated iterative learning control
algorithm (5) with association correction is adopted, if the selected learning parameter matrix
satisfies

ρ2 =max
t

∣∣∣∣∣1−
[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1, t∈ {0, 1, . . . ,N− 1} (9)

Then the output trajectory uniformly converges to the expected trajectory, that is, when k→
∞, yk(t+ 1)→ yd(t+ 1), t ∈ {0, 1, . . . ,N− 1}, where B̄=B+�B(t).

Proof The control rule Eq. (8) is still available. Since the system model is determined and
there is no measurement noise, i.e., �A(t) �= 0, �B(t) �= 0, nk = 0. Eq. (4) can be written as Yk =
(G+�G)Uk +Vxk(0). Combining xk+1(0)= xk(0)= xd(0) (assumption 1) and Eq. (8), the error
sequence can be derived as

Ek+1 =Yd −Yk+1 =Yd − [(G+�G)Uk+1++Vxk+1(0)]
=Yd − (G+�G)[Uk+ (LH +�)Ek]−Vxk+1(0)
=Yd − (G+�G)Uk−Vxk(0)− (G+�G)(LH +�)Ek
=Ek− (G+�G)(LH+�)Ek = [IN×N − (G+�G)(LH+�)]Ek
= [IN×N − (G+�G)(LH +�)]2Ek−1 = · · ·
= [IN×N − (G+�G)(LH +�)]k+1E0

According to Lemma 2, the necessary and sufficient condition of lim
k→∞

[IN×N − (G+�G)

(LH+�)]k+1 = 0 is ρ[IN×N − (G+�G)(LH+�)] = max
i

|λi| < 1 where ρ(M) is the spectral

radius of M, λi are eigenvalues of matrix IN×N − (G+�G)(LH +�). The matrix IN×N −
(G+�G)(LH +�) is a lower triangular matrix as follows:

IN×N − (G+�G)(LH+�)=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1−

⎡⎢⎢⎣LeK
(
1
N

)2

+ γ

⎤⎥⎥⎦CB̄

∗ 1−

⎡⎢⎢⎣LeK
(
1
N

)2

+ γ

⎤⎥⎥⎦CB̄
∗ ∗ . . .

∗ ∗ ∗ 1−

⎡⎢⎢⎣LeK
(
1
N

)2

+ γ

⎤⎥⎥⎦CB̄

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The necessary and sufficient condition for the convergence of the system is

ρ2 =max
t

∣∣∣∣∣1−
[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1, t∈ {0, 1, . . . ,N− 1}
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The theorem is proved.

3.3 Case of the Determined Model with Measurement Noise
If the model is determined and has measurement noise, i.e., �A(t) = 0, �B(t) = 0, nk �= 0.

Eq. (4) can be written as Yk =GUk+V + nk. Combining xk+1(0)= xk(0)= xd(0) (assumption 1)
and Eq. (8), the error sequence can be derived as

Ek+1 =Yd −Yk+1 =Yd − [(GUk+1+Vxk+1(0))+ nk+1]
=Yd −G[Uk+ (LH +�)Ek]−Vxk+1(0)− nk+1
=Yd −GUk−Vxk(0)− nk−G(LH +�)Ek+ nk− nk+1
=Ek−G(LH+�)Ek+ nk− nk+1
= [IN×N −G(LH+�)]Ek+ nk− nk+1

Let P= IN×N −G(LH+�), then we have Ek+1 =PEk+ nk− nk+1.

When k= 0, E1 =PE0+ n0− n1;

When k= 1, E2 =PE1+ n1− n2 =P2E0+ (n1− n2)+P(n0 − n1);

When k= 2, E3 =PE2+ n2− n3 =P3E0+ (n2− n3)+P(n1 − n2)+P2(n0− n1);

...

Ek+1 =Pk+1E0+
∑k

i=0
Pk−i(ni− ni+1) (10)

For the repetitive perturbation, ni+1 − ni = 0(i= 0, 1, 2, . . .), Ek+1 = [IN×N −G(LH+�)]k+1E0,
according to Lemma 2, the necessary and sufficient condition of lim

k→∞
Pk+1 = 0 is ρ(P) =

max
i

|λi| < 1. ρ(M) represents the spectral radius of matrix M, and λi are eigenvalues of matrix

IN×N − G(LH+�). Refer to the proving process of Theorem 1, it can be obtained that the
necessary and sufficient condition of the system convergence is

ρ3 =
∣∣∣∣∣1−

[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1, t∈ {0, 1, . . . ,N− 1}

When k → ∞, the system output uniformly converges to the expected trajectory, Hence.
||EK+1||→ 0.

