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ABSTRACT

With the exponential growth of the computing power, machine learning techniques have been successfully used in
various applications. This paper intended to predict and optimize the shear strength of single lap cassava starch-
based adhesive joints for comparison with the application of artificial intelligence (AI) methods. The shear
strength was firstly determined by the experiment with three independent experimental variables (starch content,
NaOH concentration and reaction temperature). The analysis of range (ANORA) and analysis of variance
(ANOVA) were applied to investigate the optimal combination and the significance of each factor for the shear
strength based on the orthogonal experiment. The performance of all AI models was characterized by mean
absolute error (MAE), root mean square error (RMSE) and regression coefficient (R2) compared with the experi-
mental ones. The GA-optimized ANN model was combined with the genetic algorithm (GA) to find the optimal
combination of factors for the finalized optimized cassava starch adhesives (CSA-OP). The physicochemical prop-
erties of the cassava starch and CSA-OP were determined by the FTIR, TGA and SEM-EDS, respectively. The
results showed that the numerical optimized condition of the GA-optimized ANN model was superior to the
orthogonal experimental optimized condition. The sensitivity analysis revealed that the relative importance of
variables was consistent with the results from ANOVA. FTIR results showed that there were high hydroxyl groups
in cassava starch. TGA results showed that the residue of CSA-OP was higher than the cassava starch. SEM-EDS
results showed that both the cassava starch and CSA-OP had abundant carbon and oxygen functional groups.
Consequently, the obtained results revealed that the use of AI methods was an adequate approach to model
and optimize the experimental variables of the shear strength of single lap cassava starch-based adhesive joints.
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1 Introduction

For many years, conventional adhesives were prepared based on fossil based resources, including
formaldehyde-based and petroleum-based [1]. Moreover, the volatile and toxic emissions from
petrochemicals are harmful for environment and health. Therefore, it is emergency to obtain
biodegradable adhesives from the renewable and inexpensive bio-materials. Starch is one of the most
abundant natural polymers, which are obtained from rich botanical sources and the most promising bio-
material for starch-based adhesive applications [1–3]. For better use as starch-based adhesives, many
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methods have been considered to modify the starch molecules, including oxidation, graft copolymerization,
cross-linkers, epoxidation and hydrolyzing [1–2,4].

Response surface methodology (RSM) technique is commonly used for the design of experiments. It can
develop a relationship affected by multiple process variables with a combination of mathematical and
statistical ways. Until the present, the starch adhesive mechanical properties optimization studies were
primarily based on response surface methodology (RSM) [3]. Nevertheless, RSM is local approximation
generalization, which can be coupled with a global optimization method such as genetic algorithm (GA).
In recent years, RSM and ANN models coupled with GA have been applied successfully to optimize the
resistant starch content using a fitness function from RSM and ANN [5,6].

Adhesively bonded joints were composed of two substrates and an adhesive layer, which were
commonly used in various applications [7,8]. The performance of adhesive joints have been generally
analyzed by the conventional approaches, such as experimental, analytical and numerical solutions [7,9].
Because there are no appropriate conventional approaches to accurately reproduce a certain phenomenon,
machine learning methods can be employed to establish data-driven models [8,10]. In recently studies,
artificial intelligence (AI) methods were used to replace the conventional methods to analyze the strength
of adhesive joints for making predictive models [8,11,12]. This excellent method can help to reduce the
needed number of experiments to obtain the optimal solution, and importantly cut down the cost [13].
Artificial neuron network (ANN) is one of the most popular AI methods, which can be used to model
complex relationships between variables [8]. ANN was applied by experimental test data to investigate
the effect of the length and width of bond area for the failure load of the adhesive joints [13]. Clustering
analysis was applied to study the damage modes of adhesive composite joints using acoustic emissions
[14]. Adaptive neuro-fuzzy inference system (ANFIS) was applied to determine the bond strength of
joints [15]. Several AI methods, such as random forest, support vector machines and artificial neural
network, were employed to predict the tensile shear strength of bonded wood joints [16].

