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We aimed to investigate the potential mechanisms of progression and identify novel prognosis-related biomark-
ers for papillary renal cell carcinoma (PRCC) patients. The related data were derived from The Cancer Genome 
Atlas (TCGA) and then analyzed by weighted gene coexpression network analysis (WGCNA). The correlation 
between each module and the clinical traits were analyzed by Pearson’s correlation analysis. Pathway analysis 
was conducted to reveal potential mechanisms. Hub genes within each module were screened by intramod-
ule analysis, and visualized by Cytoscape software. Furthermore, important hub genes were validated in an 
external dataset and clinical samples. A total of 5,839 differentially expressed genes were identified. By using 
WGCNA, we identified 21 coregulatory gene clusters based on 289 PRCC samples. We found many modules 
were significantly associated with clinicopathological characteristics. The gray, pink, light yellow, and salmon 
modules served as prognosis indicators for PRCC patients. Pathway enrichment analyses found that the hub 
genes were significantly enriched in the cancer-related pathways. With the external Gene Expression Omnibus 
(GEO) validation dataset, we found that PCDH12, GPR4, and KIF18A in the pink and yellow modules were 
continually associated with the survival status of PRCC, and their expressions were positively correlated with 
pathological grade. Notably, we randomly chose PCDH12 for validation, and the results suggested that the 
PRCC patients with higher pathological grades (II + III) mostly had higher PCDH12 protein expression levels 
compared with those patients in grade I. These validated hub genes play critical roles in the prognosis predic-
tion of PRCC and serve as potential biomarkers for future personalized treatment.

Key words: Papillary renal cell carcinoma (PRCC); Weighted gene coexpression network analysis 
(WGCNA); Hub gene; Prognosis

INTRODUCTION

Renal cell carcinoma (RCC) is regarded as one of the most 
serious human diseases. In the US, there were an estimated 
73,820 (~4.18%) new cancer cases and 14,770 (~2.43%) 
premature deaths in 20191. The disease encompasses sev-
eral major subtypes, including clear cell RCC (ccRCC; 
70%–80%), papillary RCC (PRCC; 10%–15%), chro-
mophobe RCC (chRCC; 3%–5%), and renal oncocytoma 
(RO). Each subtype has different genetic characteristics and 
histological features2–6. PRCC is characterized by the pres-
ence of a fibrous vascular core of tumor cells arranged in a 

papillary pattern7, and there is no specific treatment option 
available for PCRR patients. Few studies investigate the 
underlying mechanisms of PRCC, delaying the develop-
ment of new drugs. Besides, for metastatic PRCC patients, 
they commonly have an unfavorable prognosis, particularly 
compared to patients with ccRCC8. Therefore, it is neces-
sary to identify new molecular markers that can be used to 
predict disease stage and clinical outcome in patients with 
PRCC. This can help understand its pathological mecha-
nisms and provide personalized treatment.

To date, many biomarkers for PRCC have been 
identified, including several markers that can predict 
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treatment outcomes and clinical prognoses, such as VHL, 
VEGF, CAIX, and HIF1α/2α mutations9. The mutation 
rates of these genes are low, and we still lack sufficient 
gene markers to predict prognosis for PRCC patients10. 
The rapid breakthroughs in genome-wide sequencing 
technology provide new ideas for the study of various 
clinical problems and pathological mechanisms related 
to cancer11. The Cancer Genome Atlas (TCGA) can help 
to improve diagnostic methods and ultimately improve 
the survival and prognosis of cancer patients. TCGA has 
generated an extensive collection of clinical informa-
tion and genetic sequencing data that allows the system-
atic analysis of the underlying molecular mechanisms 
involved in the various clinical characteristics associated 
with cancer, such as tumor grade, pathological stage, 
histological type, diagnosis, and prognosis12. Weighted 
gene coexpression network analysis (WGCNA) explores 
the relationship between different genomes and clini-
cal features by constructing a free-scale gene coexpres-
sion network13. The WGCNA algorithm is widely used 
to screen biological processes and therapeutic targets 
related to cancer as well as specific biomarkers associ-
ated with complex diseases14–16. Similarly, WGCNA is 
typically used to identify critical genes that are signifi-
cantly associated with clinical indicators of tumor pro-
gression, including the stage, grade, and metastasis of 
different types of tumors17,18.

