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We aimed to investigate the potential mechanisms of progression and identify novel prognosis-related biomark-
ers for papillary renal cell carcinoma (PRCC) patients. The related data were derived from The Cancer Genome
Atlas (TCGA) and then analyzed by weighted gene coexpression network analysis (WGCNA). The correlation
between each module and the clinical traits were analyzed by Pearson’s correlation analysis. Pathway analysis
was conducted to reveal potential mechanisms. Hub genes within each module were screened by intramod-
ule analysis, and visualized by Cytoscape software. Furthermore, important hub genes were validated in an
external dataset and clinical samples. A total of 5,839 differentially expressed genes were identified. By using
WGCNA, we identified 21 coregulatory gene clusters based on 289 PRCC samples. We found many modules
were significantly associated with clinicopathological characteristics. The gray, pink, light yellow, and salmon
modules served as prognosis indicators for PRCC patients. Pathway enrichment analyses found that the hub
genes were significantly enriched in the cancer-related pathways. With the external Gene Expression Omnibus
(GEO) validation dataset, we found that PCDH12, GPR4, and KIF18A in the pink and yellow modules were
continually associated with the survival status of PRCC, and their expressions were positively correlated with
pathological grade. Notably, we randomly chose PCDH12 for validation, and the results suggested that the
PRCC patients with higher pathological grades (11 + 111) mostly had higher PCDH12 protein expression levels
compared with those patients in grade . These validated hub genes play critical roles in the prognosis predic-
tion of PRCC and serve as potential biomarkers for future personalized treatment.
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INTRODUCTION

Renal cell carcinoma (RCC) isregarded as one of the most
serious human diseases. In the US, there were an estimated
73,820 (~4.18%) new cancer cases and 14,770 (~2.43%)
premature deaths in 2019". The disease encompasses sev-
eral major subtypes, including clear cell RCC (ccRCC;
70%-80%), papillary RCC (PRCC; 10%-15%), chro-
mophobe RCC (chRCC; 3%-5%), and renal oncocytoma
(RO). Each subtype has different genetic characteristics and
histological features®®. PRCC is characterized by the pres-
ence of a fibrous vascular core of tumor cells arranged in a

papillary pattern’, and there is no specific treatment option
available for PCRR patients. Few studies investigate the
underlying mechanisms of PRCC, delaying the develop-
ment of new drugs. Besides, for metastatic PRCC patients,
they commonly have an unfavorable prognosis, particularly
compared to patients with ccRCC®. Therefore, it is neces-
sary to identify new molecular markers that can be used to
predict disease stage and clinical outcome in patients with
PRCC. This can help understand its pathological mecha-
nisms and provide personalized treatment.

To date, many biomarkers for PRCC have been
identified, including several markers that can predict
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treatment outcomes and clinical prognoses, such as VHL,
VEGF, CAIX, and HIF1o/2¢c mutations®. The mutation
rates of these genes are low, and we still lack sufficient
gene markers to predict prognosis for PRCC patients'.
The rapid breakthroughs in genome-wide sequencing
technology provide new ideas for the study of various
clinical problems and pathological mechanisms related
to cancer™. The Cancer Genome Atlas (TCGA) can help
to improve diagnostic methods and ultimately improve
the survival and prognosis of cancer patients. TCGA has
generated an extensive collection of clinical informa-
tion and genetic sequencing data that allows the system-
atic analysis of the underlying molecular mechanisms
involved in the various clinical characteristics associated
with cancer, such as tumor grade, pathological stage,
histological type, diagnosis, and prognosis*. Weighted
gene coexpression network analysis (WGCNA) explores
the relationship between different genomes and clini-
cal features by constructing a free-scale gene coexpres-
sion network™. The WGCNA algorithm is widely used
to screen biological processes and therapeutic targets
related to cancer as well as specific biomarkers associ-
ated with complex diseases™ ™. Similarly, WGCNA is
typically used to identify critical genes that are signifi-
cantly associated with clinical indicators of tumor pro-
gression, including the stage, grade, and metastasis of
different types of tumors®*®,
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In this study, by generating a coexpression network
analysis, we identified differences in expression between
different subclassification and functional modules related
to the prognosis of patients with PRCC. The flowchart of
our work is illustrated in Figure 1. Additionally, the hub
gene analysis may have important clinical significance
and allow us to identify critical genes in each module that
can be used as prognostic biomarkers or therapeutic tar-
gets for PRCC patients.