Although machine learning techniques have been applied in analysis of adhesive lap joints, the current
studies are mostly limited to the commercial adhesives and single machine learning method. To the best of
our knowledge, AI methods rarely have been systematically used to estimate the shear strength of single lap
cassava starch-based adhesive joints for comparison. Hence, this study aimed to develop four AI models for
modelling and optimizing the shear strength of the cassava starch adhesives developed by the randomized
experiment in MATLAB environment. Based on the results, the cassava starch and finalized optimized
cassava starch adhesives (CSA-OP) were further characterized by FTIR, TGA and SEM-EDS, respectively.

2 Materials and Methods

2.1 Materials
Cassava starch of food-grade was purchased from Guangxi Hongfeng Starch Co., Ltd., China. Sodium

hydroxide (NaOH) of reagent-grade was bought from Wuxi Yatai United Chemical Co., Ltd., China.

2.2 Preparation of the Adhesives
A quantity of starch (% w/v) were completely dissolving in the 50 ml deionized water with the agitator

for 5 min. Then the corresponding NaOH concentration (% w/w) based on the quality of starch in the 50 ml
deionized water was adding at the mechanical agitation for 10 min at 750 rpm. The evenly stable emulsion in
a beaker were placed in a water bath with the corresponding reaction temperature (°C) for 20 min. Ultimately,
the beaker with starch adhesives was removed from the water bath and cooled to room temperature.

2.3 Shear Strength Test of the Adhesives
The shear strength of the adhesive specimens was tested according to the industry standard HG/T2727

−2010 (China, 2010). The bonding area of the specimens were firstly cleaned using distilled water and then
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dried. The adhesive at room temperature was applied to a single side of the overlapping layer of specimens
with the aid of a brush. Woven jute/poly (lactic acid) (PLA) composite laminates with the bonding area of
20 mm × 20 mm were under a static pressure of 0.05∼0.1 MPa at 25°C for 24 h. The single-lap composite
joint specimens were shown in Fig. 1. The test specimens were stored at room temperature for approximately
48 h, then they were determined through SANS (CMT 6104) universal testing machine with a crosshead
speed of 2 mm/min. All tests were examined 3 times and reported the average values. The shear strength
was calculated according to the Eq. (1).

s ¼ F

A
(1)

where τ was the shear strength, MPa; F was maximum shear force, N; Awas adhesive area, mm2.

2.4 Fourier Transform Infrared Spectroscopy (FTIR)
Before testing, the cassava starch and adhesive samples were first dried to constant weight in the oven at

80°C. Then dry cassava starch or adhesive sample of 2 mg were ground and mixed with KBr of 200 mg, and
finally pressed into a tablet in the mold under a pressure of 20 MPa for 10 min. Fourier transform infrared
spectroscopy was conducted by Nicolet iS-10 (Thermo Fisher Scientific, Waltham, MA, USA). The
resolution was 4 cm−1 and scanned 16 times in the range from 4000 to 400 cm−1.

Figure 1: Shear strength tests of (a) specimen dimensions; (b) specimens preparation; and (c) testing
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2.5 Thermo-Gravimetric Analysis (TGA)
In order to study the thermal decomposition characteristics of the specimens, thermo-gravimetric analysis

(TGA) was carried out by using a thermos-gravimetric analyzer (STA449 F3, NETZSCH, Shanghai, China).
Before testing, the cassava starch and adhesive samples were first dried to constant weight in the oven at 80°C.
Each dry specimen with about 8 mg was placed in an Al2O3 crucible. Experiments were performed with the
temperature range of 25°C to 800°C at the heating rate of 20 K⋅min−1 in a argon atmosphere (Balance
chamber flow rate = 20 cm3/minute, furnace flow rate = 60 cm3/minute).

2.6 Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS)
Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses of samples were

performed using an S-4800 scanning electron microscope (Hitachi, Ltd., Tokyo, Japan) equipped with an
energy-dispersive spectrometer (Bruker AXS, Germany) for elemental analysis. Before observation, all the
samples were dried to constant weight and sputter coated with gold (model e-1045; Hitachi, Ltd., Tokyo,
Japan). Images and elemental data were collected under high vacuum at the acceleration voltage of 15 kV.

