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ABSTRACT

Cemented paste backfill (CPB) is a sustainable mining technology that is widely used in mines and helps to improve
the mine environment. To investigate the relationship between aggregate grading and different affecting factors and
the uniaxial compressive strength (UCS) of the cemented paste backfill (CPB), Talbol gradation theory and neural
networks is used to evaluate aggregate gradation to determine the optimum aggregate ratio. The mixed aggregate ratio
with the least amount of cement (waste stone content river sand content = 7:3) is obtained by using Talbol grading
theory and pile compactness function and combined with experiments. In addition, the response surface method is
used to design strength-specific ratio experiments. The UCS prediction model which uses the LSTM and considers
the aggregates gradation have high accuracy. The root mean square error (RMSE) of the prediction results is 0.0914,
the coefficient of determination (R2) is 0.9973 and the variance account for (VAF) is 99.73. Compared with back
propagation neural network (BP-ANN), extreme learning machine (ELM) and radial basis function neural network
(RBF-ANN), LSTM can effectively characterize the nonlinear relationship between UCS and individual affecting
factors and predict UCS with high accuracy. The sensitivity analysis of different affecting factors on UCS shows that
all 4 factors have significant effect on UCS and sensitivity is in the following ranking: cement content (0.9264) > slurry
concentration (0.9179) > aggregate gradation (waste rock content) (0.9031) > curing time (0.9031).
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LSTM Long short-term memory neural network
BP-ANN Back propagation neural network
ELM Extreme learning machine
RBF-ANN Radial basis function neural network
R2 Coefficient of determination
RMSE Root mean square error
VAF Variance account for

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

DOI: 10.32604/jrm.2022.021845

ARTICLE

echT PressScience

mailto:cai1youxiang@163.com
http://dx.doi.org/10.32604/jrm.2022.021845


1 Introduction

As Chinese mines move towards safety, green and environmental protection, fill mining, a mining
method that can effectively control ground pressure and reduce environmental pollution, has become the
preferred solution for major Chinese mines [1]. Cemented paste backfill (CPB) is one of the more widely
used methods of fill mining [2]. CPB is a composite material made of cement, aggregate mixed with
water, which provides a stable bearing capacity for the underground mined-our area, and the level of this
bearing capacity is determined by the mechanical properties of the CPB [3]. The use of CPB not only
makes it possible to effectively utilize solid wastes such as tailings and waste rock generated during mine
production, but also makes clean production in mines possible. In a word, CPB has become the core
technology for the pursuit of sustainable development and the construction of green mines in the mining
industry. Related studies shows that the uniaxial compressive strength (UCS) of the CPB, as its core
mechanical property, is not only affected by various factors such as slurry concentration, cement content
and curing time, but also related to the aggregate gradation [4–7]. Packing density is the volume of solid
particles per unit volume and is an important property used to describe aggregate gradation [8,9]. It not
only reflects the caulking effect of the aggregate comprehensively, but also is an important characteristic
parameter of the aggregate bulk system [10]. Since the volume of aggregate in the filling slurry generally
accounts for more than 2/3 of the filling volume, the aggregate gradation becomes an important factor
affecting the UCS [11–13].

In recent years, many scholars have done a lot of research on the aggregates gradation in CPB and the
factors influencing the UCS. Firstly, the increase of stacking density will make the caulking effect between
the aggregates more significant, and then make the aggregates in a tightly embedded locking state [14,15].
Secondly, the packing density is closely related to the gradation index, which shows a trend of increasing and
then decreasing with the increase of gradation index [16,17]. Thirdly, through the mixed aggregate ratio test,
it is found that when the waste rock content and tailings content is 7:3, the aggregate packing density [18–
20]. In addition, UCS is also related to factors such as water-cement ratio, cohesion and curing temperature
[21,22]. Moreover, the research of cementitious materials for infill mining is also an important research
direction at present [23,24]. The above studies have fully demonstrated the correlation between UCS and
many factors including aggregate grading, but the problem is that many studies only consider the effect
of a single factor on UCS and the experimental volume is large and cumbersome. Therefore, it is of
practical significance to construct an UCS prediction model of the CPB with the influencing factors such
as aggregate gradation as input variables to reduce the test cost and guide the CPB scheme according to
the engineering practice.