For non-repetitive perturbations, assume that the two-interval perturbations are bounded;
there is a positive real number ε < ∞ so that the perturbations in the two iterations satisfy
||nk+1− nk|| ≤ ε <∞.

Theorem 3 Consider a linear discrete time-invariant system (1) with single input and a single
output. If assumption 1–3 is satisfied, and there is non-repetitive measurement noise nk(t+ 1).
When PD-type accelerated iterative learning control algorithm (7) with association correction is
adopted, if the selected learning parameter matrix satisfies

ρ4 =
∣∣∣∣∣1−

[
Le

K
(

1
N

)2
+ γ

]
CB

∣∣∣∣∣< 1, t∈ {0, 1, . . . ,N− 1} (11)
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Then the system’s output converges to a certain neighbourhood of the expected trajectory,
that is, when k→∞, ||EK+1||→mε, t ∈ {0, 1, . . . ,N− 1}.

Proof Eq. (10) is still valid. For the non-repeatable perturbations, there is a positive real
number ε <∞ for the perturbations in the two iterations satisfy ||nk+1− nk|| ≤ ε <∞.

Take the norm of both sides of Eq. (10)

||Ek+1|| ≤ ||Pk+1||||E0|| +
k∑
i=0

||Pk−i||ε

If ρ(P)=max
i

|λi|< 1, according to Lemmas 1 and 2, lim
k→∞

Pk+1 = 0, lim
k→∞

||Pk+1|| = 0. Define

m=∑k
i=0 ||Pk−i||, since lim

k→∞
||Pk+1|| = 0, m< ∞ is bounded. Thus, we can the above inequality

as ||EK+1||→mε.

According to above analysis, the sufficient condition for system convergence is

ρ4 =
∣∣∣∣∣1−

[
Le

K
(

1
N

)2
+ γ

]
CB

∣∣∣∣∣< 1

and the error will converge to a boundary, which is mε.

The Theorem 3 is proved.

3.4 Case of Undetermined Model with Measurement Noise
If the system model is not determined and contains measurement noise, that is, �A(t) �= 0,

�B(t) �= 0, nk �= 0, Eq. (4) can be written as Yk = (G+�G)Uk + Vxk(0) + nk. Combined with
Eq. (8), the error sequence can be derived as

Ek+1 =Yd −Yk+1 =Yd − [(G+�G)Uk+1+Vxk+1(0)+ nk+1]
=Yd − (G+�G)[Uk+ (LH +�)Ek]−Vxk+1(0)− nk+1
=Yd − (G+�G)Uk−Vxk(0)− nk− (G+�G)(LH+�)Ek+ nk− nk+1
=Ek− (G+�G)(LH+�)Ek+ nk− nk+1

= [IN×N − (G+�G)(LH+�)]Ek+ nk− nk+1

Define W = IN×N − (G+�G)(LH+�), then we have Ek+1 =WEk+ nk− nk+1

When k= 0, E1 =WE0+ n0− n1;

When k= 1, E2 =WE1+ n1− n2 =W2E0+ (n1 − n2)+W(n0 − n1);

When k= 2, E3 =WE2+ n2− n3 =W3E0+ (n2 − n3)+W(n1 − n2)+W2(n0− n1).

...

Ek+1 =Wk+1E0+
∑k

i=0
Wk−i(ni− ni+1) (12)

For the repetitive perturbation nk+1 − nk = 0, Ek+1 = [IN×N − (G+�G)(LH +�)]k+1E0,
according to Lemma 2, the necessary and sufficient condition of lim

k→∞
Pk+1 = 0 is ρ(P) =
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max
i

|λi| < 1. ρ(M) represents the spectral radius of matrix M, and λi are eigenvalues of matrix

IN×N − (G+�G)(LH+�), it can be obtained that the necessary and sufficient condition of the
system convergence

ρ5 =max
t

∣∣∣∣∣1−
[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1, t ∈ {0, 1, . . . ,N− 1}

For non-repetitive perturbations, assume that the two interval perturbations are bounded, that
is, there is a positive real number ε < ∞, so that the perturbations in the two iterations satisfy
||nk+1− nk|| ≤ ε <∞. In all cases, it is assumed that the initial condition for nk is nk(0)= 0.

