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ABSTRACT

To enhance the thermal stability and flame retardancy of epoxy resin (EP), beta-cyclodextrin (β-CD) is success-
fully introduced into the layered tin phenylphosphonate (SnPP), which is incorporated into EP matrix for pre-
paring EP/β-CD@SnPP composites. The results indicate that the addition of β-CD@SnPP obviously improve
the thermal stability and residual yield of EP composites at higher temperature. When the amount of β-CD@SnPP
is only 4 wt%, EP/4β-CD@SnPP composites pass V-1 rating, and LOI value is up to 30.8%. Meanwhile, β-
CD@SnPP effectively suppress the heat release and reduce the smoke production of EP/β-CD@SnPP composites
in combustion, and the peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR) of
EP/6β-CD@SnPP composites reduce by 28.4%, 33.0% and 44.8% by comparison with those of pure EP. The good
flame retardancy and smoke suppression are ascribed to the synergistic effect of excellent carbon-forming cap-
ability and fire retardancy of β-CD@SnPP.
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1 Introduction

Epoxy resin is widely used in various fields due to its excellent moisturizing performance, good heat
resistance, good mechanical properties, such as in building, coating, composites, and so on [1–6].
However, the applications are severely limited due to the flammability and dripping tendency. In order to
improve the flame retardancy, flame retardants must be used to achieve flame retardant requirements. In
past decades, halogen-free additives have been widely interested due to environmental protection [7–10].

Phosphorous compounds have motivated interest from researchers worldwide because of their high
efficiency, less smoke and low toxicity, which can act as flame retardant in both condensed and gaseous
phases [11–15]. Phenylphosphate, as a kind of layered metal phosphate, not only has the characteristics
of layered compounds, but also has good chemical stability, high thermal stability, simple preparation
process, low cost and other characteristics [16,17]. Phenylphosphate modified polymer has been widely
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investigated with excellent flame retardancy [18,19]. For example, ultrathin nickel phenylphosphate (NiPP)
was added into epoxy resin for preparing EP/NiPP nanocomposites, which reveals that the thermostability
and flame retardancy of EP/NiPP nanocomposites were obviously improved, and the maximum residual
of EP/6 w% NiPP nanocomposites was high to 24.1% at 700°C due to excellent catalytic carbonization
and fire retardant ability [20]. However, high content of phenylphosphate can worsen the mechanical
performances of EP composites, but EP composites with low content of phenylphosphate cannot meet
flame retardant requirements [21–23].

β-cyclodextrin (β-CD) has biodegradable, biocompatible, environmentally friendly and non-toxic
features. Meanwhile, its molecular skeleton is rich in carbon and contains a certain amount of the side
chain hydroxyl groups. In the process of thermal decomposition, they can be polymerized carbonization,
which hinders the progress of combustion. At the same time, the released CO2, H2O and other non-toxic,
non-corrosive and non-flammable gases have the effect of preventing combustion. Moreover, the
hydroxyl groups on the β-CD molecule make it good reactivity, which can be introduced into the
interlayers of layered compounds by molecular design [24–26].

Based on the above discussion, β-Cyclodextrin can form a large amount of carbon and release
incombustible gas during combustion or pyrolysis. Metal phenyl phosphate not only has lamellar barrier
effect, but also the transition metal compound obtained by its pyrolysis has the effect of catalyzing
carbon formation, and phosphoric acid has excellent flame retardancy in both the condensed and gas
phases. Therefore, it is an effective strategy that cyclodextrin is introduced between metal phenyl
phosphate layers to play a synergistic effect in flame retardancy and smoke suppression. In this work, the
layered tin phenylphosphonate (SnPP) was successfully synthesized by the coordination of Sn4+ and
phenyl phosphonic acid. Then, SnPP was modified with β-CD, which was incorporated into EP matrix
for preparing EP/β-CD@SnPP composites. The thermal properties and combustion properties of EP/β-
CD@SnPP composites were studied. The results show that EP/β-CD@SnPP composites exhibited
excellent thermal stability, flame retardancy and smoke suppression.

2 Experimental Section

2.1 Materials
Tin chloride (SnCl4⋅4H2O, ACS reagent, ≥98%), polyvinyl pyrrolidone (PVP, 360), ethylene glycol

(ACS reagent, ≥99%), hexamethylenetetramine, (ACS reagent, ≥99%), and ethanol (ACS reagent, ≥99%)
were supplied by Sigma Aldrich, Ltd. (Shanghai, China). 4, 4’-Diaminodiphenyl sulfone (>97%), beta-
cyclodextrin (C42H70O35, >97%) and phenylphosphonic acid (C6H7O3P, >98%) were purchased from TCI
Chemicals Company. Epoxy resin (NPEL128) was purchased from South Asia Electronic Materials Co.,
Ltd. (Kunshan, China).