With the development of artificial intelligence, many scholars start to use machine learning to study
optimization and prediction problems in engineering. Support vector machines (SVM), decision trees
(DT) and regression analysis are used in research work in the fields of mechanics, environment and
energy and have yielded excellent results [25–28]. In the field of fill mining, back propagation neural
network (BP-ANN) has been widely used in recent years for UCS prediction and slurry ratio optimization
due to their strong fitting ability [29–31]. However, the selection of initial weights and thresholds of the
BP neural network have a significant effect on the prediction results. To overcome above problem,
various swarm intelligence optimization algorithms are used to optimize the initial weights and thresholds
of BP neural network. The use of particle swarm optimization (PSO) and genetic algorithm (GA)
combined with BP neural network can achieve the prediction of the strength of downhole wet shotcrete
and the intelligent selection of the proportion [32–36]. Although the above studies improve the prediction
accuracy, the limitation is that the slow convergence rate and the tendency to overfit due to the error back
propagation algorithm of BP neural network are not addressed. In addition, BP neural network requires
high typicality of training samples, but it is difficult to obtain typical samples from practical engineering

3540 JRM, 2022, vol.10, no.12



[37–41]. In summary, BP neural network is widely used in the practice of fill mining engineering but the
disadvantages still exist.

Long short-term memory neural network (LSTM), as a new neural network model with excellent
generalization ability and robustness, is currently less used in the field of fill mining. In this paper, a
nickel mine in northwest China is used as the engineering background to explore the mixed aggregate
gradation of waste rock and river sand, with slurry concentration, waste rock content and cement content
as input variables and the UCS of CPB as output variable, and a long and short-term memory neural
network as the framework for modeling. Finally, a high accuracy UCS prediction model with aggregate
gradation characteristics is constructed. The study is not only important for understand the effects of other
variables on the UCS of the CPB but also is a guidance to improve the CPB technology and construct the
green mine to achieve sustainable development of mines.

2 Materials

2.1 Waste Rock
The waste rock is obtained from the underground roadway development and production of a nickel mine

in Northwest China. The waste rock is pre-treated with a jaw crusher to obtain waste rock crushing
aggregates with a maximum particle size of 12 mm. At this time, the waste rock aggregate meets the
requirements of filling slurry using pipeline transportation and can be used as coarse aggregate. The
physical parameters of the waste rock are shown in Table 1.

From Talbol gradation theory [42–44], it is known that the proportion of the total content of a sample
with particle size less than or equal to satisfies the following equation:

P ¼ 100
x

D

� �n
(1)

In Eq. (1), P is the percent passage of the target aggregate particle size x (%); D is the maximum particle
size (mm); and n is the Talbol gradation index. Talbol gradation index (n) is a scalar to describe the particle
size of the material and the ideal value of n is 0.5. If n > 0.5, the coarse aggregate content is high; if n < 0.5,
the coarse aggregate content is high.

The mathematical fitting of the particle size distribution of the crushed waste rock using an exponential-
like function is shown in Fig. 1. The fitted Talbol gradation index is n = 0.63798, which is larger than the
ideal gradation index of 0.5 [45–47]. This indicates that the waste rock has a high percentage of coarse
aggregate, so fine aggregates need to be added to improve the gradation for preventing layered
segregation under high water-cement ratio.

2.2 River Sand
River sand comes from the river near the nickel mine, its chemical composition is mainly SiO2, which is

an inert material with a maximum particle size of 0.95 mm, and can be used as fine aggregate for CPB. The
physical parameters are shown in Table 1 and the chemical composition is shown in Table 2. The size
distribution of river sand is mathematically fitted using an exponential-like function and the results are

Table 1: Physical parameters of aggregates

Aggregates Density/(t⋅m−3) Loose bulk
density/(t⋅m−3)

Water
content/%

Porosity
factor/%

Packing
density/%

Waste rock
River sand

2.711
2.552

1.543
1.337

0.316
0.221

37.461
48.871

62.726
52.148
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shown in Fig. 2. As can be seen from the Fig. 2, the fitted Talbol gradation index is n = 0.38167, which is
within the reasonable range of the filling aggregate gradation index, but still less than the ideal gradation
index of 0.5. This indicates that the fine particle size content is higher in the river sand, and coarse
aggregates need to be added to improve the gradation to generate a skeletal structure to ensure the
formation of the UCS [48].
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Figure 1: Particle size composition of waste rock

Table 2: Chemical composition content of river sand

Chemical composition SiO2 CaO MgO Others

Content (%) 87.83 2.31 1.04 8.82
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Figure 2: Particle size composition of river sands
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3 Experiments

3.1 Aggregate Packing Density Experiment
According to the analysis in Section 1, both waste rock and river sand cannot be used as CPB aggregate

alone. The two aggregates need to be mixed to improve the gradation and thus increase the packing density to
reduce the cement consumption. Therefore, before conducting the filling slurry proportioning experiments, it
is necessary to conduct the packing density experiments of both aggregates to determine the mixing ratio of
waste rock and river sand.