Theorem 4 Consider a linear discrete time-invariant system (1) with single-input and single-
output. If assumption 1–3 is satisfied, and there is non-repetitive measurement noise nk(t+ 1).
When PD-type accelerated iterative learning control algorithm (7) with association correction is
adopted, if the selected learning parameter matrix satisfies

ρ6 =max
t

∣∣∣∣∣1−
[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1, t ∈ {0, 1, . . . ,N− 1} (13)

Then the output of the system converges to A certain neighborhood of the expected
trajectory, that is, when k→∞, ||EK+1||→ pε, t ∈ {0, 1, . . . ,N− 1}.

Proof Eq. (13) still holds, and take the norm to both sides of the equation

||Ek+1|| ≤ ||Wk+1||||E0|| +
k∑
i=0

Wk−iε

If ρ(W)=max
t

|λi|< 1, according to Lemmas 1 and 2, lim
k→∞

W (K+1) = 0, so lim
k→∞

||W (K+1)|| =

0. Define p=
k∑
i=0

||WK−i||, since lim
k→∞

||Pk+1|| = 0, p is bounded, p< ∞. Thus, we can the above

inequality as ||EK+1|| ≤ pε.

According to above analysis, the sufficient condition for system convergence is

ρ6 =max
t

∣∣∣∣∣1−
[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1, t ∈ {0, 1, . . . ,N− 1}

and the error will converge to a boundary, which is pε. Theorem 4 is proved.

Depiction on people’s association thinking, this paper proposes a new type of association
iterative learning control algorithm, which, with the help of kernel function (a monotonically
decreasing function), uses the information of the present time to make prediction and correction
of the future control input in the current iterative process. The information of the current time
corrects the subsequent unlearned time, the closer the current time, the greater the influence,
the smaller the opposite. Obviously, the kernel function makes the association iterative learning
algorithm more reasonable. In the process of theoretical proof of convergence analysis, the kernel
function is eliminated, so it is not reflected in the convergence condition. It is proved that the
association algorithm and the traditional iterative learning control have the same convergence
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conditions, but the simulation result of the fifth part of the paper shows that the algorithm does
have much better convergence speed than the traditional iterative learning algorithm.

4 Numerical Examples

In order to verify the validity of the associative correction learning rule proposed in this
paper, a class of linear discrete time-invariant single-input single-output systems with repetitive
parameter perturbation and measurement noise in a finite time period is considered{
xk(t+ 1)= (A+�A(t))xk(t)+ (B+�B(t))uk(t)
yk(t+ 1)=Cxk(t+ 1)+ nk(t+ 1)

where: t ∈ {0, 1, . . . ,N− 1}

A=
[
1 0
0.2 −0.1

]
,B=

[
0
1

]
,C
[−0.2 1

]
4.1 Case of Determined Model without Measurement Noise

If the system model is determined and there is no measurement noise, i.e., �A(t) = 0,
�B(t) = 0, nk = 0. According to Theorem 1, the sufficient and necessary condition of system
convergence is

ρ =
∣∣∣∣∣1−

[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1.

Let the iterative proportional gain β = 0.15, the differential gain γ = 0.25, the association
factor k = 2, the correction factor L= 0.25, and the discrete time N = 40. The calculation results
show that

ρ =
∣∣∣∣∣1−

[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣= 0.5< 1,

satisfies the convergence condition.

If L= 0, the above algorithm degenerates to a traditional PD-type iterative learning control
algorithm, whose convergence condition is ρ′ = |1− γCB| = 0.75 < 1, ρ < ρ′. According to the
spectral radius theory, the smaller the radius of convergence, the faster the iterative learning
algorithm converges.

