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Microenvironment Analysis of Prognosis and Molecular Signature  
of Immune-Related Genes in Lung Adenocarcinoma

Bo Ling, Zuliang Huang, Suoyi Huang, Li Qian, Genliang Li, and Qianli Tang

Youjiang Medical University for Nationalities, Baise, Guangxi, P.R. China

There is growing evidence on the clinical significance of tumor microenvironment (TME) cells in predict-
ing prognosis and therapeutic effects. However, cell interactions in tumor microenvironments have not been 
thoroughly studied or systematically analyzed so far. In this study, 22 immune cell components in the lung 
adenocarcinoma (LUAD) TME were analyzed using gene expression profile from The Cancer Genome Atlas 
(TCGA) and Gene Expression Omnibus (GEO). The TME-based molecular subtypes of LUAD were defined 
to evaluate further the relationship between molecular subtypes, prognosis, and clinical characteristics. A TME 
risk score model was constructed by using the differentially expressed genes (DEGs) of molecular subtypes. 
The relationship between the TME score and clinical characteristics and genomic mutations was compared to 
identify the genes that have significant associations with the TME. The comprehensive analysis of the TME 
characteristics may be helpful in revealing the response of LUAD patients to immunotherapy, providing a new 
strategy for immunotherapy.

Key words: Tumor microenvironment; Lung adenocarcinoma; The Cancer Genome Atlas (TCGA); 
Gene Expression Omnibus (GEO); Immunotherapy

INTRODUCTION

Tumor microenvironment (TME) is the internal envi-
ronment in which tumor cells are produced and inhabit. 
This includes not only the tumor cells themselves but also 
various cells, such as fibroblasts, immune and inflam-
matory cells, the cell mesenchymal, microvessels, and 
biomolecules infiltrating the surrounding area1. Recently, 
numerous studies have suggested that TME plays an essen-
tial role in the occurrence and development of tumors2. 
Under the recruitment of tumor-related signals, a variety 
of immune cell components in the microenvironment 
interact closely with cancer cells and then evolve to pro-
mote tumor development3–5. The physiological status of 
the TME is closely related to each step of tumorigenesis. 
There is growing evidence that they can play an essen-
tial role in the prognosis of clinical pathology and the 
prediction of the therapeutic effect6. When tumors occur, 
there are some differences in the composition of immune 
cells in the TME, such as cytotoxic T cells, helper T cells, 
dendritic cells (DCs), tumor-associated macrophages 
(TAMs), and mesenchymal stem cells (MSCs)7–9. The 
changes in the number of infiltrating CD8+ T cells, CD4+ 

T cells, macrophages, and cancer-associated fibroblasts 
in the TME are also associated with clinical results10,11. 
Therefore, a full understanding of the role of immune cells 
in the TME and its effects on cancer cells will help in the 
discovery of novel prognostic elements of lung adenocar-
cinoma (LUAD)12. However, in several cancer tumors, the 
cellular interactions in the TME have not been thoroughly 
studied or systematically analyzed yet.

The identification of molecular signatures is currently 
a hot topic in tumor research since they play an essential 
role in the early diagnosis, early warning, and prognosis of 
LUAD13. Molecular signatures are based on the functional 
study of individual genes but emphasize the coordination 
between multiple genes, describing biological character-
istics at the overall systematic levels14. Gene expression 
profile analysis is an essential means to obtain molecular 
signatures. With the development of gene chip technology, 
researchers can study changes in gene expression profiles 
at the whole genome level, understanding the relationship 
between gene expression and tumor occurrence, develop-
ment, and metastasis as a whole15. Gene expression profile 
data analysis can be used to identify gene expression pat-
terns composed of more genes and in the further selection 
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of a certain number of genes to represent their biological 
characteristics16. On this basis, the molecular subtyping 
of tumor origin, metastasis potential, and responsiveness 
to radiotherapy and chemotherapy can also be accom-
plished17. For example, Chang et al.18 analyzed the con-
tinuous sequences of 295 patients with early stage breast 
cancer and established a wound-response gene expression 
signature for the molecular typing of patient samples that 
can be used to predict the survival rate of breast cancer 
patients. Many characteristic molecular signatures can be 
found by comprehensive analysis of molecular signatures 
with clinical features such as metastasis, recurrence, and 
prognosis. Molecular signatures are related to the clinical 
features of patients and are essential tools for determin-
ing clinical diagnosis, judging prognosis, and selecting 
treatment options19. Brenton et al.20 reviewed the applica-
tion of gene expression profile analysis in cancer typing 
research and concluded that this analysis could enable a 
better understanding of the molecular differences between 
clinical cases, contributing to individualized therapy.

