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Review

Frizzled Receptors in Tumors, Focusing on Signaling, Roles, 
Modulation Mechanisms, and Targeted Therapies

Yu Sun, Wei Wang, and Chenghai Zhao

Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, P.R. China

Wnt molecules play crucial roles in development and adult homeostasis through their receptors Frizzled proteins 
(Fzds). Fzds mediate canonical b-catenin pathway and various noncanonical b-catenin-independent pathways. 
Aberrant Fzd signaling is involved in many diseases including cancer. Wnt/b-catenin is a well-established onco-
genic pathway involved in almost every aspect of tumor development. However, Fzd-mediated noncanonical Wnt 
pathways function as both tumor promoters and tumor suppressors depending on cellular context. Fzd-targeted 
therapies have proven to be effective on cultured tumor cells, tumor cell xenografts, mouse tumor models, and 
patient-derived xenografts (PDX). Moreover, Fzd-targeted therapies synergize with chemotherapy in preclinical 
models. However, the occurrence of fragility fractures in patients treated with Fzd-targeted agents such as OMP-
54F28 and OMP-18R5 limits the development of this combination. Along with new insights on signaling, roles, 
and modulation mechanisms of Fzds in human tumors, more Fzd-related therapeutic targets will be developed.
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INTRODUCTION

Frizzled proteins (Fzds) belong to the superfamily of 
G protein-coupled receptor (GPCR), with extracellular 
N-terminus, seven-transmembrane domain, and intracel-
lular C-terminus. The extracellular N-terminus contains a 
cysteine-rich domain (CRD), which is highly conserved 
and can bind Wnt ligands. A flexible linker region connects 
the CRD to the transmembrane domain. The C-terminus 
contains several conserved motifs, which can bind the 
PDZ domain of Dishevelled (Dvl). The C-terminus also 
interacts with G proteins. Ten Fzds have been identified 
in humans. Phylogenetic analysis indicates that these Fzds 
can be divided into four or five subfamilies: Fzd1/2/7, 
Fzd3/6, Fzd5/8, Fzd4/9/10 or Fzd4 and Fzd9/101–3.

Fzd SIGNALOSOME

Canonical Signalosome

Canonical Wnt/b-catenin pathway is mediated by a 
signalosome consisting of Fzd receptors, Lrp5/6 core-
ceptors, and Dvl and Axin adapters. Upon binding Wnt 

ligands, Fzds and Lrp5/6 oligomerize to create a scaffold 
in which Dvl is phosphorylated and copolymerizes with 
Axin, leading to the dissociation of b-catenin destruction 
complex4. Notably, a recent study has shown that oli-
gomerization of Fzds and Lrp5/6 can activate b-catenin 
pathway in the absence of Wnt ligands5. 

Noncanonical Signalosome

Several Wnt ligands such as Wnt5a generally fail to 
induce Lrp6 phosphorylation and b-catenin pathway activa-
tion due to the lack of functional interaction with Lrp5/66–8. 
Binding of Wnt5a to Fzds results in Fzd oligomerization 
and Dvl phosphorylation independent of Lrp5/69,10. In 
some circumstances, Wnt5a signaling requires Ror1/2, 
which can form a receptor complex with Fzds8,11–13. 

DOWNSTREAM SIGNALING OF Fzds 
IN TUMORS

β-Catenin Pathway

Activation of canonical Fzd signalosome causes 
b-catenin destruction complex dissociation. Therefore, 
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b-catenin in the cytoplasm escapes from phosphorylation 
by GSK3b and degradation by proteasome. Accumulated 
b-catenin translocates into the nucleus, promoting the 
transcription of TCF/LEF target genes (Fig. 1A). MMTV/
WNT1 transgenic mice that can develop mammary 
hyperplasia and adenocarcinoma clearly demonstrate 
the capacity of b-catenin pathway to induce malignant 
transformation14,15. In colorectal cancer, adenomatous 
polyposis coli (APC), a component in b-catenin destruc-
tion complex, is frequently mutated, leading to activation 
of b-catenin pathway16. Actually, activation of b-catenin 
pathway is involved in almost all aspects of human tumor 
initiation and progression, including stemness, growth, 
survival, drug resistance, angiogenesis, immune evasion, 
and metastasis17–19.