MATERIALSAND METHODS
Data Acquirements

All PRCC patients were recruited from the TCGA
project (https://xenabrowser.net/datapages/?cohort=TCG
A%20Kidney%20Papillary%20Cell%20Carcinoma
%20(KIRP)&removeHub=https%3A%2F%2Fxena.
treehouse.gi.ucsc.edu%3A443), which is a cohort study
of PRCC™. In the current study, a cohort of 289 PRCC
patients and 32 normal controls with matched mRNA
expression profiles were used along with their clinical
data.

Identification of Differentially Expressed Genes (DEGS)
and Gene Set Enrichment Analysis (GSEA) Analysis

An in-depth analysis of DEGs between 289 tumor
specimens and 32 normal controls was performed using
the R package DESeq2 v1.20.0%. Significant differentially

Figure 1. Flow diagram of strategy for data preparation, processing, analysis, and validation used in this study.
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expressed genes were selected with both p,; < 0.05 and
[log, (fold change)| = 1. In addition, GSEA analysis was
conducted based on gseapy v0.9.3, which could also dis-
play the gene distribution differences between the PRCC
patients and normal controls.

WGCNA and Pathway Enrichment

Gene coexpression network analysis is a systems
biology method and was performed by the WGCNA
package®. In the coexpression network, the DEGs are
represented by nodes, and the connectivity between the
genes is defined by the correlation of the gene expression
patterns®. Analysis of the network topology was used
to determine the soft threshold power. The soft thresh-
old power was used to successively calculate the gene
coexpression similarity and the adjacency. The adjacency
was then transformed into a topological overlap matrix
(TOM). The eigengene is defined using the singular
value decomposition (SVD) of the module expression
matrix®*, X = (y,") represents the gene expression
matrix of the Ith module. The module gene corresponds
to the indexes i = 1, 2,..., n, and the ID of microarray
samples corresponds to the indexes | = 1, 2, ..., m. The
SVD of X" is expressed by the following formula:

XV =usv’ 1)

The columns of orthogonal matrices U is called a left
singular vectors, and the columns of orthogonal matrices
V is called a right singular vectors. Svalue is only in the
main diagonal, and we call it as singular values, while
other elements are all equal to zero.

More precisely, U" represents a n®’ x m matrix with
orthonormal columns; V" represents a m x m orthogonal
matrix, and S represents the m x m diagonal matrix of
the singular values {|d“[}.

The matrices V® and S" are denoted by

VO = (v,O0v,0 v, ),
s = diag{|d1(l)|,|d2(l) |"“’|dm(l) |} (2)

Assuming that the singular values |d,”’| are arranged in
a nonascending order, we call the first column of V® as
the module eigengene:

E® = Vl(l) (3)

Since the direction of each singular vector is undefined,
we determine the direction of the characteristic gene by
constraining the direction of each characteristic gene
to make it positively correlated with the average gene
expression of each module gene®. Finally, using the TOM
for hierarchical clustering, the dynamic tree cut algorithm
was applied to the module screening, and then the gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses were performed
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on the gene module, after which the modules related to
PRCC were characterized.