2.7 Artificial Intelligence Models and Performance
In this work, four well-known artificial intelligence (AI) methods were used to model the shear strength for

cassava starch adhesives. Firstly, the following equation was applied to normalize the raw data to [−1, 1] [17]:

xnorm ¼ 2ðx� xminÞ
ðxmax � xminÞ � 1 (2)

where x, xmin and xmax were actual, minimum and maximum values, respectively.

Many researchers have used about 80% of the data points for training the proposed computational model
and the remaining data were used for testing the efficacy of the model [18,19]. Hence, we followed the same
method in the experiment, i.e., the experimental data set used for artificial intelligence (AI) models were
randomly divided into a training data set (75%) and testing data set (25%) as shown in Table 1
(randomization experiment). In the Table 1, symbol A represented the starch content (% w/v), B
represented the NaOH concentration (% w/w), and C represented the reaction temperature (°C).

In addition, three statistical indices of root mean square error (RMSE), mean absolute error (MAE) and
the coefficients of determination (R2) were used to estimate the performance of the artificial intelligence
models [20,21]. The least RSME and MAE values, and maximum R2 value in the testing process were the
criteria to obtain the best AI model. These statistical indices correlated the predicted and actual values
were determined using the Eqs. (3)∼(5), respectively.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðx� yÞ2
s

(3)

MAE ¼ 1

n

Xn
i¼1

jx� yj (4)

R2 ¼ ðnPn
i¼1 xy�

Pn
i¼1 x

Pn
i¼1 yÞ2

n
Pn

i¼1 y
2 � Pn

i¼1 y
� �2� �

n
Pn

i¼1 x
2 � Pn

i¼1 x
� �2� � (5)

where n is the number of data points, x is the actual value, and y is the predicted output value.
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3 Results and Discussion

3.1 Range and Variance Analysis Based on the Orthogonal Experiment Design
Orthogonal experimental design is widely used to explore the influence law of multivariate and

multilevel factors [22,23]. Therefore, the shear strength of the cassava starch adhesives were firstly
designed and implemented by the orthogonal experiment. The experimental scheme with the L9(3

4)
orthogonal array considering three-factor and three-level was designed without interaction as shown in
Table 2. In the Table 2, the value in the parentheses represented their levels.

Table 1: The experimental data set of the shear strength based on randomization experiment

No. A (% w/v) B (% w/w) C (°C) Shear strength (MPa)

1 20.0 1.0 70.0 0.48

2 20.0 4.5 80.0 0.69

3 20.0 8.0 90.0 0.58

4 30.0 1.0 80.0 0.68

5 30.0 4.5 90.0 0.71

6 30.0 8.0 70.0 0.73

7 40.0 1.0 90.0 0.67

8 40.0 4.5 70.0 0.77

9 40.0 8.0 80.0 0.88

10 20.0 1.0 80.0 0.59

11 20.0 8.0 80.0 0.67

12 30.0 8.0 80.0 0.76

13 30.0 4.5 70.0 0.70

14 30.0 1.0 90.0 0.63

15 40.0 4.5 80.0 0.84

16 40.0 8.0 70.0 0.78

17 40.0 1.0 70.0 0.71

Table 2: Results of the shear strength by the orthogonal tests

No. A (% w/v) B (% w/w) C (°C) Shear strength (MPa)

L1 20.0 (1) 1.0 (1) 70.0 (1) 0.48

L2 20.0 (1) 4.5 (2) 80.0 (2) 0.69

L3 20.0 (1) 8.0 (3) 90.0 (3) 0.58

L4 30.0 (2) 1.0 (1) 80.0 (2) 0.68

L5 30.0 (2) 4.5 (2) 90.0 (3) 0.71

L6 30.0 (2) 8.0 (3) 70.0 (1) 0.73

L7 40.0 (3) 1.0 (1) 90.0 (3) 0.67

L8 40.0 (3) 4.5 (2) 70.0 (1) 0.77

L9 40.0 (3) 8.0 (3) 80.0 (2) 0.88
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The analysis of range (ANORA) is commonly used in determining the key influential factors and
optimal combination in the multiple-factor orthogonal test. The range calculation equation is shown
as follows:

Rj ¼ maxðkj1; kj2; � � � ; kjmÞ � minðkj1; kj2; � � � ; kjmÞ (6)

where Rj is the range of the factor j, and the larger Rj, the larger significance of the factor j; kjm is the average
response value of the level m corresponding to the factor j.