2.2 Synthesis of Tin Phenylphosphonate
5.1 g phenylphosphonic acid was evenly dispersed in 100 cm3 deionized water using ultrasound and

stirring, forming solution A. 5.28 g SnCl4⋅4H2O was dissolved into another 100 cm3 deionized water
with stirring, forming solution B. Then, the above two solutions were mixed with stirring for 24 h at
room temperature. The precipitation was collected by centrifugation and washed by deionized water, and
dried in a vacuum oven at 60°C for 24 h. The obtained product is tin phenylphosphonate (Sn(IV)
(C6H5PO3)2, SnPP).

2.3 Synthesis of β-CD@SnPP
Firstly, 1 g β-CD was dispersed into 50 cm3 deionized water to form a dispersed liquid C. Then, the

dispersed liquid C and solution B were slowly added to solution A in turn, which was stirred at room
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temperature for 24 h. The precipitation was collected by centrifugation and washed by deionized water, and
dried in a vacuum oven at 60°C for 24 h. The product was labeled as β-CD@SnPP.

2.4 Preparation of EP/β-CD@SnPP Composites
EP/β-CD@SnPP composites were prepared by solution blending method. The specific process was as

follows: β-CD@SnPP was added in a moderate amount of acetone solution under ultrasonic dispersion
for 30 min, and EP was added to the above dispersion under ultrasound for 30 min. Then it was stirred
and heated at 90°C until acetone was completely volatilized. Afterwards, an appropriate amount of DDM
(EP:DDM= 4:1) was added into the above mixture, which was stirred continuously until DDM was
completely dissolved. After the resulting mixture was evacuated to remove bubbles, it was poured into
the mold and cured at 100°C for 1 h. Finally, the sample was cured by temperature according to the
curing process: 110°C for 2 h, 130°C for 2 h, 150°C for 2 h. The preparation process of EP/4SnPP was
consistent. The specific formulations are presented in Table 1.

2.5 Characterization
The morphologies of CD@SnPP and SnPP were investigated by scanning electron microscopy (SEM,

Zeiss EVOMA15). The compositions and structures of β-CD@SnPP and SnPP were characterized by X-ray
diffraction pattern (XRD, MAX-RB, Cu Ka radiation with the angle ranged from 5° to 70°) and Fourier
transform infrared spectroscopy (FTIR, Nicolet 6700 spectrometer with the frequency range from 400 to
4000 cm−1). The thermal stability of the samples was studied by a TA Q50 thermo-analyzer instrument
with a heating rate of 10 °C/min in N2 atmosphere. The limiting oxygen index (LOI) values specimens
with sizes of 130 × 6.5 × 3.2 mm3 were measured through a HC-2 oxygen index model instrument, and
the UL-94 rating of specimens with size of 130 × 12.7 × 3.2 mm3 through a burning chamber. The
combustion data of EP/β-CD@SnPP and EP/SnPP composites were acquired from a cone calorimeter
(FTT, UK), observing the stipulation in ISO 5660-1. Each specimen (100 × 100 × 4 mm3) was irradiated
at a heat flux of 35 kW/m2.

3 Results and Discussion

3.1 The Structure of SnPP and β-CD@SnPP
SEM images of SnPP and β-CD@SnPP are provided in Fig. 1. The results show that SnPP and β-

CD@SnPP have similar shape and size, indicating simple modification of β-CD does not change the
shape and size, and the size is from 100 to 200 nm. However, these particles have a certain degree of
agglomeration and stacking. X-ray diffraction method is always used to examine the structure of layered
compound [27–29]. Fig. 2a shows XRD spectra of SnPP and β-CD@SnPP, and the diffraction peaks
appeared at 2θ = 6.1° and 12.1° correspond to (010) and (020) diffraction planes of SnPP, which are
characteristic peaks of layered structure [30]. Fig. 2b is the FTIR spectra of SnPP and β-CD@SnPP. The

Table 1: Ingredients and TGA data of pure EP and EP composites

Samples EP (wt%) β-CD@SnPP
(wt%)

T5%
(°C)