Therefore, this study analyzed 22 typical immune cells 
in LUAD TME by using gene expression data from pub-
lic databases such as The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO). On this basis, a 
set of TME scoring systems was constructed to evaluate 
the prognosis of LUAD samples with TME scores. By 
further comparing the relationship between the TME and 
genomic mutation, a group of genes associated with the 
TME was found. In conclusion, a comprehensive analysis 
of the TME characteristics of LUAD may help to reveal 
the response of LUAD patients to immunotherapy, pro-
viding a new strategy for LUAD immunotherapy.

MATERIALS AND METHODS

TCGA Data Download and Preprocessing

We used the TCGA Genomic Data Commons (GDC) 
Application Programming Interface (API) to download 
the latest clinical follow-up information. Supplemental 
Table S1 (this and all supplemental figures and tables 
available at https://github.com/lingbo268/lingbobioin​
formatics) contains 522 samples of RNA-Seq data. We 
preprocessed the RNA-Seq read count data of the 522 
samples in the following steps. Samples without clinical 
data and samples of overall survival (OS) <30 days were 
removed. Normal tissues were removed. The read count 
was converted to TPM using the annotation information 
of GENCODE v22 since the distribution of TPM data and 
chip data is closer than that of FPKM. The genes with a 
TPM of 0 in half of the samples were removed.

GEO Data Download and Preprocessing

The GSE37745 chip expression data in MINiML for-
mat were downloaded from NCBI. GSE37745 contains 
196 samples with clinical features, of which 107 samples 

are LUAD. The non-LUAD samples were removed in the 
subsequent analysis (relevant data are provided in supple-
mental Table S2. We preprocessed the GSE37745 data in 
the following steps. We removed healthy tissue sample 
data and retained only primary tumor data. OS data in 
year or month format were converted to days. Samples 
with OS <30 days were removed. The chip probes 
were mapped into the human gene SYMBOL using the 
Bioconductor package. The statistical information of the 
data set after preprocessing is shown in Table 1.

Table 1.  Clinical Information of Two Groups 
of Data Sets After Preprocessing

Clinical Features TCGA GSE37745

Event
Alive 311 29
Dead 178 76

Tumor
T1 1 162
T2 2 263
T3–T4 61
TX 3

Node
N0–N1 409
N2–N3 70
NX 10

Metastasis
M0 324
M1 24
MX 141

Stage
I–II 377 89
III–IV 104 16
X 8

Adjuvant treatment
No 39
Yes 15

Recurrence
No 26
Yes 26

Gender
Female 262 60
Male 227 45

Age
0–50 43 7
51–60 99 34
61–70 166 33
71–80 152 29
81–100 29 2

Smoking
S1 68
S2 115
S3 126
S4 162
S5 4
SX 14
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Calculating the Score of Infiltrating Cells in the TME

CIBERSORT is a deconvolution algorithm that uses a 
set of reference gene expression values (a signature with 
547 genes) considered a minimal representation for each 
cell type, and based on those values, it infers cell type pro-
portions in data from bulk tumor samples with mixed cell 
types using support vector regression. CIBERSORT can 
distinguish 22 types of human immune cells, including 
B cells, T cells, natural killer (NK) cells, macrophages, 
DCs, and myeloid subset cells based on the high specific-
ity and sensitivity of gene expression data. 

To quantify the proportion of immune cells in LUAD 
samples, we used the CIBERSORT algorithm21 and the 
LM22 gene signature as a reference to calculate the scores 
of 22 immune cells in the TCGA LUAD and GSE37745 
data sets. Specifically, the gene expression data were 
uploaded to the CIBERSORT website (http://cibersort.
stanford.edu/). The scores of 22 immune cells were 
obtained using LM22 signatures and 1,000 permutations.