Analysis of variance (ANOVA) was introduced to judge the influence of each factor on the shear
strength of the cassava starch adhesives more accurately. Moreover, the percentage contribution of each
factor (%) in the shear strength value was calculated by Eq. (7) [24,25]:

Pj ¼ SSj
SST

(7)

where Pj is the percentage contribution for the factor j, SSj is the sum of squares for the factor j and SST
is total sum of squares.

Using experimental data from Table 2 and combined with SPSS software [26], the results of ANORA
and ANOVAwere shown in Tables 3 and 4, respectively. The Rj value is commonly used to judge the relative
importance of each factor, and the larger Rj, the larger significance of the factor.

Table 3: Results of ANORA for the shear strength

Index A (% w/v) B (% w/w) C (°C)

kj1 0.583 0.610 0.660

kj2 0.707 0.723 0.750

kj3 0.773 0.730 0.653

Rj 0.190 0.120 0.097

Optimal level A3 B3 C2

Ranking A > B > C

Table 4: ANOVA analysis for shear strength

Source Type III sum of
squares

Degree of
freedom

Mean
square

F Sig. Contribution

Corrected model 0.101a 6 0.017 53.857 0.018 –

Intercept 4.257 1 4.257 13684.321 0.000 –

A 0.056 2 0.028 89.607 0.011 55.45%

B 0.027 2 0.014 43.857 0.022 26.73%

C 0.017 2 0.009 28.107 0.034 16.83%

Error 0.001 2 0.000 0.99%

Total 4.359 9 –

Total of corrected
model

0.101 8 100

a: R2 = 0.994; Adj.R2= 0.975
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In terms of the value of R for the shear strength in Table 3, it can be seen that the influence degree of three
factors for the shear strength was ordered as follows: starch percentage, NaOH percentage and reaction
temperature. Based on the ANORA in Table 3, the relationship between the factor level and average
shear strength was plotted in Fig. 2, which showed that the optimal combination of factor-level to
maximize the shear strength were as follows: the starch content was 40% w/v, the NaOH concentration
was 8% w/w, and the reaction temperature was 80°C (A3B3C2, No. 9).

Moreover, in order to obtain the accurate significance estimation on the factors, the ANOVA was
performed. It can be seen from Table 4 that the significance of starch content, NaOH concentration and
temperature were all less than 0.05, indicating that the each factor had a significant impact on shear
strength. The most critical variable was also evaluated by calculating the percentage contribution of each
factor. According to Eq. (7), the most contributing process variable was A with a percentage of 55.45%,
followed by B with 26.73% and C with 16.83% for the shear strength of cassava starch adhesives as
shown in Table 4.

3.2 Artificial Neural Network (ANN)
Artificial neural network, a feedforward, back-propagation multilayered perception (MLP) network is

one of the popular artificial intelligence technology, which is able to deal with linear and nonlinear
functions in surrogate models [5,27]. The Levenberg-Marquardt function (trainlm function) was used for
training the ANN network by MATLAB R2018a software in a Windows 10 environment [17,24].

It should be pointed out that the quantity of neurons in the hidden layer is largely significance for the
neural network structure [20,28]. However, there is no specific formula to evaluate the number of neurons
[29]. Thus, in this study a trial and error method was set to select the optimal neurons in the hidden layer.
Due to random initialization of the weights and biases, each ANN model was iterated 8 times. It was
found that eight neurons in the hidden layer provided the best data. Hence, the ANN based model was
structured with three neurons in the input layer (i.e., starch content, NaOH concentration and
temperature), eight neurons in the hidden layer, and one neuron in the output layer (i.e., shear strength).
The network architecture considered in this work was 3 × 8 × 1 as shown in Fig. 3. The hyperbolic
tangent sigmoid function (tansig) and pure-liner were chosen for the hidden and output layers,
respectively [17]. The properties of the ANN modeling were shown in Table 5.