G Protein–Ca2+–PKC Pathway

Binding of Wnt5a to several Fzds such as Fzd1, Fzd2, 
Fzd5, Fzd6, and Fzd9 has been shown to activate G pro-
tein signaling20–24. Consistently, Fzd-mediated b-catenin 
pathway seems not to require the involvement of het-
erotrimeric G proteins25. Although the structure of Fzds is 
distinct from that of other GPCRs26, Fzds still can medi-
ate intracellular Ca2+ release and PKC activation through 
phospholipases C (PLC) signaling (Fig. 1B). Wnt5a–Fzd 
promotes melanoma metastasis via PKC27–29, and colitis-
associated cancer via CaMKII30.

Planar Cell Polarity (PCP) Pathway

The Wnt/PCP pathway controls tissue polarity and cell 
movement through downstream signaling such as Rho 
GTPases and JNK31–33 (Fig. 1C). During development, 
Wnt5a/b and Wnt11 activate the PCP pathway through 
Fzd3/6 and Ror1/2, involving Vangl1/2 and Dvl33. In 
human tumors, the Wnt5a–Fzd/PCP pathway promotes 
the progression of chronic lymphocytic leukemia (CLL) 
and ovarian cancer34–37. 

Stat3 Pathway

The oncogenic pathway interleukin-6 (IL-6)/Jak/Stat3 
is involved in many types of tumors. Binding of Wnt5a/b 
to Fzd2 recruits and phosphorylates Stat3 in cancer cells, 
which seems not to be related to G proteins and Dvl38. In 
liver cancer cells, Fyn kinase but not IL-6/Jak is respon-
sible for Stat3 phosphorylation. However, Wnt5a acti-
vates IL-6/Stat3 signaling in CLL and breast cancer39,40. 
Furthermore, Wnt5a and IL-6 form a positive feedback 
loop to activate Stat3 in melanoma41–43, and Stat3 tran-
scriptional upregulates Wnt5a expression in CLL44. 
These studies indicate that Wnt5a–Fzd cross-talks with 
IL-6/Stat3 in some human tumors (Fig. 2A). 

Yap/Taz Pathway

Activation of LATS1/2 in the Hippo pathway induces 
phosphorylation of Yap and Taz, two transcriptional 

Figure 1.  Downstream signaling of Frizzled proteins (Fzds). (A) b-Catenin pathway. (B) G protein–Ca2+–PKC pathway. (C) PCP 
pathway.
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coactivators, which are subsequently degraded by pro-
teasome. When Yap and Taz are not phosphorylated, 
they enter into the nucleus to bind transcription factor 
Tead. Both Wnt5a/b and Wnt3a activate Yap/Taz–Tead 
signaling independent of Lrp5/6 and b-catenin; Fzd1, 
Fzd2, and Fzd5 all can mediate this signaling, but Ror1 
is required to coordinate with Fzd2 and Fzd522. Yap/
Taz–Tead signaling antagonizes b-catenin pathway, 
while it promotes Wnt5a transcription, thereby form-
ing a positive feedback loop (Fig. 2B). Wnt5a/b-Fzd2/5 
modulates Yap expression in a series of human malignant 
tumors including breast cancer, hepatocelluar carcinoma 
(HCC), melanoma, and squamous subtype pancreatic 
adenocarcinoma40,45–47.

Transforming Growth Factor-β (TGF-β) Pathway

Both TGF-b and Wnt5a play dual roles in human 
tumors. As strong inducers of epithelial–mesenchymal 
transition (EMT), they increase cell motility and pro-
mote tumor metastasis. On the other hand, they have the 
potential to suppress cell growth, functioning as tumor 
suppressors. Cross-talk between Wnt5a and TGF-b exits 
in breast cancer; TGF-b maintains Wnt5a expression, 
and inversely, Wnt5a stimulates Smad2 phosphoryla-
tion in a TGFBR1-dependent manner40,48,49. Moreover, 
Fzd8 forms a receptor complex with TGFBR1 to medi-
ate both Wnt11 and TGF-b signaling in prostate cancer50. 
Wnt5a and TGF-b also coordinate in the pathogenesis of 
organ fibrosis51–53. TGF-b can induce Fzd expression in 
fibroblasts54,55. Together, these studies indicate that Fzds 
interact with TGF-b receptors to enhance TGF-b signal-
ing, which further upregulates Wnt5a/Fzds (Fig. 2C).

TUMOR-PROMOTING ROLES OF Fzds

All Fzds except Fzd9 have been found to play tumor-
promoting roles. Through both canonical and noncanoni-
cal Wnt pathways, Fzds contribute to tumor initiation, 
growth, chemoresistance, and metastasis (Table 1). 