In order to maximize the UCS of CPB under the condition of same slurry concentration and cement
content, waste rock and river sand are mixed in different ratios (1:9–9:1). After measuring the density of
mixed aggregates and loose density, the packing density of the mixture can be calculated by substituting
the following equation:

f ¼ g

r
(2)

In Eq. (2), f is the packing density of mixed aggregates. The theoretical packing density is calculated
separately according to the packing density function of mixed aggregate in Eq. (3) for different aggregate
ratios and the actual value is compared with the theoretical value. The final results are shown in Fig. 3.

f ¼
1

r

x

r1
þ 1� x

r2f2

� ��1

; x � r1f1

r

1

r

x

r1ðfþ 1� rx=r1Þ
þ 1� x

r2f2

� ��1

; x.
r1f1

r

8>>><
>>>:

(3)

From Fig. 3, it can be seen that the packing density and the proportion of waste rock (x) in the mixture
show a simultaneous increasing trend and the actual value is basically the same as the theoretical value when
x < 0.5. In this case, the waste rock as coarse aggregate can form a skeleton structure and the river sand as fine
aggregate can be used to fill the gap between aggregates. When x = 0.7, the actual and theoretical values of
packing density both reach the maximum. This indicates that the river sand just fills gaps in the skeleton
formed by the waste rock. When x > 0.7, the packing density decreases and the error between the actual
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Figure 3: Packing density of aggregate at different waste rock contents
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value and the theoretical value increases significantly. This indicates that when the coarse aggregate
gradually increases, the fine aggregate cannot effectively fill the gaps between coarse aggregates due to
its low content. At this point the coarse aggregate particles in the mix produce a wall effect causing the
fine aggregate to fail to fill the gap ideally, ultimately leading to this trend and error.

According to the above analysis, it can be seen that when x < 0.7, the packing density of mixed
aggregates is in the strength growth period. When x = 0.7, the packing density of mixed aggregates is
maximum. When x > 0.7, the packing density of mixed aggregates is in the strength decline period.
Therefore, three options of 5:5, 6:4 and 7:3 ratio of waste rock to river sand were selected for filling
slurry proportional experiments.

3.2 Filling Slurry Proportioning and UCS Experiment
Response surface methodology (RSM) is a method to optimize the experimental results by using a

reasonable experimental design, which can reduce experiment volume and improve efficiency and
accuracy of experiments [49–51]. In this paper, the Box-Behnken (BBD) design in RSM is used to
perform the experimental design and response surface calculation. The three affecting factors of slurry
concentration (X1), waste rock content (X2) and cement content (X3) are defined as independent
variables, and the UCS of the CPB at 3 d, 7 d and 28 d are defined as response values. The waste rock
content is set to 50%, 60% and 70% according to the study in Section 2.1. The slurry concentration and
cement content are set at 78%, 80%, 82% and 240, 260, 280 kg⋅m−3, respectively. Then, the prepared
slurry is poured into a standard triplex specimen mold of size 70.7 cm × 70.7 cm × 70.7 cm and cured for
24 h at room temperature. Finally, the cured specimens are demolded and placed in a curing phase at a
curing temperature of 20°C and a relative humidity of 95% for curing. Both experimental designs are
derived from previous research results and the UCS and the flowability of slurry meet the engineering
requirements [52–54]. The RSM-BBD experimental factors and levels are shown in Table 3 and the
experimental flow is shown in Fig. 4. The experimental results are shown in Table 4.

4 Methodology and Modeling

4.1 Long Short-Term Memory Neural Network
The long short-term memory neural network (LSTM) is a modified recurrent neural network (RNN)

proposed by Hochreiter and Schmidhuber in 1997 [55,56]. Compared with the traditional neural network,
LSTM adds the memory cell ct with gating mechanism as the core for storing the past data information
[56]. This optimization solves the problem of gradient disappearance during back propagation so that the
final output significantly reduces the possibility of overfitting. The gating mechanism of each cyclic unit
in the LSTM network consists of 3 parts: input gate, output gate and forget gate. Input gate is used to
control data input, output gate is used to control data output and forget gate is used to control the filtering
of historical data information from memory cell [57]. The recurrent cell structure of the LSTM network is
shown in Fig. 5. Due to the limited space, the relevant mathematical derivation equations of LSTM are
not described. Interested readers can read the above references [55–57] for detailed steps.