The expected trajectory is yd(t+ 1) = sin(8t/25), t ∈ {0, 1, . . . , 39} and the initial condition
xk(0) = 0, ∀k ∈ Z+, initial control vector u1(1) = 0. When applying the accelerated PD-type
learning rule proposed in this paper, the variation trend of ||EK ||∞ the first learning iteration to
the 50th learning iteration is shown in Fig. 4. The algorithm can ensure ||EK ||∞ converges to 0.
Fig. 5 shows the system’s output after the first, fourth, seventh and 11th iterations, respectively,
and the convergence of the algorithm can be seen in more detail.
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Figure 4: The variation trend of the norm of error of accelerated ILC algorithm with the
increasing number of iterations

Figure 5: Output trajectory and expected trajectory (a) After the first iteration (b) After the fifth
iteration (c) After the seventh iteration (d) After the 11th iteration

When the traditional PD-type learning rule is applied, let the iterative proportional gain
β = 0.15, and the differential gain γ = 0.25 remain unchanged during the learning process. From
the first learning iteration to the 50th learning iteration, the variation trend of ||EK ||∞ is shown
in Fig. 6. In addition, the variation trend of ||EK ||∞ using the acceleration algorithm proposed
in this paper is also included in the figure. In the figure, when the allowable error ε = 0.01 is
given, the traditional PD-type algorithm needs 13 iterations to reach, and the accelerated PD-
type iterative learning algorithm needs 6 iterations. Given the permissible error ε = 0.001, the
conventional PD-type algorithm needs 25 iterations, and the accelerated PD-type iterative learning
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algorithm needs 11 iterations. It can be intuitively seen that the convergence speed of the system
is significantly accelerated after adopting the PD-type accelerated ILC algorithm proposed in this
paper.

Figure 6: Error comparison between the traditional algorithm and the accelerated algorithm

4.2 Case of the Undetermined Model with Measurement Noise
If the system model is not determined and contains measurement noise, that is, �A(t) �= 0,

�B(t) �= 0, nk �= 0. According to Theorem 4, the sufficient condition for the system output to
converge to a neighbourhood of the expected trajectory is

ρ6 =max
t

∣∣∣∣∣1−
[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣< 1, t∈ {0, 1, . . . ,N− 1}

The matrix pairs (E1,F1) and (E2,F2) are selected as

E1 =
[
0.2 0
0 0.2

]
, F1 =

[
1 0
0 1

]
, E2 =

[
0.1 0
0 0.1

]
, F2 =

[
0
1

]
Assume P(t) and Q(t) are

P(t)=Q(t)=
[

1(t) 0
0 
2(t)

]
where |
i(t)| < 1, t ∈ {0, 1, . . . ,N− 1}, i = 1, 2. In the simulation process, Φi(t) and Φ2(t) are
generated by random function rand(∗), measurement noise nk = 0.08 cos(rand(∗)) is randomly
generated. The parameters of algorithm (5) are as follows: iterative proportional gain β = 0.15,
differential gain γ = 0.25, association factor k = 2, correction factor L = 0.25, discrete-time
N = 40. The result of the simulation indicate that

ρ6 =max
t

∣∣∣∣∣1−
[
Le

K
(

1
N

)2
+ γ

]
CB̄

∣∣∣∣∣= 0.4990< 1,

meet the convergence condition, while �B(t)= (0< 0.0013)T .

Expected trajectory is yd(t+ 1) = sin(8t/25), t ∈ {0, 1, · · · , 39}. The initial xk(0) = 0, ∀k ∈ Z+,
the initial control vector u1(1)= 0. When applying the accelerated PD-type learning law proposed
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in this paper, the changing trend of ||EK ||∞, from the first iteration to the 50th iteration is shown
in Fig. 7. The algorithm can ensure ||EK ||∞ converges to 0.

Figure 7: The variation trend of the norm of error of accelerated ILC algorithm with increasing
number of iterations

In order to observe of the convergence process of the output trajectory, Fig. 8 shows the
comparison plots of the system output and the expected trajectory after the first, fourth, seventh
and 11th iterations.

Figure 8: Comparison of system output and desired trajectory (a) After the first iteration (b) After
the fourth iteration (c) after the 7th iteration (d) after the 11th iteration
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If we take L = 0, the above algorithm is reduced into the traditional PD type iterative
learning control algorithm, the convergence condition for ρ′ = max

t
|1− γCB̄| = 0.7497 < 1, and

ρ < ρ′. According to the spectral radius theory, the smaller the convergence radius is, the faster
the iterative learning algorithm converges. Therefore, the association correction iterative learning
control algorithm proposed in this paper converges faster. Changing trend of ||EK ||∞ from first
iteration to 50th iteration in two algorithms is shown in Fig. 9.