In this study, by generating a coexpression network 
analysis, we identified differences in expression between 
different subclassification and functional modules related 
to the prognosis of patients with PRCC. The flowchart of 
our work is illustrated in Figure 1. Additionally, the hub 
gene analysis may have important clinical significance 
and allow us to identify critical genes in each module that 
can be used as prognostic biomarkers or therapeutic tar-
gets for PRCC patients.

MATERIALS AND METHODS

Data Acquirements

All PRCC patients were recruited from the TCGA 
project (https://xenabrowser.net/datapages/?cohort=TCG 
A%20Kidney%20Papillary%20Cell%20Carcinoma 
%20(KIRP)&removeHub=https%3A%2F%2Fxena.
treehouse.gi.ucsc.edu%3A443), which is a cohort study 
of PRCC19. In the current study, a cohort of 289 PRCC 
patients and 32 normal controls with matched mRNA 
expression profiles were used along with their clinical 
data.

Identification of Differentially Expressed Genes (DEGs) 
and Gene Set Enrichment Analysis (GSEA) Analysis

An in-depth analysis of DEGs between 289 tumor 
specimens and 32 normal controls was performed using 
the R package DESeq2 v1.20.020. Significant differentially 

Figure 1.  Flow diagram of strategy for data preparation, processing, analysis, and validation used in this study.
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expressed genes were selected with both padj < 0.05 and 
|log2 (fold change)| ≥ 1. In addition, GSEA analysis was 
conducted based on gseapy v0.9.3, which could also dis-
play the gene distribution differences between the PRCC 
patients and normal controls.

WGCNA and Pathway Enrichment

Gene coexpression network analysis is a systems 
biology method and was performed by the WGCNA 
package21. In the coexpression network, the DEGs are 
represented by nodes, and the connectivity between the 
genes is defined by the correlation of the gene expression 
patterns22. Analysis of the network topology was used 
to determine the soft threshold power. The soft thresh-
old power was used to successively calculate the gene 
coexpression similarity and the adjacency. The adjacency 
was then transformed into a topological overlap matrix 
(TOM). The eigengene is defined using the singular 
value decomposition (SVD) of the module expression 
matrix23,24. X(I)  = (cil

(I)) represents the gene expression 
matrix of the Ith module. The module gene corresponds 
to the indexes i = 1, 2,..., nI, and the ID of microarray 
samples corresponds to the indexes l = 1, 2, ..., m. The 
SVD of X(I) is expressed by the following formula:

	 X(I) = USVT� (1)

The columns of orthogonal matrices U is called a left 
singular vectors, and the columns of orthogonal matrices 
V is called a right singular vectors. S value is only in the 
main diagonal, and we call it as singular values, while 
other elements are all equal to zero.

More precisely, U(I) represents a n(I) × m matrix with 
orthonormal columns; V(I) represents a m × m orthogonal 
matrix, and S(I)  represents the m × m diagonal matrix of 
the singular values {|dl

(I) |}.
The matrices V(I) and S(I) are denoted by

	 V(I) = (v1
(I) v2

(I)…vm
(I)),	

	 S(I) = diag{|d1
(I)|,|d2

(I) |,…,|dm
(I) |}.	 (2)

Assuming that the singular values |dl
(I) | are arranged in 

a nonascending order, we call the first column of V(I) as 
the module eigengene:

	 E(I) = V1
(I)� (3)

Since the direction of each singular vector is undefined, 
we determine the direction of the characteristic gene by 
constraining the direction of each characteristic gene 
to make it positively correlated with the average gene 
expression of each module gene24. Finally, using the TOM 
for hierarchical clustering, the dynamic tree cut algorithm 
was applied to the module screening, and then the gene 
ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analyses were performed 

on the gene module, after which the modules related to 
PRCC were characterized.