Tmax

(°C)
Residues
(wt%, 700°C)

Pure EP 100 0 350.2 408.5 17.9

EP/2β-CD@SnPP 98 2 343.7 403.4 23.5

EP/4β-CD@SnPP 96 4 341.2 405.8 25.8

EP/6β-CD@SnPP 94 6 337.3 404.5 27.2

EP/4SnPP 96 4SnPP 334.1 405.6 25.3
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small peak at 3051 cm−1 is assigned to C-H on the benzene ring. The peaks of 740, 692 and 1726 cm−1 are
stretching vibration of C-P. The peaks at 1048 and 1138 cm–1 can be ascribed to the characteristic absorption
peak of –P(O)(OH)2. Compared with the FTIR spectrum of phenyl phosphonic acid, the characteristic
vibration peaks of –P(O)(OH)2 near 1000 cm−1 changes greatly, which is attributed to the bonding of
Sn4+ and C6H5PO3

2+ [31,32]. In addition, compared with the absorption peak of SnPP, the peak at
1439 cm−1 is the representative -OH vibration peak in the β-CD molecule. The above results indicate that
β-CD@SnPP was successfully synthesized [33]. Figs. 2c and 2d are TGA and DTG curves of SnPP and
β-CD@SnPP. As shown in the TGA curves, the thermal degradation of SnPP and β-CD@SnPP are
divided into two stages. The first stage is occurred before 270°C. The mass loss is 6.6 wt% and 5.9 wt%,
respectively, which is mainly attributed to the crystal water in the molecular structure of SnPP and
β-CD@SnPP, the adsorbed water on the surface and some volatile components [34]. Subsequently, the
obvious weight losses between 270°C and 640°C in the second stage are 25.3 wt% and 24.7 wt%,
respectively, which can be explained that SnPP is decomposed to Sn compounds, phosphorous
compounds and organic small molecules, and beta-cyclodextrin is pyrolyzed into carbon.

3.2 The Thermal Stability of EP/β-CD@SnPP Composites
To study the influence of β-CD@SnPP on the thermal stability of EP composites, Fig. 3 and Table 1

exhibit the TGA curves, thermal analysis data and residue yields. From the results, pure EP pyrolyzes
rapidly between 345°C and 468°C, which is essentially the same as the pyrolysis temperature range of β-
CD@SnPP. The T5% (the onset decomposition temperature) and Tmax (the maximum decomposition
temperature) of pure EP are 350.2°C and 408.5°C, and the residual amount is approximately 17.9% at
700°C. For comparison, the T5% values of EP composites with 2 wt%, 4 wt% and 6 wt% β-CD@SnPP
are reduced to 343.7°C, 341.2°C and 337.3°C, and the Tmax values are also reduced to 403.4°C,
405.8°C and 404.5°C. However, the thermostability of EP/β-CD@SnPP composites is significantly
enhanced above 400°C, which illuminate that β-CD@SnPP has a low initial pyrolysis temperature, and
the addition of β-CD@SnPP can improve the thermal stability of EP composites at higher temperature. At
700°C, the residues of EP/β-CD@SnPP composites are increased evidently. Increasing the amount of β-
CD@SnPP to 6 wt%, the residual amount of EP/6β-CD@SnPP composites reaches 27.2%. The improved
thermostability and residual amount are mainly attributed to the appropriate thermal stability and
excellent forming-carbon capacity of β-CD@SnPP [35]. According to the curves, the T5% and Tmax of
EP/4SnPP composites are reduced to 334.1°C and 405.6°C, and the residue is 25.3% at 700°C. The
results show that β-CD@SnPP has better carbon-forming ability than SnPP.

Figure 1: (a) SEM image of SnPP; (b) SEM image of β-CD@SnPP
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3.3 The Combustion Performance of EP/β-CD@SnPP Composites
To investigate the effect of β-CD@SnPP or synergistic effect of β-CD and SnPP on the flame retardancy

in epoxy resin, the LOI and vertical burning tests were carried out with the results listed in Table 2. The
results show that pure EP is combustible with an LOI value 25.9%, and there is no rating in UL-94 test.