Survival Analysis and Hub Gene Validation

We used the “survival”® and “survminer”® R pack-
ages to calculate the correlation between each module
and overall survival (OS) and recurrence-free survival
(RFS), with a value of p < 0.05 considered as statisti-
cally significant. In addition, the connections between
the modules and the clinicopathological features were
determined by Pearson’s correlation analysis, and a value
of p < 0.05 was treated as statistically significant. The
gene/eigengene expression differences in different sub-
groups were determined by t-test (two groups) or one-
way analysis of variance (ANOVA) analysis (more than
two groups). A hub gene is one of a series of genes that
determine the characteristics of a module, and it has the
highest degree of connectivity in a gene module. Based
on their importance, we chose the top 10 hub genes
within the significant modules and used an additional
GEO dataset (GSE2748) to validate their usage for the
prediction of clinical characteristics, such as prognosis
and tumor grade, and confirmed their role in cellular
function in vitro and in prognosis prediction by immu-
nohistochemistry (IHC). In addition, the detail steps of
the IHC were demonstrated in our previously published
work®. The t-test (unpaired) was used to determine the
protein expression differences between low- and high-
grade PRCC patients. The PCDH12 antibody (catalog
# PA5-20703) was purchased from Invitrogen (Carlsbad,
CA, USA). And the IHC assay was performed on a tis-
sue array containing 37 PRCC cases, which was bought
from Xi’an AiDi Biotechnology Ltd. Co. (Xi’an, Shanxi
Province, China). All patients gave written informed con-
sent for the use of the tissue samples for research pur-
poses. For the patients enrolled in the TCGA project,
they have announced the ethics and policies on their own
website (https://www.cancer.gov/about-nci/organization/
ccg/research/structural-genomics/tcga/history/policies).
The research contents and research programs were
reviewed and approved by the Ethics Committee of the
First Affiliated Hospital of Anhui Medical University
(anyiyifuyuanlunshen-kuai-PJ-2019-09-11).

RESULTS
DEGs Screening and GSEA Analyses

The expression matrices for 289 PRCC samples and 32
normal controls were obtained from the TCGA database.
Based on thresholds defined by |log,(fold change)| = 1 and
ap,y; < 0.05, 5,839 DEGs were screened in the PRCC and
normal control groups, of which 2,108 were upregulated
and 3,371 were downregulated (Fig. 2A and B). Table S1
contains all the differential genes used in Figure 2B (see
supplemental Table S1, available at https://pan.baidu.
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Figure 2. Differentially expressed genes and pathway enrichment analyses. (A) Principal component analysis (PCA) for the papil-
lary renal cell carcinoma (PRCC) tumor and normal tissues. (B) The differentially expressed genes between PRCC tumor and normal
tissues (p < 0.05). (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment of the differentially expressed genes
(p < 0.05). (D-H) Gene Set Enrichment Analysis (GSEA) analyses between PRCC tumor and normal tissues (p < 0.05).

com/s/IXRGQBjHNJIrQnwpWTrEQUPQ). We performed
KEGG enrichment for these DEGs and found that these
genes were enriched mostly within the cytokine—cytokine
receptor interaction, neuroactive ligand-receptor interac-
tion, and alcoholism pathways (p,,; < 0.05) (Fig. 2C).
These DEGs were then selected for subsequent analysis.
In addition, we also conducted an online GSEA analysis,
and the results suggested that genes in the apical surface,
bile acid metabolism, fatty acid metabolism, KRAS sig-
naling, and myogenesis pathways were significantly dif-
ferentially expressed between PRCC cancer patients and
normal controls (p,g; < 0.05) (Fig. 2D-H).

Coexpression Network Construction

WGCNA was performed on 5,839 DEGs from 289
samples (p,; < 0.05). The intergene connectivity in the
gene network attained a scale-free network distribution
(Fig. 3A). Therefore, we calculated the eigengene for
entire modules and clustered them based on their cor-
relation to further quantify their coexpression similarity.
After merging two similar modules, a total of 21 modules
were obtained (eigengene of the module, height > 0.2)
(Fig. 3B).