Figure 2: Effect curves for the shear strength
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3.3 GA-Optimized ANN Algorithm
A hybrid artificial neural network optimized by genetic algorithm (GA-optimized ANN) mainly

included three parts: the establishment of ANN, the optimization of the weights and bias of ANN by
genetic algorithm and the prediction by optimized ANN [29,30]. In this work, the establishment of GA-
optimized ANN was based on the MATLAB R2018a platform. The parameters of the ANN model and
genetic algorithm were shown in Table 5. The ANN training errors were used as the fitness values to
obtain the optimal weights and bias of the corresponding ANN through several iterations. Finally, the
optimized ANN was employed as the prediction function. Fig. 4 showed the flowchart of ANN using GA
optimization.

3.4 Support Vector Regression (SVR)
Support vector classification (SVC) and support vector regression (SVR) were two main machine

learning methods in Support Vector Machines (SVMs) [31]. The epsilon-SVR with the library for support
vector machine (LIBSVM) package was employed in this study [32]. The use of LIBSVM involved two

Figure 3: ANN structure of 3 × 8 × 1

Table 5: The parameters of ANN model and GA

Model Parameter Value/type

ANN Training data (75%) 13

Testing data (25%) 4

Algorithm Lavenberg-Marquardt back-propagation

Number of hidden neurons 8

Transfer function for hidden layer Tansig

Transfer function for output layer Purelin

Number of training iteration 1000

Learning rate 0.1

GA Population size 40

Number of generations 50

Scaling function Rank

Selection function Stochastic uniform

Crossover function Single point

Crossover rate 0.7

Stopping criteria Function tolerance

Mutation function Uniform
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steps: firstly, training a dataset to obtain a model and secondly, using the model to predict information of a
testing dataset [32].

Given a set of training data{(xi, di), xi∈Rz, di∈R, i = 1, 2, ⋅ ⋅ ⋅ , n}, which xi and di was the z-
dimensional feature vector and the corresponding target output, respectively. The regression function was
considered as follows [33]:

y ¼ wTfðxÞ þ b (8)

where w and b were weight vector and bias respectively and f(x) was the nonlinear function.

Figure 4: Flow chart of artificial neural network optimized by genetic algorithm
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The SVR model was to find the minimum error for the desired space. Hence, the minimized objective
function and the constraints were as follows:

min
1

2
wTwþ C

Xn
i¼1

ðni þ n�i Þ

s:t:
di � yi � eþ ni
yi � di � eþ n�i

ni; n
�
i � 0; i ¼ 1; 2; � � � ; n

8<
:

8>>>>><
>>>>>:

(9)

where C was regularization constant; ξi and n�i were nonnegative slack variables. ε was the predetermined
threshold value of the insensitive loss function.

The dual Lagrange form was acquired by the Lagrange multipliers ai, a�i and kernel function K(xi, xj) as
following [32,34]:

max� 1

2

Xn
i¼1

Xn
j¼1

ðai � a�i Þðaj � a�j ÞKðxi; xjÞ �
Xn
i¼1

eðai þ a�i Þ þ
Xn
i¼1

yiðai � a�i Þ

s:t:

Pn
i¼1

ðai � a�i Þ ¼ 0

0 � ai � C
0 � a�i � C

8>><
>>:

8>>>>>>><
>>>>>>>:

(10)

where K(xi, xj) = f(xi)
Tf(xj)

After solving the above equation, the approximate function can be given by:

y ¼
Xn
i¼1

ðai � a�i ÞKðxi; xÞ þ b (11)

Radial basis function (RBF) was one of the most common kernels in the SVM model [33]. Radial basis
function (RBF) was defined as follows:

kðxi; xÞ ¼ expð�ckx� xik2Þ (12)

where γ was the hyperparameters.