Figure 3: TGA curves of pure EP and EP composites in N2
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Figure 2: (a) XRD spectra of SnPP and β-CD@SnPP; (b) FTIR spectra of SnPP and β-CD@SnPP; (c) TGA
curves of SnPP and β-CD@SnPP; (d) DTG curves of SnPP and β-CD@SnPP
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Incorporating β-CD@SnPP, the LOI values and UL-94 ratings of EP/β-CD@SnPP composites are improved
obviously. When 2 wt% β-CD@SnPP is incorporated into EP, the LOI value of EP/2β-CD@SnPP
composites is risen to 28.5%, and it is still failed to pass the UL-94 test. With further increasing the
amount of β-CD@SnPP, the LOI of EP/4β-CD@SnPP composites is 30.8% and it has passed UL-94 V-1
rating. However, the LOI value of EP/4SnPP composites is only 29.1%. The results indicate that β-CD
and SnPP have excellent synergistic effect on flame retardancy, which is consistent with the results of
thermal analysis. When the loading of β-CD@SnPP increases to 6 wt%, the LOI value drops back to
30.0% and it has passed UL-94 V-1 rating. The improved flame retardancy is mainly attributed to that
nano-barrier effect of β-CD@SnPP, excellent synergistic flame-retardant capability of phosphorus
containing species, Sn compound and β-CD [36,37].

The effect of β-CD@SnPP on the burning behaviors of EP composites was evaluated through cone
calorimeter, revealing some important parameters to comprehend the flame retardant and smoke
suppression capabilities during burning progress [38]. Time to ignition (TTI) is a main indicator for
determining flammability. The results show that the TTI of pure EP is 68 s, and it burnt quickly after
being ignited with a large amount of smoke. When β-CD@SnPP and SnPP are incorporated into EP for
preparing EP composites, the TTI values are increased obviously, which are attributed to that β-
CD@SnPP has the barrier effect and thermal decomposition of β-CD releases non-flammable gas and
forms carbon layer [39,40]. Fig. 4a provides the heat release rate (HRR) curves of EP/β-CD@SnPP
composites, which distinctly exhibits neat EP burns violently once ignited, showing a sharp peak HRR
(PHRR) with a value of 1189 kW⋅m−2. The PHRR values of EP/β-CD@SnPP composites exhibited a
gradual decrease trend as raising the amount of β-CD@SnPP, and they are decreased to 1039, 954,
852 kW⋅m−2 when 2, 4 and 6 wt% β-CD@SnPP are added. Fig. 4b is the total heat rate (THR) curves of
pure EP and EP composites. When the flame extinguishes, the THR value of neat EP is 88 MJ/m2

at 400 s, and the values of EP composites with 2, 4 and 6 wt% β-CD@SnPP, are reduced to 77, 63,
59 MJ/m2, respectively. However, 4 wt% SnPP is incorporated into EP matrix, the PHRR and THR
values of EP/4SnPP composites still maintain 1015 kW⋅m−2 at 120 s and 74 MJ/m2 at 400 s. The above
results illuminate that β-CD@SnPP has better inhibition on heat release in contrast to SnPP, which is
primarily ascribed to the synergistic effect of β-CD and SnPP that β-CD@SnPP can play a physical
barrier, SnPP has a good catalytic carbonization effect for promoting the formation of carbon layer, and
β-CD is dehydrated to form carbon layer during combustion [40,41]. As everyone knows, thick and
dense carbonaceous barrier layer serves a vital role for heat and mass transfer, reducing heat release
during burning progress [41].

In fire disasters, smoke and toxic gases cause the greatest damage to life, followed by flame and heat.
More than 70% of misfortune or death are caused by smoke and toxic gases in fire accident [42].
Consequently, it is indispensable to investigate the release of smoke gas. Fig. 4c is the smoke production
rate (SPR) curves for pure EP and EP composites, and incorporating β-CD@SnPP and SnPP remarkably