Dimension Reduction and Generation of TME Gene 
Signatures

To obtain robust TME gene signatures, we first analyzed 
the prognostic value of each differentially expressed gene 
(DEG) and selected genes with significant prognoses. 
The random forest algorithm was further used to evaluate 
the importance of these DEGs. Univariate survival analy-
sis is performed accurately using the coxph function of 
the R software package survival. We selected a threshold 
of 0.05 in the random forest algorithm specifications to 
incorporate genes with a significant prognosis. The ran-
dom forest package was used to set the mtry of each parti-
tion to 1–165 and ntree = 500. The mtry value with the 
lowest error rate was set as the optimal mtry value of the 
random forest algorithm. Then, ntree = 100 was selected 
according to the error rate of the random forest algorithm. 
Ultimately, each DEG is sequenced by its importance, and 
DEGs with cumulative importance greater than 95% are 
selected as candidate feature genes. K-means was used 
to classify these genes into four categories22. The princi-
pal component (PC) analysis of the expression profiles 
of the four types of genes was carried out by using the R 
package psych. The first PC was extracted as a signature 
score after 100 iterations. The advantage of this approach 
is that it focuses on the score in the set with the largest 
block of well-correlated (or anticorrelated) genes in the 
set while down weighting contributions from genes that 
do not track with other set members. For the No.j cat-
egory genes, the signature score formula for the sample 
is as follows:

	 1
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where j represents the No.j category of the five types of 
genes, n

j
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of the No.j category genes. Ultimately, the risk coefficient 
of each signature score is obtained by using the signature 
score of four types of genes in each sample according to 
multivariate regression. The TME score formula for any 
sample is as follows:
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where j represents the No.j category of the five types of 
genes, S

j
 represents the signature score of samples in the 

No.j category genes, and b
j
 represents the risk regres-

sion coefficient of the signature score of No.j category 
genes.

Relationship Between TME Score and Clinical Features

In order to observe the relationship between TME 
score and clinical phenotypes, the samples were divided 
into two groups according to the median TME score. The 
prognostic differences between the high TME score and 
the low TME score were compared. The same analysis 
was conducted to analyze the relationship between high 
TME score and low TME score and age and gender.

Relationship Between TME Score and Immune-Related 
Gene Expression

To observe the relationship between TME score and 
immune-related genes, we compared the distribution of 
immune genes on TMEC, GeneC, and TME score that 
characterize immune activation status. 

Relationship Between TME Score and Tumor Genome 
Mutation

The patients were divided into Risk-H and Risk-L 
groups by TME score. We compare the relationship 
between TME score and genome mutation and identify 
a group of important genes related to TME score. Genes 
with significant differences in mutation frequencies in the 
Risk-H and Risk-L samples were compared (Fisher tests, 
p < 0.001).

Western Blotting

Western blotting was carried out according to the stan-
dard protocols described previously23. We used primary 
antibodies raised against glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH), SPP1, and UBE2T (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA), as well as BIRC5, 
GJB2, and SLC2A1 (Proteintech, Wuhan, China). Goat 
anti-mouse and anti-rabbit antibodies conjugated with 
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horseradish peroxidase were used as secondary antibod-
ies (Jackson ImmunoResearch, West Grove, PA, USA), 
and we detected the blots using enhanced chemilumines-
cence (ECL) (Dura, Pierce, NJ, USA).