Fzd1/2/7 Subfamily

Comparative studies between neuroblastoma (NB) cell 
lines and their chemoresistant counterparts revealed that 
Fzd1 contributes to NB chemoresistance56. Fzd1 expres-
sion in chemoresistant NB cells is associated with Wnt/b-
catenin activity and multidrug resistance gene MDR1 
expression. Fzd1 knockdown enhances the sensitivity of 
chemoresistant NB cells to chemical drugs. Moreover, 
Fzd1 expression is significantly upregulated in NB 
tumors from relapsed patients after chemotherapy. Fzd1 
is also overexpressed in chemoresistant breast cancer and 
leukemic cell lines, and Fzd1 knockdown downregulates 
MDR1 expression, suppresses Wnt/b-catenin activity, 
and restores the sensitivity to chemotherapy57,58. These 
studies have clearly demonstrated that Fzd1 overexpres-
sion induces chemoresistance through activation of the 
Wnt/b-catenin–MDR1 pathway, potentially facilitating 
tumor recurrence. 

Fzd2 is overexpressed in poorly differentiated, 
mesenchymal-type, and late-stage tumor samples of liver, 
lung, colon, and mammary gland38. In vitro studies fur-
ther showed that Fzd2 overexpression induces EMT and 
cell migration via Stat3 signaling, and consistently, Fzd2 
knockdown or treatment with an anti-Fzd2 antibody sup-
presses tumor metastasis in mouse xenograft models38. 
Both EMT and Stat3 signaling are related to cancer cell 

Figure 2.  Fzd signaling cross-talks with Stat3 (A), Yap/Taz (B), and TGF-b (C) pathways.
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mesenchymal-like stemness. Accordingly, Fzd2 signaling 
stimulates stem-like properties in breast and liver can-
cer cells, and higher Fzd2 expression is correlated with 
shorter survival of these cancer patients40,45.

Fzd7 is overexpressed in HCC samples59. Transgenic 
HCC murine models showed that activation of Fzd7/b-
catenin signaling occurs early during the progression to 
HCC, suggesting an oncogenic role of Fzd760. Wnt3 was 
identified as a ligand for Fzd7 in HCC, and interaction 
between Wnt3 and Fzd7 is responsible for b-catenin acti-
vation and cell proliferation61. Fzd7 is also overexpressed 
in triple-negative breast cancer (TNBC) samples and cell 
lines; Fzd7 knockdown suppresses the proliferation of 
in vitro cultured cells and the growth of in vivo xeno-
graft tumors62. Of note, Fzd7 signaling is required for 
the expansion of embryonic stem cells, Lgr5+ intestinal 
stem cells, mammary stem cells, and breast cancer stem 
cells63–65. 

Although Fzd1, Fzd2, and Fzd7 belong to the same 
subfamily, they seem to have distinct roles in human 
tumors. Fzd1 contributes to chemoresistance, Fzd2 pro-
motes tumor metastasis, and Fzd7 induces carcinogenesis 
and tumor growth. Moreover, Fzd1 and Fzd7 act through 
the b-catenin pathway, whereas Fzd2 functions indepen-
dent of b-catenin. Interestingly, both Fzd2 and Fzd7 are 
involved in cancer cell stemness even though via differ-
ent mechanisms.

Fzd3/6 Subfamily

Both Fzd3 and Fzd6 have a key role in PCP during 
development66,67. Fzd3 as well as other PCP pathway 
components such as Vangl2 and Celsr1 are upregulated 
in B lymphocytes of patients with CLL; high Fzd3 level 
is correlated with unfavorable prognosis35. Fzd3 is also 
overexpressed in bone marrow cells of patients with 
acute lymphocytic leukemia (ALL) and myelodysplastic 
syndrome (MDS)68. However, the role of Fzd3 in these 

hematologic malignancies remains unknown. Recently, 
the regulatory function of Fzd3 in melanoma was 
explored69. Global gene expression analysis using mela-
noma patient-derived cells identified Fzd3 as a regulator 
of cell cycle progression. Fzd3 knockdown inhibits the 
proliferation of in vitro cultured cells, and the growth, 
initiation, and metastasis of xenograft tumors. In mela-
noma patients, Fzd3 expression is associated with disease 
progression and reduced survival. 