Table 2: Parameters of pure EP and EP composites from LOI and UL-94 test

Samples LOI% UL-94

Pure EP 25.9 No rating

EP/2β-CD@SnPP 28.5 NR

EP/4β-CD@SnPP 30.8 V-1

EP/6β-CD@SnPP 30.0 V-1

EP/4SnPP 29.1 No rating
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decreases the SPR. The peak SPR value of pure EP is 0.3384 m2 s−1 at 100 s, while those of EP composites
with 2, 4 and 6 wt% β-CD@SnPP are reduced to 0.2511 m2 s−1 at 115 s, 0.2063 m2 s−1 at 130 s and
0.1869 m2 s−1 at 125 s, reducing 25.8%, 39.0% and 44.8%, respectively. Consistent with the heat release
results, the peak smoke release rate of EP/4SnPP composite is also higher than that of EP/4β-CD@SnPP
composites. The superior smoke inhibition of EP/β-CD@SnPP composites is ascribed to the dense
carbonaceous protective layer containing tin oxide and phosphorous compounds, which can isolate EP
composite from flame, oxygen and heat, and prevent small organic molecules obtained from pyrolysis of
epoxy resin to diffuse into air [43]. Fig. 4d shows the mass loss curve of neat EP and EP composites, and
the results display that the mass loss of neat EP is the largest, and the residual amount at 400 s is merely
32.4 wt%. When 2, 4 and 6 wt% β-CD@SnPP are added, the residual amound of EP composites are
increased to 36.7%, 37.1% and 39.6%, respectively, which is due to excellent carbonization capability of
β-CD@SnPP [44].

Based on cone calorimetry tests, the results reveal that EP/β-CD@SnPP composites has good flame
retardant and smoke suppression performances, which is mainly due to producing carbonaceous inorganic
ceramic protective layer during the combustion process of EP/β-CD@SnPP composites [45,46]. To
understand the effect of β-CD@SnPP on the carbonaceous ceramic isolation layer, Fig. 5 provides the
SEM images of neat EP, EP/4SnPP, EP/4β-CD@SnPP and EP/6β-CD@SnPP composites after CCTs. The
outer surface of the residual layer for pure EP is loose carbonaceous flimsy layer, as shown in Figs. 5a
and 5b, and the internal residual layer interior is flimsy and crisp in Fig. 5c, which is mainly because
pure epoxy resin quickly decomposes and burns, only producing a small amount of carbon. By
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Figure 4: The results of pure EP and EP composites from CCTs at a heat flux of 35 kW/m2: (a) HRR curves;
(b) THR curves; (c) SPR curves; (d) Mass curves
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comparison of pure EP, the SEM images in Figs. 5d–5f illustrate that the residual amount of EP/4SnPP
composites enhances, and the fluffy carbon layer on the outer surface of the external char layer becomes
dense, while the inner surface forms dense carbon layer, but there are still some holes. Meanwhile, the
internal hard carbon layer becomes thicker, but there are cracks. SnPP modified β-CD has better char-
forming properties. When 4 wt% β-CD@SnPP is added, the outermost surface of the bulky carbon layer
becomes less. Compared with EP/4SnPP composites, the hard carbon layer on the inner surface of the
outer carbon layer becomes thicker, and the internal hard carbon layer becomes thicker and stronger, and
there are fewer cracks. With further increasing the addition of CD@SnPP, the residual layer of EP/6β-
CD@SnPP composites continues to strengthen and stabilize. Based on the above results, the thick and
solid carbon layer can isolate the transfer of heat and oxygen between the gas phase and the condensed
phase, inhibit combustion and improve flame retardancy and smoke suppression of EP/β-CD@SnPP
composites [47].

4 Conclusions

In summary, β-CD@SnPP had been devised and synthesized, which was incorporated into EP matrix for
preparing EP/β-CD@SnPP composites. The results of TGA revealed that β-CD@SnPP had suitable
thermostability for EP, and β-CD@SnPP had excellent carbon-forming capability. The incorporation of β-
CD@SnPP greatly improved the thermal stability of EP nanocomposites at higher temperature and
residual yields of EP/β-CD@SnPP composites. The combustion results indicate that EP/4β-CD@SnPP
composites passed UL-94 V-1 rating, and the LOI value was up to 30.8%. Moreover, the cone results
evidenced that the addition of β-CD@SnPP obviously decreased the HRR, THR and SPR values, and
improved the residues after the test. The PHRR, THR and SPR values of EP/6β-CD@SnPP composites
were observably decreased by 28.4%, 33.0% and 44.8% compared with neat EP. The improved fire

Figure 5: SEM images of outer char surface of (a, b) pure EP, (d, e) EP/4SnPP, (g, h) EP/4β-CD@SnPP,
(j, k) EP/6β-CD@SnPP; SEM images of inner char surface of (c) pure EP, (f) EP/4SnPP, (i) EP/4β-
CD@SnPP (l) EP/6β-CD@SnPP
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retardation and smoke inhibition are ascribed to β-CD@SnPP with suitable thermal decomposition
temperature, good forming carbon capacity and excellent synergistic flame-retardant effect, which is
mainly due to the formation of dense and hard carbon-based inorganic ceramic layer, effectively isolate
the transfer of heat and combustible gas between the EP/β-CD@SnPP composites composites and the
combustion zone.
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