The regularization constant C, epsilon ε, kernel type and hyperparameters γ strongly affected the
performance of the SVM model. In this study, the RBF kernel with γ = 0.25, C = 218 and
ε = 0.01 obtained the best performance by the grid search method [33,35].

3.5 Adaptive Neuro Fuzzy Inference System (ANFIS)
Adaptive neuro-fuzzy inference system (ANFIS) is a hybrid of neural networks and fuzzy inference

system (FIS), which includes the advantages of ANN and fuzzy logic [36,37]. An ANFIS toolbox in the
MATLAB R2018a is used to train and develop the proposed ANFIS model, which is based on the
Takagi-Sugeno FIS procedure [19,38].

In this study, an FIS was generated using Subtractive Clustering (SC) method, which assumed that each
data point was a potential cluster center and calculated the potential for each data point based on the density
of surrounding data points. Then a hybrid of the least squares and back-propagation method was applied to
train the FIS by constructing a Gaussian membership function (MF) [39]. The optimum values of the SC
model parameters were obtained through trial and error approach. Finally, the values for the range of
influence and squash factor were considered as 0.5 and 1.25, respectively. The values of the accepted
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ratio and rejected ratio parameters were considered 0.5 and 0.15, respectively. The various setting parameters
for training ANFIS models were listed in Table 6. ANFIS architecture was presented in Fig. 5.

3.6 Comparisons of Experimental and Predicted Values for Four AI Approaches
The plots for experimental and predicted values by the AI models using ANN, GA-optimized ANN,

SVR and ANFIS were graphically illustrated in Fig. 6. The coefficient of determination (R2) for AI
models were all above 95% in training data sets, which indicated all the AI models had superior
performance. In case of testing datasets, the (R2) values were in the order: GA-optimized ANN > SVR >
ANFIS > ANN. Table 7 showed the performances of the four AI methods for the shear strength. From

Table 6: The parameters of ANFIS model

Parameter Value/type

Training data (75%) 13

Testing data (25%) 4

Number of fuzzy rules 13

Number of MFs 13

Membership function Gaussian

Training epoch number 40

Training error goal 0

Fuzzy structure Takagi-Sugeno

FIS type Subtractive clustering

Optimization method Hybrid (least square and back-propagation technique)

Output function Linear

Figure 5: ANFIS architecture for three inputs and single output
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Table 7, the value of R2 in the testing datasets was highest for GA-optimized ANN followed by SVR model
(i.e., 0.9944 and 0.9778, respectively). The values of RMSE andMAE in the testing datasets were lowest for
GA-optimized ANN followed by SVR and ANFIS model, respectively. The prediction results of the GA-
optimized ANN model were satisfactory compared with the performances of the other AI methods.
Hence, the GA-optimized ANN model will be combined with the genetic algorithm (GA) to find the
optimal combination of factors in the next section.

3.7 Numerical Optimization and Sensitivity Analysis of the Process Variables
Though, ANORA adequately predicted the optimization conditions, which falling into local

convergence. Therefore, researchers have developed an optimization tool that can be capable of
predicting the optimization conditions globally [6]. The optimization of the three process variables
investigated to maximize the shear strength of the cassava starch adhesive was performed using the GA
tool kit in MATLAB R2018a (MathWorks Inc., Natick, USA).

Figure 6: Comparison of actual and predicted results for shear strength using (a) ANN, (b) GA-optimized
ANN, (c) SVR, and (d) ANFIS
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The pre-trained GA-optimized ANN model was used as the fitness function for the Genetic algorithm
program, which was used for the optimization. The objective of the GA optimization algorithm was the
maximization of the shear strength. The upper and lower levels of the experimental input variables were
used as the constraints of the NSGA-II algorithm. The properties of the GA used in the optimization
process were shown in Table 8. In Fig. 7, it was observed that during the selection of the best fitness
value almost 88 generation were analyzed by globally genetic algorithm (GA) approach and reached to
the maximum shear strength value of 0.90 MPa. The values obtained from the GA optimization were
validated by conducting the experiments for repeating 3–5 times with a comparison between reported
average values and predicted values. Adhesion tests indicated that the shear strength of 0.92 MPa under
the numerical optimal combination (i.e., the starch content of 40% (w/v), NaOH concentration of
6% (w/w), and the reaction temperature of 80°C) was better than that of 0.88 MPa under the orthogonal
experimental optimized condition. The relative error between the adhesion test result and numerical
optimized value of the shear strength were found as 2.17%. Moreover, a NaOH concentration of
6% (w/w) was considered as the best content in terms of economy. Therefore, the finalized optimized
cassava starch adhesives (CSA-OP) was obtained by a combination of GA-optimized ANN and GA.