Table 3: RSM-BBD experimental factors and levels

Factors Levels

−1 0 1

Slurry concentration (X1/%) 78 80 82

Waste rock content (X2/%) 50 60 70

Cement content (X3/kg⋅m−3) 240 260 280

3544 JRM, 2022, vol.10, no.12



River sand

Waste rock

Slurry preparation

Specimen curing

Specimen

UCS test

Figure 4: Experimental flow

Table 4: Experimental results

Influence factors Uniaxial compressive
strength (MPa)

Slurry concentration (%) Waste rock content (%) Cement content (kg⋅m−3) 3 d 7 d 28 d

80 60 260 1.65 2.59 4.18

78 50 260 1.33 2.41 4.01

80 60 260 1.66 2.58 4.20

80 60 260 1.64 2.61 4.19

78 60 280 1.73 2.51 4.14

82 60 240 1.72 2.89 4.48

80 60 260 1.64 2.60 4.21

78 60 240 1.13 1.71 2.93

78 70 260 1.36 2.07 3.01

80 50 240 1.32 2.17 3.07

82 50 260 1.37 3.11 4.66

80 50 280 1.65 2.98 4.86

80 60 260 1.67 2.58 4.19

80 70 240 1.43 2.40 3.39

82 60 280 2.91 4.58 6.12

80 70 280 2.69 3.76 5.04

82 70 260 2.06 3.48 5.27
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4.2 Optimization of Parameters for LSTM
Max iterations and hidden layer nodes have a significant effect on the accuracy of the LSTM, so the

above 2 parameters need to be adjusted in combination with the experimental data to obtain the optimal
LSTM model suitable for this study.

4.2.1 Max Iterations
After normalizing the experimental data, 11 samples are randomly selected as the validation set, and the

remaining 40 samples as the training set. To solve the gradient disappearance, the Adam algorithm is used for
LSTM and the error is calculated using the mean average absolute error (MAE). MAE is calculated as
follows:

MAE ¼
Pn

i¼1 jyi � ŷij
n

(4)

In Eq. (4), yi is the actual value and ŷi is the predicted value.

The training set is substituted into the LSTM for training and the training process is tracked. As shown in
Fig. 6, the MAE of the actual and predicted values of the UCS for training set shows a decreasing trend. The
loss of the training set is high when the training count interval is (1, 115). The loss is stable around 0.0019 for
the training number interval (115, 200). This indicates that the model tends to converge at this point. Based
on the above results, the threshold of the maximum iterations of the LSTM network is set to 115 to improve
the computational efficiency and ensure the generalization of the model.

4.2.2 Hidden Layer Nodes
In order to reduce the impact of overfitting on model prediction accuracy, Dropout regularization

mechanism is added to the LSTM based on related research results [58–62]. The dropping rate, gradient
threshold and initial learning rate are set to 0.2, 1 and 0.005, respectively. In addition, hidden layer nodes
are also an important factor that affects the final prediction result of LSTM. Usually hidden layer nodes
are determined using the following empirical equation:

Hidden layer nodes ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
mþ n

p þ l (5)

In Eq. (5), m is the number of input variables, n is the number of output variables and l is the adjustable
constant on the interval (1, 10).

To determine the optimal hidden layer node, it is set to 10 cases from 3 to 12 using Eq. (5). Substitute the
above results into the LSTM and calculate the root mean square error (RMSE) of the actual and predicted
values of the UCS in the training set under different cases. The equation for calculating RMSE is as follows.
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�
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�
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tanh
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Figure 5: The network structure of cell structure of LSTM
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi � ŷiÞ
s

(6)

From Fig. 7, it can be seen that when the hidden layer nodes is 9, the RMSE of the training set data
obtains the minimum value of 0.03771. Therefore, the hidden layer nodes of the LSTM is set to 9. The
finalized LSTM network parameters are shown in Table 5.
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Table 5: The parameters of LSTM

Initial learning
rate

Dropout
rate

Gradient
threshold

Hidden layer
nodes

Max
iteration

Gradient
optimizer

Loss
function

0.005 0.2 1 9 115 Adam MAE
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4.3 Evaluation Method of Model
To evaluate the model prediction accuracy, RMSE, the coefficient of determination (R2) and variance

account for (VAF) are used as evaluation indicators. R2 and VAF are calculated as follows [63].