Figure 9: Comparison of error convergence rate between traditional PD-type learning rule and
accelerated learning rule

It can be seen from the Fig. 9 that the system tracking error does not converge to 0, but to a
boundary. Theorem 4, ||EK+1||→ pε, t ∈ {0, 1, . . . ,N− 1}. From Fig. 9, it can be intuitively seen
that after adopting the PD-type accelerated ILC algorithm proposed in this paper, the convergence
speed of the system is significantly increased.

Table 4 shows that the tracking error of P, D, PD and accelerated proposed PD type ILC laws
in the first iteration is 1.1217316. After 15th iterations, the error of the P-type law is 0.062823, D
type algorithm is 0.07538, and the error of algorithm PD law is 0.024335. Where the error of the
proposed accelerated PD law is 0.003683, from the column of Table 4 to the data, the tracking
error of all ILC law is reduced consecutively with the increase of iteration number. However,
from the horizontal data in Table 4, the tracking error of the proposed accelerated PD law is the
smallest as compared to other ILC laws (P, D, PD) under the same iteration number. Therefore,
it can be easily observed from Table 4 that the convergence speed of the proposed accelerated PD
law in this paper is significantly higher than that of other traditional laws.

Table 4: Comparison of ILC laws with proposed accelerated PD-type ILC law

Iteration number P-type ILC law D-type ILC law PD-type ILC law Proposed
accelerated
PD-type ILC
law

1st 1.1217316 1.1217316 1.1217316 1.1217316
5th 0.521928 0.549819 0.39804 0.232084
10th 0.181079 0.203581 0.098419 0.029238
15th 0.062823 0.07538 0.024335 0.003683
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The auto-associative ILC proposed in this paper is based on the traditional ILC, namely,
using the current information to estimate the future input. Compared to traditional ILC, the new
algorithm is characterized as follows: in each trial, the unlearned time is pre-corrected with the
current time information. The algorithm can reduce the number of iterations and accelerate the
learning convergence speed. The algorithm proposed in this paper differs from the traditional
discrete closed-loop algorithm and the higher-order algorithm as follows:

(1) Although the algorithm proposed in this paper is similar in form to the traditional closed-
loop iterative learning algorithm, the principle is completely different from that of the
traditional discrete closed-loop PD-type algorithm (feedback algorithm). The traditional
discrete closed-loop ILC algorithm is to correct the control input of the current time
directly with the error of the previous time in the same trial. The algorithm proposed in
this paper uses the error of the current time to pre-estimate the amount of control after
which it does not occur at all times, and plays the role of pre-correction.

(2) Although the associative iterative learning algorithm proposed in this paper is similar
in form to the traditional higher-order discrete learning algorithm, the learning process
is completely different from the traditional higher-order iterative learning algorithm. The
traditional high-order ILC is the algebraic overlay of the control information of the
previous two or more trials at the corresponding time. The new iterative learning algorithm
proposed in this paper is to pre-correct the subsequent unoccurred time with the error
value of the current time in the same trial.

5 Conclusions

The problem of discrete linear time-invariant systems with parameter perturbation and mea-
surement noise is investigated in this paper. It proposes sufficient conditions for convergence of
a PD-type accelerated iterative learning algorithm with association correction under the circum-
stances of parameter determined without measurement noise, parameter undetermined without
noise, parameter determined with measurement noise. Parameter undermined with measurement
noise, respectively. Under the same simulation conditions, the convergence radius of the proposed
algorithm is smaller than that of the traditional PD-type ILC algorithm. The convergence is
theoretically proven with the help of hyper vector and spectral radius theory. Numerical simu-
lation shows the effectiveness of the proposed algorithm. The results show that the algorithm
can fully track the expected trajectory within finite intervals when uncertain system parameters.
In the case of measurement noise existing, the system’s output will converge to a neighborhood
of the expected trajectory using the algorithm proposed in this paper. In future studies, we will
consider the stability and convergence of nonlinear discrete systems with parameter perturbations
and measurement noises and the convergence of arbitrary bounded changes of initial conditions.
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