Fzd6 maintains stem-like phenotype and chemore-
sistance of NB cells; xenograft tumors derived from 
Fzd6-positive NB cells grow faster than those from Fzd6-
negative cells. Moreover, high Fzd6 expression is corre-
lated with poor survival of NB patients70. Similarly, Fzd6 
is associated with reduced distant relapse-free survival 
and has an independent prognostic significance in pre-
dicting distant TNBC relapse as shown by multivariate 
analysis. Fzd6 knockdown inhibits TNBC cell motility 
and invasion in vitro, and bone and liver metastasis in 
vivo71. 

Fzd3 and Fzd6 seem to be less frequently involved in 
human tumors. Moreover, Fzd3 and Fzd6 signaling in 
these tumors is not related to b-catenin pathway.

Fzd5/8 Subfamily

Wnt7a and Wnt7b specifically bind to Fzd5 among the 
10 Fzds2. Wnt7a–Fzd5 induces the proliferation of endo-
metrial and ovarian cancer cells through the b-catenin 
pathway72,73. Wnt7b–Fzd5 promotes RNF43-mutant pan-
creatic ductal adenocarcinoma (PDAC) cell in vitro pro-
liferation and in vivo growth74. Moreover, Fzd5 promotes 
the proliferation of a patient-derived PDAC cell line 
that harbors an RNF43 variant. Upon binding to Wnt5a, 
Fzd5 mediates noncanonical Wnt pathways. Wnt5a–Fzd5 
increases melanoma cell motility and invasion through 
PKC27. This pair also stimulates classical Hodgkin lym-
phoma (cHL) cell migration through RhoA75. 

Table 1.  Tumor-Promoting Roles of Frizzled Proteins (Fzds)

Fzds Wnt Pathways Malignant Tumors Functions References

Fzd1 Canonical NB, breast cancer, AML Chemoresistance 55–58
Fzd2 Noncanonical Liver, breast, colon, lung cancers EMT, metastasis, stemness 38, 40, 45
Fzd7 Canonical Liver, breast cancers Growth, stemness 59–62
Fzd3 Noncanonical Melanoma Stemness, metastasis 69
Fzd6 Noncanonical NB, TNBC Stemness, metastasis, 

chemoresistance
70, 71

Fzd5 Canonical Endometrial, ovarian, pancreatic cancers Growth 72–74
Noncanonical Melanoma, cHL Migration, invasion 27, 75

Fzd8 Canonical HNSCC, TNBC Stemness, metastasis, 
chemoresistance

76, 77

Noncanonical Prostate cancer EMT, metastasis 50
Fzd4 Canonical GBM, prostate cancer EMT, stemness 78, 79
Fzd10 Canonical Breast, ovarian cancers EMT, chemoresistance 80–82
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Fzd8 was shown to be a downstream component of 
c-Met signaling and responsible for b-catenin activation 
in head and neck squamous cell carcinomas (HNSCC); 
ectopic expression of Fzd8 rescues c-Met inhibition-
induced impairment of tumor incidence, growth, and 
metastasis76. Treatment with chemical agents upregu-
lates Fzd8 expression in TNBC cells and tumors; Fzd8 
knockdown in TNBC cells reduced b-catenin and sur-
vivin levels and increased the sensitivity to chemical 
agents, suggesting that canonical Fzd8 signaling medi-
ates TNBC chemoresistance77. Similar to Fzd5, Fzd8 
mediates b-catenin-independent pathway upon binding 
noncanonical Wnt ligands. As a receptor of Wnt11, Fzd8 
forms a complex with the TGF-b receptor, thereby cross-
talking with the TGF-b pathway and promoting EMT in 
prostate cancer cells and invasion in prostate cancer cell 
organotypic 3D cultures50.

Clearly, two members in this subfamily mediate both 
canonical and noncanonical Wnt pathways in human 
tumors depending on their binding ligands. They are 
involved in stemness, growth, chemoresistance, and 
metastasis of human tumors.

Fzd4/9/10 Subfamily

Fzd4 is upregulated in highly invasive glioblastoma 
(GBM) cells, maintaining stem cell properties through 
the b-catenin pathway, and EMT phenotype through 
SNAI178. Consistently, expression of Fzd4 and nuclear 
b-catenin was detected at the invasive front of primary 
GBM specimens. Fzd4 also induces EMT through the 
b-catenin pathway in ERG-positive prostate cancer 
cells79. These two studies suggest that Fzd4 is a prometa-
static factor through induction of EMT. 