Finding Modules of Clinical Sgnificance
and I dentifying the Hub Genes of Modules

The identification of the gene modules most signifi-
cantly associated with different clinical characteristics

has important biological implications, and the correla-
tion between each module and the clinical features was
observed in the module characteristic diagram (Fig. 4A),
in which the largest correlation coefficient (r> = 0.5, p =
2 x 107*®) was observed between the pink module and
the initial weights of the samples. In addition, we also
observed that several modules were significantly asso-
ciated with smoking (number of years) (negative: light
cyan, purple, black, magenta, and light green modules;
positive: green module) and new tumor events (negative:
pink, salmon, midnight blue, and yellow modules) (p <
0.05). It can be inferred that these modules were of clini-
cal significance. Interestingly, we found several modules
significantly associated gender differences, including the
tan, royal blue, blue, dark green, pink, gray, midnight blue,
dark red, yellow, yellow-green, and light green modules
(p < 0.05). Current work also analyzed the connection
between sex and module eigengene expression, and the
results are presented in Figure 4B. We then analyzed the
correlations between these modules and clinicopathologi-
cal features and found that the pink and yellow modules
were significantly associated with the PRCC stage (p <
0.05) (Fig. 4C) and could serve as markers for predicting
the tumor stage. In addition, we also found that the light
cyan, light yellow, pink, gray, salmon, dark red, yellow,
yellow-green, and light green modules were associated
with new tumor events (p < 0.05) (Fig. 4D), which is
partly consistent with the module characteristic diagram.
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Figure 3. Visualization of the gene network using a Heatmap plot. (A) The heatmap depicts the topological overlap matrix (TOM)
showing all genes used in the analysis. The light red color represents a low overlap, and the progressively darker red color represents

higher overlap. (B) Hierarchical eigengene diagram of all samples.

Prognostic Analyses and Network Construction

Pathological staging is an important factor that deter-
mines the prognosis of patients with PRCC. The higher
the pathological staging, the worse the prognosis. The
molecular biomarkers we screened for their correlation
with pathological staging are also prognostic genes, in
theory. In our work, we found that the gray, pink, light
yellow, yellow, and salmon modules were significantly
correlated with OS and RFS in PRCC (p < 0.05) (Fig. 5).
When this was combined with the results shown in
Figures 4 and 5, we found that the pink and yellow mod-
ules had the highest clinical significance. Therefore, we
used Cytoscape software to visualize these two modules
(Fig. 6). Consistent with the hub gene analysis results, we
found that NOVA2, GPR4, MYCTL, and NOTCH4, which
were the hub genes in the yellow module, were located at
the center of the network and were significantly associ-
ated with other genes. Similar results were obtained for
the pink module.

Pathway Enrichment and Independent Dataset
Validation

By pathway enrichment analysis, we identified the
significant KEGG pathways and GO terms that were
enriched in the significant modules when the Benjamin-
adjusted p value threshold was <0.05. As shown in Figure
7, for the gray 60 module, the module genes that were
involved in the systemic lupus erythematosus, maturity
onset diabetes of the young, alcoholism, chromosome

maintenance, DNA methylation, signaling by nuclear
receptors, and epigenetic regulation of gene expression
event pathways were significantly enriched (p,y; < 0.05).

In addition, based on the importance of the pink and
yellow modules, we chose the top 10 genes (p < 0.05,
excluding those genes that were not associated with OS
or RFS) and used additional GEO datasets to further
validate their importance. As shown in Figure 8, we
found that PCDH12, GPR4, and KIF18A were continu-
ally associated with survival status in PRCC (p < 0.05)
(Fig. 8A-C). Consistently, we also found that KIF18A,
GPR4, and PCDH12 were significantly positively associ-
ated with histological classification type 2B (p < 0.05)
(Fig. 8D), molecular classification class 2 (Fig. 8E), and
grades 3 and 4 and were more highly expressed in tumor
node metastasis stages 3 and 4 (p < 0.05) (Fig. 8G) and
the M1 stage (p < 0.05, KIF18A and GPR4 only) (Fig.
8H). Based on the importance of these three genes, further
IHC assay was performed on the PRCC clinical samples
(Table 1). Moreover, we randomly chose PCDH12 for
IHC validation, and the results suggested that the PRCC
patients with higher pathological grades (1l + 1) mostly
had high PCDH12 protein expression (p < 0.05), a result
consistent with our above findings (Fig. 9).