R2 ¼ 1�
Pn

i¼1 ðyi � f ðxiÞÞ2Pn
i¼1 ðyi � �yÞ2 (7)

VAF ¼ 1� VARðyi � f ðxiÞÞ
VARðyiÞ

� �
� 100 (8)

In Eqs. (7) and (8), yi and f (xi) are the actual and predicted values of the sample, respectively. �y is the
average of yi. VAR is the variance and VAR belongs to the interval [0, 100]. The closer the RMSE is to 0, the
closer the R2 is to 1 and the closer the VAF is to 100, the better the model prediction is.

5 Results and Discussion

5.1 Results and Analysis of LSTM
A comparison of the predicted and actual values of the training set and the validation set is shown in

Fig. 8. From Figs. 8a and 8b, it can be seen that the prediction accuracy of the training set samples is
extremely high with R2=0.9999, RMSE = 0.0034 and VAF = 99.999. This indicates that the LSTM is
fully trained. From Figs. 8c and 8d, it can be seen that the validation set has R2=0.9915,
RMSE = 0.1966 and VAF = 98.298. This indicates that the LSTM can accurately solve the nonlinear
relationship between each affecting factor and the UCS of CPB with high prediction accuracy.
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5.2 Results and Analysis of Models Used for Comparison
To evaluate the effectiveness of LSTM in UCS prediction, three neural networks, BP-ANN, Extreme

Learning Machine (ELM) and Radial Basis Function Neural Network (RBF-ANN) [64–67], are selected
to conduct simulation experiments and compare the prediction results with LSTM under the same data set
and the same hidden layer nodes and maximum iterations. Numbers 1–40 are the training set data and
41–51 are the validation set data. The prediction results of LSTM are shown in Fig. 9. From Figs. 9a and
9b, the R2=0.9973, RMSE = 0.0914 and VAF = 99.73 for the predicted and actual values of LSTM. From
Figs. 9c and 9d, it can be seen that the errors between the predicted and actual values of LSTM basically
obey the normal distribution N (0.00325, 0.0922).

The prediction results of RBF are shown in Fig. 10. From Figs. 10a and 10b, the R2=0.9884,
RMSE = 0.1933 and VAF = 97.68 for the predicted and actual values of RBF-ANN. From Figs. 10c and
10d, it can be seen that the errors between the predicted and actual values of RBF-ANN basically obey
the normal distribution N (−0.04132, 0.19071). The prediction results of ELM are shown in Fig. 11.
From Figs. 11a and 11b, the R2=0.9507, RMSE = 0.3849 and VAF = 90.376 for the predicted and actual
values of ELM. From Figs. 11c and 11d, it can be seen that the errors between the predicted and actual
values of ELM basically obey the normal distribution N (−0.00461, 0.38875). The prediction results of
BP-ANN are shown in Fig. 12. From Figs. 12a and 12b, the R2=0.9503, RMSE = 0.4048 and VAF =
89.376 for the predicted and actual values of BP-ANN. From Figs. 12c and 12d, it can be seen that the
errors between the predicted and actual values of BP-ANN basically obey the normal distribution N
(−0.01621, 0.40846).
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Figure 11: The predicted result of ELM
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Compared with RBF-ANN, ELM and BP-ANN, the RMSE of the prediction results of LSTM decreased
by 52.72%, 76.25% and 77.42%, R2 improved by 0.9%, 4.9% and 4.95% and VAF improved by 2.09%,
10.35% and 11.58%, respectively. The standard deviation (SD), correlation coefficient and RMSE of the
predicted and actual values of the four models are calculated and plotted as Taylor diagram for
performance comparison in Fig. 13 [68]. In Taylor diagrams, the closer the model is to the ideal point,
the better the prediction performance. According to Fig. 14, the LSTM is the optimal model in this paper.
Combined with previous results about the application of machine learning in CPB [1,2,11,29,30,32,33],
the LSTM model has improved in generalizability and computational accuracy by different magnitudes.
In short, the introduction of LSTM provides a new tool for in-depth study of CPB and has heuristic
implications for future in-depth studies.
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5.3 Sensitivity Analysis
To investigate the sensitivity of the 4 input variables to the UCS of CPB in this paper, the cosine

amplitude method is used to perform sensitivity analysis [69–72]. The sensitivity is calculated in Eq. (14).

Sab ¼ �51
n¼1ðxanxbnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�51
n¼1x

2
an

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�51

n¼1x
2
bn

q (9)

In Eq. (9), xan represents the column vector composed of different independent variables; xbn represents
the column vector composed of dependent variables; Sab represents the sensitivity.