RNA Extraction and Real-Time Polymerase Chain 
Reaction (PCR) Assay

Total RNA was extracted using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA) following the manu-
facturer’s protocol and was reverse transcribed into com-
plementary DNA (cDNA) using a Superscript Reverse 
Transcriptase Kit (Transgene, Strasbourg, France). Super 
SYBR Green Kit (Transgene) was used to carry out real-
time PCR in ABI7300 real-time PCR system (Applied 
Biosystems, Foster City, CA, USA). The primers pairs 
were BIRC5 AGGACCACCGCATCTCTACAT (forward)  
and AAGTCTGGCTCGTTCTCAGTG (reverse); GJB2  
ATGTACGACGGCTTCTCCAT (forward) and GCAGG 
ATGCAAATTCCAGACAC (reverse); SLC2A1 CTGC 
TCACGAATCTCTGGTCC (forward) and GCCTAATA 
GCACCGGCCATAG (reverse); SPP1 GCCGCTGTAA 
CCTCTTCGG (forward) and GTCTTCGGCCAATCT 
GGCTTT (reverse); and UBE2T ATCCCTCAACATCG 
CAACTGT (forward) and CAGCCTCTGGTAGATTAT 
CAAGC (reverse).

Statistical Analysis

In addition to certain specifications, the normality 
of variables was tested by the Shapiro–Wilk normality 
test24. For the comparison between the two groups, the 
statistical significance of normally distributed variables 
was estimated by unpaired Student’s t-test. The non-
normally distributed variables were analyzed by the 
Mann–Whitney U-test. The Kruskal–Wallis test and uni-
variate variance analysis were used as nonparametric and 
parametric methods25, respectively, for more than two 
groups of comparisons. The correlation coefficients were 
calculated by Spearman and distance correlation analy-
sis. Fisher’s exact test was used to analyze the contin-
gency table. Benjamini–Hochberg method was used to 
convert p value to false discovery rate (FDR). Similarly, 
Kaplan–Meier method was used to generate survival 
curves for each subgroup in the data set. Log-rank test 
was conducted to determine the statistical significance of 
the differences, which is defined as p < 0.05. All of these 
analyses were performed in R 3.4.3, and all analyses were 
not specified with default parameters.

RESULTS

TME Analysis of LUAD

Calculating the Score of Infiltrating Cells in the TME. 
We applied the CIBERSORT (http://cibersort.stanford.
edu/) tool and the LM22 gene signature as a reference to 

calculate the scores of 22 immune cells from the LUAD 
transcriptional group data of TCGA and GSE37745 (the 
permutation parameter was set to 1,000). The CIBERSORT 
algorithm uses a deconvolution support vector regression 
algorithm to infer the proportion of cell types in the data 
of a large number of tumor samples with mixed cell types 
with a set of minimum gene expression values represent-
ing each cell type as a reference (547 genes). CIBERSORT 
can distinguish 22 types of human immune cells, including 
B cells, T cells, NK cells, macrophages, DCs, and myeloid 
subset cells based on the highly specific and sensitive dif-
ferences of gene expression data. The correlation between 
the scores of 22 immune cells shows that there are three 
distinct groups: two with a positive correlation and one 
with a negative correlation, reflecting a specific commu-
nication mode between immune cells (Fig. 1, supplemen-
tal Table S3). Using univariate Cox regression analysis of 
the relationship between the scores of 22 immune cells 
and prognosis, the scores of resting NK cells, M0 mac-
rophages, and activated mast cells are significantly related 
to poor prognosis (log-rank p < 0.05). The scores of rest-
ing memory CD4 T-cells and plasma cells are related to 
better prognosis (log-rank p < 0.05). The results are elu-
cidated in Figure 2, and the data are available in supple-
mental Table S4.