DISCUSSION

It is extremely important to investigate the molecular
markers used for the diagnosis and treatment of PRCC
patients. However, there is a lack of sufficient clinical use
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Figure 5. Survival analyses. (A-E) Correlation between the module eigengene expression and recurrence-free survival of PRCC
patients. (F-J) Correlation between the module eigengene expression and overall survival of PRCC patients. A value of p < 0.05 was

regarded as statistically significant.

for the molecular markers currently associated with his-
tological grade in PRCC. In this study, we used WGCNA
to investigate PRCC-related coexpression modules and
their clinical features. Significant modules, including
the gray, pink, light yellow, yellow, and salmon mod-
ules, were shown to be correlated with OS and RFS in
PRCC. The gray module was mainly related to pathways

involved in alcoholism, necroptosis, and DNA complex
packaging. Previous studies have reported that ethanol,
which is the main component of alcoholic beverages,
is metabolized into acetaldehyde, which is classified
as carcinogenic to humans®. Alcohol consumption has
now been identified as a risk factor for human cancer,
but there is still a lack of direct evidence for PRCC. In



292

FENG ET AL.

A UngBoroz @
sGUBEs
F. E
1SM1-AS1 AURAZS Re11£08122.1 ' @
: APBO8D2 6
| @® CTD-.M3 c1iiyr pe
KB-1517D11.4 0. Ces
KCNS2 C-.3 P
' 82 o
G"‘ RF'11°B15.2 HigfEhs1
A e 0.9067
2 _—
<RI p11404P21 5 riBE-4p 87
1540 ® 0
433
ACC@“ RP114thz11 T2 02133
B RP11-884D14.2
RP11-854014.4
€22
HOXC13-AS SPATAB1C2
@ p .“ LRRES7ATP
Hofg 13
EF.SL TERgO RP11415H19.2
& Aco1§840.16 ® . SEMG2
RP11818G21.4
LINC00200
cTo-g8loF5 4 HP&‘I?I@( KB sz
rRe11-g88a123 FaniBsce K@‘l R 11480 1
RP11@F151 RP4.668)24 2
Rel 188124 @\:1 cadrar
MN .qcn.us.a
caﬂf ; -
s o, RP”mKMmemss
; . RP11£58N23.1
0.8555
F@Rn G°? ‘f{F!11-5.16 A3
RP114§8pL12 2 R 11485 12.1 @
SeNNIG “J uasuzaa
CTC-391G2.1 - angqamn NCAPB2PY cASB1e
Gl LN TEAASt °F12I2RP3-.<23.2 0
4 RP11-881G18.1 &
| ; FAMATREP
SLETAT4 L SLC14A2-AS1 et vz oAz
_ ' @ TMEB)sA
e ! -0.8555

Figure 6. Network analyses for the hub genes. (A) Network analysis for the hub genes in yellow module. (B) Network analysis for

the hub genes in the pink module.

addition, recent studies have shown that alcohol increases
the number of cancer stem cells (CSCs) in cancer, which
may be the basis of alcohol-induced tumors®™, In addi-
tion, necroptosis involves the caspase-independent regu-
lation of cell death that is executed by receptor-interacting

protein 1 (RIP1), receptor-interacting protein 3 (RIP3),and
mixed lineage kinase domain-like protein (MLKL)*®*, In
recent years, tumor treatment based on tumor necrosis
has been considered as a new antitumor treatment
strategy®®.
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Figure 7. KEGG analyses for the hub genes. The KEGG analyses for the hub genes in thw gray 60 module. (A) KEGG analysis.