BRMS1L suppresses breast cancer cell invasion and 
migration in vitro and metastasis in xenograft models; 
these inhibitory effects are mediated by inactivation of 
the Fzd10–b-catenin pathway80. Fzd10 knockdown inhib-
its the Wnt/b-catenin pathway in PARPi-resistant ovarian 
cancer cells and increases the sensitivity of these cells 
to PARP inhibitors Olaparib and Rucaparib; moreover, 
b-catenin inhibitor XAV939 synergizes with Olaparib in 
suppressing PARPi-resistant cells in vitro and in vivo81. 
Fzd10 is highly methylated and significantly downregu-
lated in chemoresponsive ovarian cancer samples; Fzd10 

knockdown synergizes with cisplatin to inhibit growth 
and induce apoptosis in ovarian cancer cell lines82. 

Together, Fzd4 and Fzd10 are involved in tumor 
metastasis through activation of canonical Wnt pathway. 
Moreover, Fzd10 contributes to the chemoresistance of 
ovarian cancer.

TUMOR-SUPPRESSING ROLES OF Fzds

Fzd-mediated noncanonical pathways have been dem-
onstrated to antagonize b-catenin activity, thereby func-
tioning as tumor suppressor depending on cellular context 
(Table 2). 

Fzd1/2/7 Subfamily

Fzd1 functions as a putative tumor suppressor in fol-
licular thyroid carcinoma (FTC). Fzd1 expression is 
downregulated in this type of tumor, and overexpression 
of Fzd1 reduces FTC cell proliferation, invasion, and 
migration83. The antitumor effect of Fzd1may be associ-
ated with its noncanonical Wnt ligand. Overexpression of 
Wnt5a in a thyroid tumor cell line reduces proliferation, 
migration, and invasion by antagonizing the b-catenin 
pathway84. 

Wnt5a signaling inhibits the proliferation of normal 
hepatocytes and HCC cells85,86. The inhibitory effect of 
Wnt5a is mediated by Fzd2. Wnt5a–Fzd2 suppresses 
b-catenin–TCF activity in HCC cells, suggesting that 
this signaling may hinder tumor initiation and growth. 
However, as described above, Wnt5a–Fzd2 also functions 
as a prometastatic signaling, especially in the absence of 
b-catenin pathway activity. 

Fzd3/6 Subfamily

Fzd6 signaling represses proliferation and migration 
of gastric cancer cells87 and stemness of prostate cancer 
cells by antagonizing the b-catenin pathway88, suggesting 
Fzd6 as a putative tumor suppressor in these two tumors. 
In 293T cells, Fzd6 signaling does not affect b-catenin 
stabilization and b-catenin/TCF4 complex formation, but 
impairs the binding of TCF/LEF factor to promoters of 
target genes89. In addition to antagonizing the b-catenin 
pathway, cross-talking with the TGF-b1 pathway is 
another mechanism underlying the tumor-suppressing 
roles of noncanonical Fzds. In breast cancer transgenic 

Table 2.  Tumor-Suppressing Roles of Fzds

Fzds Wnt Pathways Malignant Tumors Functions References 

Fzd1 Noncanonical FTC Growth, invasion, migration 83
Fzd2 Noncanonical HCC Growth, stemness 85
Fzd6 Noncanonical Gastric, prostate, breast cancers Growth, migration, stemness 87, 88
Fzd5 Noncanonical Prostate cancer Growth 90, 91
Fzd8 Noncanonical Pancreatic cancer, glioma Stemness, growth 92, 93
Fzd9 Noncanonical NSCLC EMT 99, 100
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mouse models, Wnt5a dampens the expansion of tumor-
initiating cells involving TGFR1/Smad2 and Fzd649. 
Therefore, similar to Wnt5a–Fzd2 in HCC, Wnt5a–Fzd6 
may inhibit carcinogenesis but promote metastasis in 
breast cancer.