Survival Analysis and Hub Gene Validation

We used the “survival”25 and “survminer”26 R pack-
ages to calculate the correlation between each module 
and overall survival (OS) and recurrence-free survival 
(RFS), with a value of p < 0.05 considered as statisti-
cally significant. In addition, the connections between 
the modules and the clinicopathological features were 
determined by Pearson’s correlation analysis, and a value 
of p < 0.05 was treated as statistically significant. The 
gene/eigengene expression differences in different sub-
groups were determined by t-test (two groups) or one-
way analysis of variance (ANOVA) analysis (more than 
two groups). A hub gene is one of a series of genes that 
determine the characteristics of a module, and it has the 
highest degree of connectivity in a gene module. Based 
on their importance, we chose the top 10 hub genes 
within the significant modules and used an additional 
GEO dataset (GSE2748) to validate their usage for the 
prediction of clinical characteristics, such as prognosis 
and tumor grade, and confirmed their role in cellular 
function in vitro and in prognosis prediction by immu-
nohistochemistry (IHC). In addition, the detail steps of 
the IHC were demonstrated in our previously published 
work27. The t-test (unpaired) was used to determine the 
protein expression differences between low- and high-
grade PRCC patients. The PCDH12 antibody (catalog 
# PA5-20703) was purchased from Invitrogen (Carlsbad, 
CA, USA). And the IHC assay was performed on a tis-
sue array containing 37 PRCC cases, which was bought 
from Xi’an AiDi Biotechnology Ltd. Co. (Xi’an, Shanxi 
Province, China). All patients gave written informed con-
sent for the use of the tissue samples for research pur-
poses. For the patients enrolled in the TCGA project, 
they have announced the ethics and policies on their own 
website (https://www.cancer.gov/about-nci/organization/​
ccg/research/structural-genomics/tcga/history/policies). 
The research contents and research programs were 
reviewed and approved by the Ethics Committee of the 
First Affiliated Hospital of Anhui Medical University 
(anyiyifuyuanlunshen-kuai-PJ-2019-09-11).

RESULTS

DEGs Screening and GSEA Analyses

The expression matrices for 289 PRCC samples and 32 
normal controls were obtained from the TCGA database. 
Based on thresholds defined by |log2(fold change)| ≥ 1 and 
a padj < 0.05, 5,839 DEGs were screened in the PRCC and 
normal control groups, of which 2,108 were upregulated 
and 3,371 were downregulated (Fig. 2A and B). Table S1 
contains all the differential genes used in Figure 2B (see 
supplemental Table S1, available at https://pan.baidu.
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com/s/1xRGQBjHNJrQnwpWfrEQUPQ). We performed 
KEGG enrichment for these DEGs and found that these 
genes were enriched mostly within the cytokine–cytokine 
receptor interaction, neuroactive ligand–receptor interac-
tion, and alcoholism pathways (padj < 0.05) (Fig. 2C). 
These DEGs were then selected for subsequent analysis. 
In addition, we also conducted an online GSEA analysis, 
and the results suggested that genes in the apical surface, 
bile acid metabolism, fatty acid metabolism, KRAS sig-
naling, and myogenesis pathways were significantly dif-
ferentially expressed between PRCC cancer patients and 
normal controls (padj < 0.05) (Fig. 2D–H).

Coexpression Network Construction

WGCNA was performed on 5,839 DEGs from 289 
samples (padj < 0.05). The intergene connectivity in the 
gene network attained a scale-free network distribution 
(Fig. 3A). Therefore, we calculated the eigengene for 
entire modules and clustered them based on their cor-
relation to further quantify their coexpression similarity. 
After merging two similar modules, a total of 21 modules 
were obtained (eigengene of the module, height > 0.2) 
(Fig. 3B).