Molecular Typing of LUAD Based on TME Score. 
Based on the TME score, we use the consensus cluster-
Plus package to conduct unsupervised clustering of the 
TCGA+ GSE37745 samples. First, the scores of seven 
immune cells significantly related to prognosis were 
selected. The optimal number of clusters between k = 2–10 
was evaluated, which was repeated 1,000 times. K = 4 was 
selected as an optimal clustering number (supplemental 
Fig. S1) according to the CDF value and Delta area. The 
four categories of TME scores as TMEC1–TMEC4 were 
defined. In terms of clustering results, M2 macrophages 
and resting memory CD4 T cells have significantly 
higher scores mainly in TMEC1, while plasma cells have 
higher scores mainly in TMEC4. M0 macrophages and 
activated mast cells have higher scores mainly in TMEC2 
and TMEC3 (Fig. 3). OS prognostic analysis among the 
TMECs revealed that there is a significant difference in 
OS prognosis among the TMECs (log-rank p < 0.01). 
From the results, it is clear that TMEC1 and TMEC4 
exhibited better prognosis than TMEC2 and TMEC3 (Fig. 
4). Moreover, the OS prognostic relationship between 
TCGA and TMECs in GSE37745 is evaluated. The 
results revealed that there is a significant difference in 
OS prognosis among the TMECs in TCGA (p = 0.0079). 
Although GSE37745 failed to show such a significant 
difference (p = 0.078), there was a trend consistent with 
TCGA data (supplemental Fig. S2). Comparison of the 
scores of 22 immune cells in the TCGA and GSE37745 
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samples showed that there was a more consistent distri-
bution between the different data sets (supplemental Fig. 
S3). However, no significant difference (supplemental 
Fig. S4) was observed between the TNM, stage, age, and 
smoking groups and TMECs in the TCGA data set, indi-
cating that TME molecular subtypes and clinical feature 
groupings have absolute independency (GSE37745 data 
set has no clinical information, such as TNM).

Relationship Between TME Score and Clinical 
Features. Using clinical information such as TNM, stage, 
age, and smoking from the TCGA data, we compared the 
relationship between the scores of 22 immune cells and 
these clinical features. The scores of the 22 immune cells 
in different staging samples are shown in supplemental 
Figure S5.

Construction and Functional Analysis of the TME 
Signature

Identification of DEGs in the TME Cluster. Considering 
that TCGA and GSE37745 are transcriptome data of two 
different platforms, in order to study the differences in 
gene expression patterns between different TMECs, we 
selected TCGA data for TMEC differential expression 
analysis.

First, we used the DESeq2 tool to enrich for DEGs 
between the TMEC1/TMEC4 group with a relatively 
good prognosis and the TMEC2/TMEC3 group with 
a relatively poor prognosis; these DEGs may be one of 
the reasons for the difference in prognosis. A total of 
584 shared DEGs of TMEC1/TMEC2, TMEC1/TMEC3, 
TMEC4/TMEC2, and TMEC4/TMEC3 were selected for 

Figure 1.  Correlation of 22 immune cells in the TME.
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subsequent analysis (Fig. 5A). The similarity distance 
method was applied to compare the similarity between 
the grouped samples (supplemental Fig. S6). The volcano 
diagram of the DEGs between groups is shown in supple-
mental Figure S7. The DEGs are elucidated in supple-
mental Tables S5–S8.

Construction of the LUAD Gene Cluster by Differential 
Expression Genes. Based on 584 common DEGs, we 
used nonnegative matrix factorization (NMF) to conduct 
unsupervised clustering of the TCGA samples. The NMF 
method selects the standard “brunet” and performs 50 iter-
ations. Number of clusters k was set to 2–10 and used the 
R package NMF to determine the average outline width 
of the ordinary member matrix, with a minimum num-
ber of members of each subclass set to 10. The optimal 
clustering number is determined based on the indexes of 

cophenetic, dispersion, and silhouette. The optimal clus-
tering number was selected as 4 (Fig. 5B, supplemental 
Figs. S8 and S9), which is defined as GeneC1–GeneC4. 
The OS prognostic analysis shows that there are also sig-
nificant differences between GeneCs (Fig. 5C). In com-
paring the scores of the 22 immune cells in GeneC, it was 
found that there is a more complex relationship between 
prognosis and the corresponding TME score that exists. 
For example, the score of GeneC4 with the worst prog-
nosis regarding M0 macrophages is significantly higher 
than that of other GeneCs (Fig. 6).