Fzd5/8 Subfamily

Similar to Fzd2 and Fzd6, Fzd5 exerts antiprolifera-
tive and proapoptotic effects on prostate cancer cells upon 
binding Wnt5a90,91. Fzd8, which is repressed by oncogenic 
K-Ras, blocks tumorigenicity by reducing b-catenin tran-
scriptional activity92. Restoration of Fzd8 reduces tumor 
formation capacity of K-RasV12-transformed NIH/3T3 cells 
and K-Ras-possessing PDAC cells in xenograft models. 
Fzd8 expression is epigenetically downregulated during 
tumorigenesis of glioma in a mouse model, and Fzd8 neg-
atively regulates tumor cell proliferation in vitro93. Both 
FZD5 and FZD8 are hypermethylated in a mouse model 
of AML, and the hypermethylation level increases with 
disease progression, suggesting their tumor-suppressing 
role in this tumor94. Notably, Wnt7a functions as a puta-
tive tumor suppressor in gastric cancer and HCC95,96. As 
the special receptor for Wnt7a, Fzd5 has the potential to 
transduce suppressive signaling in these two tumors. 

Fzd4/9/10 Subfamily 

Wnt7a maintains E-cadherin expression and inhib-
its EMT in non-small cell lung cancer (NSCLC) cell 
lines97,98. The antitumor effects of Wnt7a depend on 
Fzd998–100. Wnt7a–Fzd9 contributes to the inhibition of 
NSCLC cell growth and migration. FZD9 was frequently 
hypermethylated in human AML samples, and FZD9 
methylation is an independent predictor of decreased sur-
vival for AML patients, suggesting that Fzd9 is a candi-
date tumor suppressor in AML101. FZD9 is also frequently 
hypermethylated in ER/PR+ breast cancer and GBM, but 
the role of FZD9 hypermethylation in these two tumors 
is unexplored102,103. 

MODULATION OF Fzds IN TUMORS

Gene Mutation 

Mutations in genes encoding Fzds are rare in tumors. 
Loss of heterozygosity (LOH) of FZD1 gene at 7q21.2 
results in a reduced Fzd1 expression in FTC83. As Fzds play 
crucial roles in development, FZD mutations may lead 
to dysplasia. For instance, FZD2 mutation causes auto-
somal dominant omodysplasia and Robinow syndrome- 
like features104,105, and FZD4 mutation causes familial 
exudative vitreoretinopathy106.

Gene Promoter Hypermethylation

Hypermethylation of gene promoter is a common epi-
genetic mechanism leading to gene expression silence. 
In tumors, hypermethylation of FZDs mainly occurs in 

Fzd5/8 and Fzd4/9/10 subfamilies. Both FZD5 and FZD8 
are hypermethylated in AML compared to granulocytes 
and CD34+ cells from healthy donors94. FZD8 is also 
hypermethylated in B-cell lymphoma but not in normal 
B cells107. FZD9 is hypermethylated in several types 
of tumors including AML, ER/PR+ breast cancer, and 
GBM101–103. Both FZD4 and FZD10 are hypermethylated 
in epithelial ovarian cancers82,108. 

Histone Modification

Histone modifications alter the chromatin structure, 
thereby affecting gene transcription. Trimethylation of his-
tone H3 at lysine 27 (H3K27me3) is induced by Polycomb 
repressive complex 2 (PRC2), in which EZH1/2 catalyzes 
methyltransferase activity in the presence of EED and 
SUZ12. H3K27me3 modification results in downregula-
tion of gene expression in all cell types. FZD4 and FZD8 
have been shown to be downregulated by H3K27me3 
modification via EZH2 recruitment in gastric cancer and 
glioma, respectively93,109. FZD10 is downregulated by 
histone H3K9 deacetylation via HDAC1 recruitment in 
breast cancer80. Notably, histone deacetylation may pro-
mote subsequent H3K27me3 by PRC2110,111. Moreover, 
EZH2 can bind DNA methyltransferases DNMT1 and 
DNMT3A/B to modulate DNA methylation111.

M6A Modification

N6-methyladenosine (m6A) is the most prevalent 
modification of RNA, which is critical to almost every 
aspect of mRNA metabolism. The abundance of m6A is 
controlled by methyltransferases, RNA binding proteins, 
and demethylases. Reduced m6A demethylases FTO, and 
ALKBH5 increases m6A modification and stability of 
FZD10 mRNA in BRCA-mutated epithelial ovarian can-
cer cells, contributing to PARPi resistance by upregulat-
ing b-catenin pathway81. 

Posttranscriptional Modulation by MicroRNAs

MicroRNAs (miRs) are short noncoding RNAs with 
a length of approximate 22 nucleotides and are involved 
in posttranscriptional regulation of gene expression, 
mainly leading to mRNA degradation or translation 
inhibition. Aberrant expression of miRs is implicated in 
many diseases. Most Fzds have been reported to be nega-
tively modulated by miRs in various tumors112–119 (Table 
3). These miRs act as tumor suppressors or promoters. 
Interestingly, miR-31 is tumor suppressing in breast can-
cer by targeting Fzd3, whereas it is tumor promoting in 
lung cancer by targeting Fzd9.