Finding Modules of Clinical Significance 
and Identifying the Hub Genes of Modules

The identification of the gene modules most signifi-
cantly associated with different clinical characteristics 

has important biological implications, and the correla-
tion between each module and the clinical features was 
observed in the module characteristic diagram (Fig. 4A), 
in which the largest correlation coefficient (r2 = 0.5, p = 
2 × 10−18) was observed between the pink module and 
the initial weights of the samples. In addition, we also 
observed that several modules were significantly asso-
ciated with smoking (number of years) (negative: light 
cyan, purple, black, magenta, and light green modules; 
positive: green module) and new tumor events (negative: 
pink, salmon, midnight blue, and yellow modules) (p < 
0.05). It can be inferred that these modules were of clini-
cal significance. Interestingly, we found several modules 
significantly associated gender differences, including the 
tan, royal blue, blue, dark green, pink, gray, midnight blue, 
dark red, yellow, yellow-green, and light green modules 
(p < 0.05). Current work also analyzed the connection 
between sex and module eigengene expression, and the 
results are presented in Figure 4B. We then analyzed the 
correlations between these modules and clinicopathologi-
cal features and found that the pink and yellow modules 
were significantly associated with the PRCC stage (p < 
0.05) (Fig. 4C) and could serve as markers for predicting 
the tumor stage. In addition, we also found that the light 
cyan, light yellow, pink, gray, salmon, dark red, yellow, 
yellow-green, and light green modules were associated 
with new tumor events (p < 0.05) (Fig. 4D), which is 
partly consistent with the module characteristic diagram.

Figure 2.  Differentially expressed genes and pathway enrichment analyses. (A) Principal component analysis (PCA) for the papil-
lary renal cell carcinoma (PRCC) tumor and normal tissues. (B) The differentially expressed genes between PRCC tumor and normal 
tissues (p < 0.05). (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the differentially expressed genes 
(p < 0.05). (D–H) Gene Set Enrichment Analysis (GSEA) analyses between PRCC tumor and normal tissues (p < 0.05).
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Prognostic Analyses and Network Construction

Pathological staging is an important factor that deter-
mines the prognosis of patients with PRCC. The higher 
the pathological staging, the worse the prognosis. The 
molecular biomarkers we screened for their correlation 
with pathological staging are also prognostic genes, in 
theory. In our work, we found that the gray, pink, light 
yellow, yellow, and salmon modules were significantly 
correlated with OS and RFS in PRCC (p < 0.05) (Fig. 5). 
When this was combined with the results shown in 
Figures 4 and 5, we found that the pink and yellow mod-
ules had the highest clinical significance. Therefore, we 
used Cytoscape software to visualize these two modules 
(Fig. 6). Consistent with the hub gene analysis results, we 
found that NOVA2, GPR4, MYCT1, and NOTCH4, which 
were the hub genes in the yellow module, were located at 
the center of the network and were significantly associ-
ated with other genes. Similar results were obtained for 
the pink module.

Pathway Enrichment and Independent Dataset 
Validation

By pathway enrichment analysis, we identified the 
significant KEGG pathways and GO terms that were 
enriched in the significant modules when the Benjamin-
adjusted p value threshold was <0.05. As shown in Figure 
7, for the gray 60 module, the module genes that were 
involved in the systemic lupus erythematosus, maturity 
onset diabetes of the young, alcoholism, chromosome 

maintenance, DNA methylation, signaling by nuclear 
receptors, and epigenetic regulation of gene expression 
event pathways were significantly enriched (padj < 0.05).