Construction of a Prognostic Risk Model Based 
on the TME

Calculation of TME Score. In order to further identify 
the 584 DEGs shared in TMEC (dimension reduction), 

Figure 2.  Forest plot of hazard ratio of 22 immune cells in the TME (log rank p < 0.05).
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R package randomForest algorithm was used to evaluate 
the importance of these 584 DEGs. First, we set the num-
ber of random variables (mtry parameters) for each seg-
mentation as 1–583 and ntree = 500, and chose the mtry 
value with the lowest error rate as the optimal mtry value 
of the random forest algorithm. Then choose ntree = 100 
(supplemental Fig. S10A) according to the plot of random 
forest, and finally, the top 100 DEGs according to impor-
tance ranking were selected (supplemental Fig. S10B and 
C), and the TCGA cohort was performed to validate the 
differential expression of these genes. We selected the 
top five genes based on log FC, namely, SPP1, UBE2T, 
BIRC5, GJB2, and SLC2A1, for experimental validation. 
The WB and PCR results show that these five genes are 
highly expressed in cancer tissues, consistent with our 
data analysis (supplemental Fig. S11, Table S9).

According to the TPM expression volume of the top 
100 genes, a hierarchical clustering algorithm was used 
to classify them into a high expression group and a low 
expression group, which are defined as signature G1 and 

signature G2, respectively. G1 is the low expression group, 
which includes 81 genes, while G2 is the high expression 
group with 19 genes (Fig. 7). PCA analysis of signatures 
G1 and G2 was carried out by using the R psych package. 
For each gene signature, 100 iterations were performed 
to obtain the optimal number of PCs. Then the respective 
PC scores were calculated, and the PC1 scores of G1 and 
G2 were selected as the final scores. The prognosis risk 
model of G1 and G2 was established using the multivari-
ate Cox regression analysis method. The TME score is 
calculated as

	 TME score = SPC1*b	

where b represents the multivariate regression coefficient 
of each signature G. PC1 represents the PC1 score of each 
signature G.

Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) enrichment analysis of 
signature G1 and signature G2 shows that G1 is mainly 

Figure 4.  KM curve of TMEC OS prognosis (log rank p < 0.01).
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involved in cell proliferation and signal regulation. G2 is 
mainly related to the response of cells to wounding and 
metabolism (the corresponding G2 signature gene also 
shows significantly high expression) (supplemental Fig. 
S12, Tables S10 and S11). 

Comparing the TME score of GeneC, we found that the 
scores of GeneC3 and GeneC4 with the worst prognosis 

are significantly higher than that compared to GeneC1 and 
GeneC2 with the best prognosis (Fig. 8A). The median value 
of the TME score is taken to divide the samples into TME 
score high and TME score low. The samples are divided 
into two categories: Risk-H and Risk-L. There was a signif-
icant difference in OS prognosis between the Risk-H group 
and the Risk-L group (log-rank p < 0.001) (Fig. 8B).

Figure 5.  (A) Venn diagram of differentially expressed genes in TMEC. (B) Consistency matrix heat map of NMF algorithm. (C) KM 
curve of TMEC OS prognosis (log rank p < 0.001).
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Relationship Between TME Score and Clinical 
Features. The TCGA data set provides information on 
TNM, stage, age, and smoking. Relationship between 
TME score and these clinical features was evaluated. The 
results showed significant differences in the TME score 
of TN staging, stage, and smoking. However, no signifi-
cant differences were observed in M and age (Fig. 9).

Genomic Characteristics of LUAD Subtypes

Relationship Between TME Score and Immune Gene 
Expression. In order to study the relationship among vari-
ous TME scores and immune status, we compared the 
distribution of four genes—IFNG, PDCD1 [programmed 
death 1 (PD-1)], CD274 [programmed cell death-ligand 1 
(PD-L1)], and PDCD1LG2 (PD-L2)—on TMEC, GeneC, 
and TME scores (Fig. 10). The results revealed that the 
expression of PD-L1 and TNFSF9 in TMEC2/TMEC3, 
GeneC4, and Risk-H samples with the worst prognosis 
is significantly higher than that in the subtypes with the 
best prognosis (Fig. 11A–C). It is speculated that these 
patients with poor prognosis may be associated with the 
immunosuppression of T cells and B cells, which also 
indicates the high risk of patients with a high expression 
of PD-L1.