(B) GO_cellular component analysis. (C) Reactome analysis. A value of p < 0.05 was regarded as statistically significant.
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Tablel. Clinical Characteristics of
37 Papillary Renal Cell Carcinoma
(PRCC) Patients

Characteristic n (%)
Gender

Male 24 (37.84)

Female 13 (35.14)
Age (years)

<55 23 (62.16)

>55 14 (37.84)
Subtype

| 10 (27.03)

Il 27 (72.97)
Tumor grade

| 30 (81.08)

I+ 11 7(18.92)
TNM stage

1+ 32 (86.49)

1+ 1v 5(13.51)
pT stage

T1+T2 35 (94.59)

T3+T4 2(5.41)
pN stage

NO 35 (94.59)

N1 2(5.41)
pM stage

MO 37 (100)

M1 0(0)

The pink module was mainly involved in the CDC6
association with ORC (origin complex), hepatitis C, and
transcriptional activator activity, and it was observed
to be negatively associated with age at initial diagnosis
and new tumor events. Currently, sporadic evidence has
shown a connection between the CDC6-related pathway
and PRCC. CDCE6 is a regulator of the initiation of DNA
replication in human cells*®*. CDC6 may act as an ATPase
switch that binds to Mcm2-7 in CDT1:CDC6:0RC.

100 x
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Human CDC6 protein levels decrease early in the G,
phase but remain unchanged throughout the cell cycle®*®,
It has been reported that after cells enter the S phase,
CDCE6 is phosphorylated and excluded from the nucleus,
which allows it to be easily ubiquitinated and degraded.
Supplementation of CDC6 protein levels during G,
appears to be regulated by the E2F transcription factors®.
In addition, the aberrant expression of genes involved in
the regulation of transcriptional activator activity path-
ways could also influence tumorigenesis.

The yellow module was shown to involve genes
mainly related to embryonic organ development, epithe-
lial cell proliferation, renal system development, extracel-
lular matrix, transcriptional activator activity, neuroactive
ligand—receptor interaction, breast cancer, GPCR ligand
binding, class A/1 signaling (rhodopsin-like receptors),
and G alpha (q) signaling and was negatively associated
with new tumor events and positively associated with the
number of years of smoking. The yellow module-related
pathways have been frequently reported to be involved in
the tumor progression process. For example, the G pro-
tein coupled receptor (GPCR) superfamily is at the center
of many different signaling pathways involved in various
aspects of human physiology, and they are composed of
approximately 800 different members®. Although they
share a common seven-transmembrane (7TM) architec-
ture®, they can recognize a variety of different ligands,
including small molecules, peptides, lipids, and proteins,
and may serve as potential therapeutic targets for cancer
patients* .

Although the light yellow module could serve as a pre-
dictor for OS and RFS, the genes in this module may not
be significantly enriched. Interestingly, the GO-Reactome
results showed that genes in the light yellow module may
be enriched in the inactivation, recovery, and regulation
of the phototransduction cascade and the mine ligand-
binding receptor pathways, and further functional stud-
ies are warranted to determine whether these pathways

200 x
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Figure 9. Immunohistochemistry analysis for the PCDH12 expression in PRCC. A value of p < 0.05 was regarded as statistically

significant. ***p < 0.001.
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could influence PRCC initiation and progression. The
salmon module was mainly enriched in the olfactory sig-
naling and olfactory transduction pathways. We could
only weakly connect the olfactory signaling or olfactory
transduction pathways with cancers. Currently, emerging
evidence suggests that the regulation of cell-cell recog-
nition, exocytosis, migration, proliferation, apoptotic
cycles, and pathfinding involve olfactory receptors and
the related pathways™*. In addition, there is growing
evidence that olfactory receptors have great potential as
diagnostic and therapeutic tools*. We also validated the
stability of the hub genes using an external GEO dataset
and found that most of the genes we identified were con-
sistent with our findings. Furthermore, we employed the
IHC assay and identified that the expression of PCDH12
was upregulated in PRCC patients with high pathologi-
cal grade (11 + 111 vs. I). However, until now, few studies
have reported the function of PCDH12 in cancers. Future
efforts are warranted to explore it.

In summary, using WGCNA and other methods com-
bined with clinical data from PRCC patients to analyze
the RNA-seq data, a set of biomarkers that can predict
the prognosis of PRCC patients were identified. These
results have important clinical implications that will con-
tribute to personalized treatment.
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