In addition, based on the importance of the pink and 
yellow modules, we chose the top 10 genes (p < 0.05, 
excluding those genes that were not associated with OS 
or RFS) and used additional GEO datasets to further 
validate their importance. As shown in Figure 8, we 
found that PCDH12, GPR4, and KIF18A were continu-
ally associated with survival status in PRCC (p < 0.05) 
(Fig. 8A–C). Consistently, we also found that KIF18A, 
GPR4, and PCDH12 were significantly positively associ-
ated with histological classification type 2B (p < 0.05) 
(Fig. 8D), molecular classification class 2 (Fig. 8E), and 
grades 3 and 4 and were more highly expressed in tumor 
node metastasis stages 3 and 4 (p < 0.05) (Fig. 8G) and 
the M1 stage (p < 0.05, KIF18A and GPR4 only) (Fig. 
8H). Based on the importance of these three genes, further 
IHC assay was performed on the PRCC clinical samples 
(Table 1). Moreover, we randomly chose PCDH12 for 
IHC validation, and the results suggested that the PRCC 
patients with higher pathological grades (II + III) mostly 
had high PCDH12 protein expression (p < 0.05), a result 
consistent with our above findings (Fig. 9).

DISCUSSION

It is extremely important to investigate the molecular 
markers used for the diagnosis and treatment of PRCC 
patients. However, there is a lack of sufficient clinical use 

Figure 3.  Visualization of the gene network using a Heatmap plot. (A) The heatmap depicts the topological overlap matrix (TOM) 
showing all genes used in the analysis. The light red color represents a low overlap, and the progressively darker red color represents 
higher overlap. (B) Hierarchical eigengene diagram of all samples.
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for the molecular markers currently associated with his-
tological grade in PRCC. In this study, we used WGCNA 
to investigate PRCC-related coexpression modules and 
their clinical features. Significant modules, including 
the gray, pink, light yellow, yellow, and salmon mod-
ules, were shown to be correlated with OS and RFS in 
PRCC. The gray module was mainly related to pathways 

involved in alcoholism, necroptosis, and DNA complex 
packaging. Previous studies have reported that ethanol, 
which is the main component of alcoholic beverages, 
is metabolized into acetaldehyde, which is classified 
as carcinogenic to humans28. Alcohol consumption has 
now been identified as a risk factor for human cancer, 
but there is still a lack of direct evidence for PRCC. In 

Figure 5.  Survival analyses. (A–E) Correlation between the module eigengene expression and recurrence-free survival of PRCC 
patients. (F–J) Correlation between the module eigengene expression and overall survival of PRCC patients. A value of p < 0.05 was 
regarded as statistically significant.
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addition, recent studies have shown that alcohol increases 
the number of cancer stem cells (CSCs) in cancer, which 
may be the basis of alcohol-induced tumors29–31. In addi-
tion, necroptosis involves the caspase-independent regu-
lation of cell death that is executed by receptor-interacting 

protein 1 (RIP1), receptor-interacting protein 3 (RIP3), and 
mixed lineage kinase domain-like protein (MLKL)32,33. In 
recent years, tumor treatment based on tumor necrosis 
has been considered as a new antitumor treatment  
strategy34,35.

Figure 6.  Network analyses for the hub genes. (A) Network analysis for the hub genes in yellow module. (B) Network analysis for 
the hub genes in the pink module.
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Figure 7.  KEGG analyses for the hub genes. The KEGG analyses for the hub genes in thw gray 60 module. (A) KEGG analysis. 
(B) GO_cellular component analysis. (C) Reactome analysis. A value of p < 0.05 was regarded as statistically significant.
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The pink module was mainly involved in the CDC6 
association with ORC (origin complex), hepatitis C, and 
transcriptional activator activity, and it was observed 
to be negatively associated with age at initial diagnosis 
and new tumor events. Currently, sporadic evidence has 
shown a connection between the CDC6-related pathway 
and PRCC. CDC6 is a regulator of the initiation of DNA 
replication in human cells36,37. CDC6 may act as an ATPase 
switch that binds to Mcm2-7 in CDT1:CDC6:ORC. 