Relationship Between TME Score and Tumor Genome 
Mutation. As TME score patients are assigned to the 
Risk-H and Risk-L groups, we compared the relation-
ship between the TME score and genomic mutation and 
identified a group of relevant genes associated with TME 
score. Fisher’s test was applied to compare the muta-
tion frequency between the Risk-H and Risk-L groups 
(excluding intron and silent mutations). A total of 57 
genes (Fig. 12, supplemental Table S12) were obtained 

when p < 0.001 was specified. The results show that the 
mutation frequency of the TP53 gene in the Risk-H group 
is significantly higher than that in the Risk-L group. 
Besides, TTN and CSMD2 genes also showed a similar 
trend, which may indicate that these genes have a vital 
association with the TME of LUAD.

DISCUSSION

In this study, RNA-Seq data and clinical information 
from 629 LUAD samples based on the TCGA database 
and GEO database were first obtained. LUAD samples 
were classified in two ways. First, four molecular sub-
types were identified according to the correlation clus-
tering between gene expression and 22 immune cells. 
Among them, TMEC2 and TMEC3 subtypes have a poor 
prognosis, with higher scores of M0 macrophages and 
activated mast cells. Second, a total of 584 DEGs from 
four subtypes were analyzed by cluster analysis. Among 
the four subtypes, the worst prognosis was found as 
GeneC4, which also has a higher M0 macrophage score. 
Some similarities between the two classification results 
were also found. High M0 macrophage scores are found 
in all subtypes with poor prognosis. It is speculated that 
the M0 macrophage score may be a potential indicator to 
evaluate prognosis.

The risk model based on the TME score can divide 
LUAD into a high-risk group and a low-risk group. In 
the present study, it is found that the scores of GeneC3 
and GeneC4 with the worst prognosis were signifi-
cantly higher than those of GeneC1 as well as GeneC2 
with the best prognosis. There was a significant differ-
ence in the OS prognosis between the Risk-H group and 
the Risk-L group based on TME score, indicating that the 
model has good prediction ability. Compared with the 

Figure 6.  Score box plot of 22 immune cells in four GeneC clusters. The upper and lower ends of the boxes represent interquartile 
range of values. The lines in the boxes represent median value, and black dots show outliers.



Delivered by Ingenta
IP: 128.14.159.178 On: Tue, 21 Jun 2022 03:44:41

Article(s) and/or figure(s) cannot be used for resale. Please use proper citation format when citing this article including the DOI,

IMMUNE SIGNATURE IN LUNG ADENOCARCINOMA	 571

F
ig

ur
e 

7.
 U

ns
up

er
vi

se
d 

cl
us

te
ri

ng
 h

ea
t m

ap
 o

f 
10

0 
ge

ne
 e

xp
re

ss
io

n 
se

le
ct

ed
 b

y 
th

e 
ra

nd
om

 f
or

es
t a

lg
or

ith
m

. T
he

 r
is

k 
ty

pe
, T

M
E

 c
lu

st
er

, a
nd

 G
en

eC
 c

lu
st

er
 w

er
e 

us
ed

 a
s 

pa
tie

nt
 

an
no

ta
tio

ns
.



Delivered by Ingenta
IP: 128.14.159.178 On: Tue, 21 Jun 2022 03:44:41

Article(s) and/or figure(s) cannot be used for resale. Please use proper citation format when citing this article including the DOI,

572	 Ling ET AL.

three classification methods, the expression of PD-1 and 
PD-L1 in TMEC2/TMEC3, GeneC4, and Risk-H samples 
with the worst prognosis was significantly higher than 
that in the subtypes with the best prognosis, suggesting 
that the high expression of PD-1 and PD-L1 may indi-
cate a high risk in patients. The combination of PD-1 on 
the surface of T cells and PD-L1 on the surface of tumor 
cells can inhibit the activity of T cells, allowing tumor 
cells to escape the attack of T lymphocytes26. Hence, it 
is speculated that these patients with poor prognosis may 
be associated with the immune suppression of T cells. 
Previous studies have established that the expression of 
PD-1/PD-L1 in gastric cancer, ovarian cancer, and other 
cancer samples is significantly higher than that in healthy 
tissues27,28. Immunosuppressive therapy represented by 
PD-1/PD-L1 monoclonal antibodies has attracted much 
attention, which has become a hotspot in tumor immuno-
therapy recently29. By blocking the PD-1/PD-L1 signal-
ing pathway, the immune system of the body is restored 
to treat a variety of tumors. Monoclonal antibodies for 
blocking the PD-1/PD-L1 pathway have entered the clini-
cal stage, which has been proven to be effective in the 
treatment of multiple malignant tumors, such as lung 
cancer, gastric cancer, and breast cancer30. However, the 
correlation between expression level of PD-1/PD-L1 and 
the clinical pathological characteristics of cancer patients 
is still controversial.