Protein Ubiquitination 

E3 ubiquitin-protein ligase RNF43 ubiquitinates Fzds 
and exerts a negative effect on the Wnt/b-catenin path-
way120. Inactivating RNF43 mutations are frequent in 
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colorectal, endometrial, and pancreatic cancer, accompa-
nied by increased b-catenin activity121,122. Using genome-
wide CRISPR-Cas9 screening, Fzd5 was identified 
to mediate the activation of the b-catenin pathway and 
the growth of several RNF43-mutated PDAC cells74. 
Interestingly, Dvl is required for RNF43-mediated ubiq-
uitination and degradation of Fzds. Canonical b-catenin 
pathway negatively regulates Fzds via RNF43 to ensure 
proper control of pathway activity122,123. Contrary to 
RNF43, ubiquitin-specific protease 6 (USP6) is a deubiq-
uitylase; ectopic expression of USP6 increases cell sur-
face abundance of Fzds and Lrp6 and activates b-catenin 
pathway in tumor cells124. 

Fzd-TARGETED THERAPIES IN TUMORS

A number of small molecules, peptides, and blocking 
antibodies have been developed, targeting ligands, recep-
tors, or key downstream molecules of the Wnt pathway125,126. 
This review only focused on Fzd-targeted therapies.

Fzd7

Fzd7 acts as a tumor promoter through mediating the 
canonical Wnt pathway, which involves Dvl. Therefore, 
disrupting the binding of Fzd7 to the PDZ domain of Dvl 
is considered a strategy to block the b-catenin pathway. 
Peptide and small-molecule inhibitor that impair Fzd7–
Dvl binding exhibited an antitumor effect on liver and 
lung cancers, respectively; they were shown to suppress 
the growth of cultured tumor cells, tumor cell xenografts, 
and mouse tumor models127,128. Soluble receptors are 
often used to compete with membrane receptors for their 
ligands, leading to signaling blockade. Given the onco-
genic role of Wnt3–Fzd7 in HCC, a soluble extracellu-
lar domain of Fzd7 was generated to bind HCC-derived 
Wnt3, accompanied by a reduction in HCC cell growth in 
vitro and in xenografts129. Moreover, antibodies against 
Fzd7 displayed an antigrowth effect on cultured Wilms’ 
tumor cells and TNBC cells130,131. 

Fzd5/8

Antibodies against Fzd5 were shown to inhibit the 
growth of pancreatic cancer cells with RNF43 mutation 

in vitro and in xenografts, and the growth of tumor 
organoid cultures from colorectal cancer patients car-
rying RNF43 mutations74. In combination with vari-
ous chemotherapy agents, soluble Fzd8 (OMP-54F28, 
ipafricept) exhibited an antitumor effect on patient-
derived xenografts (PDXs) of pancreatic, ovarian, and 
breast cancers132. Consistently, patients with advanced 
solid tumors were not responsive to single OMP-54F28 
in a first-in-human phase I study133, while patients 
with recurrent platinum-sensitive ovarian cancer were 
responsive to OMP-54F28 in combination with chemo-
therapy in a phase 1b study134. In the latter study, the 
overall response rate was 75.7%, slightly higher than 
historical data with chemotherapy alone on OCEANS 
(57%) and GOG 213 (56%); the median progression-
free survival (PFS) was 10.3 months, similar to histori-
cal data on OCEANS (8.4 months) and GOG 213 (10.4 
months)135,136. Actually, the occurrence of fragility frac-
tures at doses associated with efficacy may limit further 
development of OMP-54F28.

Fzd1/2/7/5/8

OMP-18R5 (vantictumab) is a monoclonal antibody 
against the Fzd1/2/7 subfamily and Fzd5/8 subfamily, 
which has the capacity to block the b-catenin pathway 
induced by multiple Wnt molecules. OMP-18R5 was 
shown to suppress the development of pancreatic can-
cer and gastric cancer in mouse models137,138. Similar to 
OMP-54F28, OMP-18R5 was also shown to synergize 
with chemotherapy agents on several types of cancers 
in xenografts and PDXs132,139. A phase Ib study evaluat-
ing OMP-18R5 in combination with chemotherapy in 
patients with metastatic pancreatic cancer was terminated 
because of fragility fractures140.