The sensitivity index closer to 0 indicates that the variable has a higher degree of influence on the UCS
and closer to 1 indicates that the variable has a lower degree of influence on the UCS. The results of the
sensitivity analysis are shown in Fig. 14. As shown in Fig. 14, the sensitivity of all 4 variables to UCS is
the UCS is higher than 0.8. This indicates that all 4 influencing factors have a significant effect on UCS.
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Figure 14: The results of sensitivity analysis
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The sensitivity of the 4 variables to UCS is ranked from highest to lowest: Cement content (0.9264) > Slurry
concentration (0.9229) > Waste rock content (0.9179) > Curing time (0.9031).

Sensitivity analysis shows that the effect of cement content is the most important factor in UCS. This is
because the cement acts as a cementing agent during the formation of UCS to ensure that the hydration
reaction takes place. The large amount of hydration products generated by the hydration reaction glues
the aggregates together to form a stable cement structure, which becomes the basis for the formation of
the UCS [73]. The slurry concentration is the secondary factor affecting the UCS. This is because slurry
concentration has an important effect on slurry segregation [74]. The settling speed of different size
particles in the slurry is different resulting in high concentration of slurry due to the large viscosity of the
high resistance to particle settling. This results in an even distribution of coarse and fine particles in the
slurry, which enhances the denseness of the filler and thus the UCS [75]. Waste rock content is an
important factor affecting the UCS. From Section 2 of this paper, it can be seen that the amount of waste
rock content affects the UCS by affecting the aggregate packing density and thus the UCS. Specific
details are limited to space and will not be repeated. In addition, the curing time can also affect the UCS
to some extent. Numerous studies show that prolonging the curing time enhances the UCS to to a certain
extent [76–78].

5.4 Limitations and Outlook
In this paper, results show that LSTM is a low-cost, high-accuracy and lossless method for predicting the

UCS of CPB. Despite the results achieved in this study, there are still unavoidable limitations. Firstly, the
LSTM model proposed in this paper does not include the physicochemical properties of the filling
material in predicting the UCS of CPB. The physicochemical properties affect the hydration reactions and
hydration products of the filling material, which in turn have an impact on the UCS of CPB. Secondly,
the generalization performance and prediction accuracy of the model in this paper can improve with the
expansion of the data set. The small data set is a key factor limiting the application of machine learning
in the field of infill mining. In the subsequent work, the study of the physicochemical properties of the
filling material and the expansion of the filling strength dataset will be carried out simultaneously.

6 Conclusion

(1) In this study, waste rock and river sand are used as aggregates to prepare a material that can be used
for CPB. This research effectively utilizes and resources one of the solid wastes in mine, waste rock.
Moreover, this provides guidance for the improvement of CPB application in different mines and the
sustainable development of mines.

(2) Optimization of the gradation of filled mixed aggregates based on the theory of packing density and
the Talbol gradation principle. The packing density of mixed aggregates composed of waste rock
and river sand shows a trend of increasing and then decreasing with the increase of waste rock
content. The maximum packing density is achieved when the waste rock content is 70%. In this
way, the theoretical optimum gradation of 7:3 is determined for coarse and fine aggregates made
of waste rock and river sand, respectively.

(3) Filled slurry ratio tests and UCS tests are designed using RSM-BBD with 3 levels and 3 influencing
factors. The slurry concentration, waste rock content and cement content are set as input variables,
and the UCS is set as output variable and modeled by LSTM. Based on the experimental data, two
parameters, the maximum iterations and the hidden layer nodes in LSTM, are optimally found. The
optimal LSTM model with the hidden layer nodes of 9 and the maximum iterations of 115 is finally
constructed.

(4) The prediction results of LSTM are compared with three neural networks, RBF-ANN, ELM and
BP-ANN. The results show that all evaluation measures of LSTM are optimal (R2 = 0.9973,
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RMSE = 0.0914 and VAF = 99.73). LSTM is a low cost, high accuracy and non-destructive UCS
evaluation method that can be used to guide CPB design.

(5) The sensitivity analysis shows that the sensitivity of all 4 affecting factors to UCS is higher than 0.8.
The result shows that all 4 affecting factors have significant effect on UCS. The sensitivity of the
4 variables to UCS is ranked from highest to lowest: Cement content (0.9264) > Slurry
concentration (0.9229) > Waste rock content (0.9179) > Curing time (0.9031).
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