Presently, numerous scholars have conducted research 
work in this field, achieving meaningful results. For 
example, van’t Veer et al.31 analyzed the gene expression 
profile of 117 young patients with primary breast cancer 
and obtained a molecular signature with poor prognosis of 
breast cancer. A comprehensive analysis of this signature 
with the clinical prognostic characteristics of patients can 

successfully predict the risk of distant organ metastasis in 
patients without local lymph node metastasis in the short 
term. Various meaningful evidence has been obtained 
by combining gene expression profiles with the clini-
cal characteristics of patients with gastric cancer, breast 
cancer, and other different types of tumors32,33. Similarly, 
we evaluated the correlation between TME score and 
clinical features to assess the prognostic risk of patients 
accurately. There were also significant differences in 
TME scores between T and N staging, stage, and smok-
ing, indicating a precise correlation between the grouping 
results of the TME score and clinical features.

The relationship between TME score and genomic 
mutation was compared and identified the key genes 
associated with TME scores, such as TP53 and CSMD2. 
TP53 is the most common tumor suppressor gene. TP53 
protein is mainly involved in regulating the cell cycle, 
promoting apoptosis and DNA damage repair34. Mutation 
or deletion of TP53 leads to cell cycle disorder and apop-
tosis suppression. More importantly, it affects the damage 
repair function of DNA, resulting in genomic instabil-
ity35. All of these factors may increase the load of tumor 
mutations. 

Additionally, TP53 mutant tumors have characteristic 
of significantly increased PD-L1 expression36. The muta-
tion frequency of the TP53 gene in the Risk-H group was 
significantly higher than that in the Risk-L group, which 
may be one of the reasons for the high expression of 
PD-L1 in the Risk-H group. CSMD2 is a high-frequency 
mutant gene37. Studies have identified that CSMD2 may 
be a potential biomarker for patients with colon can-
cer38. The existence of these high-frequency mutation 
genes may be related to the poor prognosis of the Risk-H 
group.

Figure 8.  (A) TME score distribution of GeneC. (B) KM curve of OS prognosis in Risk-H and Risk-L samples (log rank p < 0.001).
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The present research work also has some limita-
tions. The current sequencing cost is still insufficient to 
cope with large-scale multisampling of whole-genome 
sequencing. Coupled with the constraints of social ethics 
and other factors, the number of available cancer samples 
is still relatively limited. With the continuous development 
of bioinformatics technology, expanding the sample size 
will help to improve the completeness and representative-
ness of our data and enhance the reliability of the model. 
Also, this research requires further verification of biologi-
cal experiments. In a later study, we will verify the key 
genes contained in the preliminarily identified molecular 
signatures of lung cancer, study their molecular function, 
and analyze their role in the occurrence and development 
of LUAD. The correlation between the expression at the 
protein level and the clinical characteristics of patients 
will also be analyzed to verify the reliability of molecu-
lar signatures. The immune-related molecular signature 
of LUAD will finally be determined to provide effective 
valid criterion for the prognosis and diagnosis of LUAD.

In conclusion, this study analyzed 22 immune cell 
components in the LUAD TME, constructed LUAD 
molecular subtypes based on the TME score, and further 
evaluated the relationship between molecular subtypes 
and prognosis and clinical characteristics. The TME 
risk score model was constructed by using the DEGs of 
LUAD subtypes, which can better evaluate the prognosis 
of LUAD samples. By further comparing the relationship 
between the TME score and genomic mutation, a group 
of genes associated with the TME was found. In sum-
mary, the comprehensive analysis of the TME charac-
teristics of LUAD may help to explain the response of 
LUAD to immunotherapy and provide a new strategy for 
LUAD immunotherapy.
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