Fzd1/2/7/5/8/4

By using combinatorial antibody engineering, a vari-
ant antibody of OMP-18R5 named F2.A was developed. 
In addition to against the Fzd1/2/7 subfamily and Fzd5/8 
subfamily, F2.A also targets Fzd4. It was shown that F2.A 
was much more effective than OMP-18R5 in suppressing 
the growth of RNF43-mutant pancreatic cancer cells141.

Table 3.  miRs Modulating Fzds in Tumors

Fzds miRs Modulation Tumors Function of miRs References 

Fzd2 miR-30a Negative HNSCC Suppressor 112
Fzd3 miR-31 Negative Breast cancer Suppressor 113
Fzd4 miR-493 Negative Bladder cancer Suppressor 114
Fzd5 miR-23a/24 Negative Pancreatic cancer Suppressor 115
Fzd6 miR-194 Negative HCC Suppressor 116
Fzd7 miR-23b Negative Colon cancer Suppressor 117
Fzd8 miR-1249 Negative Biliary tract cancer Promoter 118
Fzd9 miR-31 Negative Lung cancer Promoter 119
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Fzd10

Antibodies against Fzd10 displayed suppressive 
effects on the growth of synovial sarcoma cells in vitro 
and in xenografts142,143.

CONCLUSIONS AND PERSPECTIVES

Fzds mediate both canonical Wnt/b-catenin pathway 
and various noncanonical pathways. The Wnt/b-catenin 
pathway has been fully demonstrated to be oncogenic. 
However, in the presence of noncanonical Wnt ligands 
such as Wnt5a/b and Wnt11, Fzd signaling plays a dual 
role in tumors. Generally, noncanonical Wnt pathways 
promote tumor metastasis by inducing EMT, but poten-
tially hinder tumor initiation and growth by antagonizing 
the b-catenin pathway. An apparent explanation for this 
duality is that noncanonical Wnts compete with canonical 
Wnts for Fzds, further preventing b-catenin translocation 
into the nucleus. Study on Fzd6 may provide an alternative 
mechanism that noncanonical Wnt pathways interfere with 
the binding of transcription factor TCF/LEF to promoters 
of target genes. Notably, Yap/Taz and TGF-b, downstream 
signaling of Fzds also has a dual role in human tumors, 
suggesting that in the absence of b-catenin activity, non-
canonical Wnt pathway still can exert tumor-suppressing 
effects by cross-talking with this signaling.

At present, targeting Fzds has proven to be effective on 
cultured tumor cells, tumor cell xenografts, mouse tumor 
models, and PDXs. As chemotherapy increases Wnt path-
way activity, which counteracts the antitumor effect, Fzd-
targeted therapies can enhance the sensitivity of tumor 
cells to chemical agents. Actually, Fzd-targeted therapies 
seem to be effective upon combining with chemotherapy 
in preclinical models. However, the occurrence of fragility 
fractures in patients treated with Fzd-targeted agents such 
as OMP-54F28 and OMP-18R5 limits the development of 
this combination. Given the crucial role of the Wnt path-
way in tissue homeostasis (the intestine, hematopoietic 
system, bone, and so on), adverse effects with regard to 
Fzd-targeted therapies are anticipated. Therefore, to obtain 
clinical efficacy and safety, aside from specific protection 
and prevention such as using vitamin D3 and calcium car-
bonate against fragility fractures, a fine balance is required 
between repressing tumors and maintaining homeostasis. 

Because of the heterogeneity of tumors and the lack 
of specific biomarkers, the Wnt/Fzd expression profile 
should be evaluated in individual tumor. According to the 
expression pattern, one can more precisely determine Fzd-
targeted strategies, thereby improving efficacy. The early 
phase compounds OMP-54F28 and OMP-18R5 block a 
variety of Wnts/Fzds. The excessive blocking may aggra-
vate the side effects, especially in patients with tumors 
overexpressing fewer Fzds. Therefore, therapies targeting 
single Fzd or Fzd subfamily should also be developed.

As noncanonical Fzd signaling has antitumor activity, 
targeting Fzds should be cautious and tumor and patient 
specific. Recently, some novel downstream pathways and 
modification mechanisms of Fzds have been discovered. 
New insights on signaling, modulation mechanisms, and 
roles of Fzds in human tumors undoubtedly will contrib-
ute to identifying more Fzd-related therapeutic targets.
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