Human CDC6 protein levels decrease early in the G1 
phase but remain unchanged throughout the cell cycle36,38. 
It has been reported that after cells enter the S phase, 
CDC6 is phosphorylated and excluded from the nucleus, 
which allows it to be easily ubiquitinated and degraded. 
Supplementation of CDC6 protein levels during G1 
appears to be regulated by the E2F transcription factors38. 
In addition, the aberrant expression of genes involved in 
the regulation of transcriptional activator activity path-
ways could also influence tumorigenesis.

The yellow module was shown to involve genes 
mainly related to embryonic organ development, epithe-
lial cell proliferation, renal system development, extracel-
lular matrix, transcriptional activator activity, neuroactive 
ligand–receptor interaction, breast cancer, GPCR ligand 
binding, class A/1 signaling (rhodopsin-like receptors), 
and G alpha (q) signaling and was negatively associated 
with new tumor events and positively associated with the 
number of years of smoking. The yellow module-related 
pathways have been frequently reported to be involved in 
the tumor progression process. For example, the G pro-
tein coupled receptor (GPCR) superfamily is at the center 
of many different signaling pathways involved in various 
aspects of human physiology, and they are composed of 
approximately 800 different members39. Although they 
share a common seven-transmembrane (7TM) architec-
ture40, they can recognize a variety of different ligands, 
including small molecules, peptides, lipids, and proteins, 
and may serve as potential therapeutic targets for cancer 
patients41–43.

Although the light yellow module could serve as a pre-
dictor for OS and RFS, the genes in this module may not 
be significantly enriched. Interestingly, the GO-Reactome 
results showed that genes in the light yellow module may 
be enriched in the inactivation, recovery, and regulation 
of the phototransduction cascade and the mine ligand-
binding receptor pathways, and further functional stud-
ies are warranted to determine whether these pathways 

Figure 9.  Immunohistochemistry analysis for the PCDH12 expression in PRCC. A value of p < 0.05 was regarded as statistically 
significant. ***p < 0.001.

Table 1. Clinical Characteristics of 
37 Papillary Renal Cell Carcinoma 
(PRCC) Patients

Characteristic n (%)

Gender
  Male 24 (37.84)
  Female 13 (35.14)
Age (years)
  ≤55 23 (62.16)
  >55 14 (37.84)
Subtype
  I 10 (27.03)
  II 27 (72.97)
Tumor grade
  I 30 (81.08)
  II + III 7 (18.92)
TNM stage
  I + II 32 (86.49)
  III + IV 5 (13.51)
pT stage
  T1 + T2 35 (94.59)
  T3 + T4 2 (5.41)
pN stage
  N0 35 (94.59)
  N1 2 (5.41)
pM stage
  M0 37 (100)
  M1 0 (0)
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could influence PRCC initiation and progression. The 
salmon module was mainly enriched in the olfactory sig-
naling and olfactory transduction pathways. We could 
only weakly connect the olfactory signaling or olfactory 
transduction pathways with cancers. Currently, emerging 
evidence suggests that the regulation of cell–cell recog-
nition, exocytosis, migration, proliferation, apoptotic 
cycles, and pathfinding involve olfactory receptors and 
the related pathways44,45. In addition, there is growing 
evidence that olfactory receptors have great potential as 
diagnostic and therapeutic tools46. We also validated the 
stability of the hub genes using an external GEO dataset 
and found that most of the genes we identified were con-
sistent with our findings. Furthermore, we employed the 
IHC assay and identified that the expression of PCDH12 
was upregulated in PRCC patients with high pathologi-
cal grade (II + III vs. I). However, until now, few studies 
have reported the function of PCDH12 in cancers. Future 
efforts are warranted to explore it.

In summary, using WGCNA and other methods com-
bined with clinical data from PRCC patients to analyze 
the RNA-seq data, a set of biomarkers that can predict 
the prognosis of PRCC patients were identified. These 
results have important clinical implications that will con-
tribute to personalized treatment.
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