The sensitivity analysis determined the relative importance of each input variable on the output variation
[28]. In this study, sensitivity analysis on the GA-optimized ANN model was using the method proposed by
Chakrabarty et al. (Eq. (13)), which was based on neural network weight matrices [40,41]. Considering a
well-trained MLP model (m × n × 1), the relative importance of input variables can be calculated as
follows [42]:

Step 1. A row vector,M (1 × n), is the interconnection weights between the hidden layer nodes (n nodes)
and the output layer nodes.

Table 7: Performance results for various prediction model

Prediction model Training data Testing data

RMSE MAE R2 RMSE MAE R2

ANN 0.0178 0.0088 0.9691 0.0914 0.0807 0.9182

GA-optimized ANN 0.0188 0.0085 0.9725 0.0208 0.0202 0.9944

SVR 0.0018 0.0018 0.9996 0.0466 0.0428 0.9778

ANFIS 3.4643E-8 2.6869E-8 1 0.0555 0.0446 0.9777

Table 8: GA optimization parameters

Parameter Value/type

Population type Double vector

Population size 50

Selection function Tournament of size 10

Crossover fraction 0.95

Mutation function Adaptive feasible

Crossover function Heuristic (Ratio: 1.6)

Stopping criteria function tolerance 1e-5

Direction for migration Forward with migration fraction set to 0.2

JRM, 2022, vol.10, no.12 3275



Step 2. An m × n matrix, W, is the interconnection weights between the input layer nodes (m) and the
hidden layer nodes (n).
Step 3. Calculate the row vector, R = MWT, and R = [r1 r2 r3…rm].
Step 4. The relative importance RIi of each input node i (i = 1 to m) was calculated as follows:

RIi ¼ riPm
i¼1 jrij

� 100% (13)

The relative importance RI can be used to estimate the comparative significance of each input variable on
the shear strength. After conducting the above method presented in Eq. (13), the relative importance (RI) of
three variables for the shear strength by GA-optimized ANN was estimated. RI values of 52.54%, 34.91%
and 12.55% were obtained for the starch content, NaOH concentration and reaction temperature,
respectively. The obtained results were in good agreement with ANOVA results.

3.8 FTIR Analysis of the Cassava Starch and CSA-OP
The infrared spectra of the cassava starch and CSA-OP were shown in Fig. 8. The FTIR spectra of the

cassava starch and CSA-OP were very similar, and the intensities of the peaks were apparently decreased
for the CSA-OP, which may be due to the amylolysis of the starch [43]. The characteristic peak at about
3400 cm−1 was -O-H stretching vibration of amylose and amylopectin [44]. In this band, the location of
the absorption peak changed from 3391 to 3432 cm−1, which may be attributed to the hydrogen bonds
dissociation [45]. Furthermore, the absorption peak intensity of cassava starch was higher than that of the
CSA-OP. The stronger and wider absorption peak at 3391 cm−1 for cassava starch demonstrated
high proportion of amylopectin and hydroxyl groups in cassava starch [46]. The characteristic peak at
2927 cm−1 was caused by the antisymmetric vibration of -CH2 groups [47,48]. The characteristic peak at
1650 cm−1 was due to C−O stretching vibration and the water molecules absorbed in the amorphous
region [44–45,47,49]. Moreover, the characteristic peak at 1160 cm−1 was attributed to glucosidic C-O-C
vibration, 1080 cm−1 was corresponded to D-glucopyranose and hydroxyl-linked C-O stretching and

Figure 7: Fitness plot of GA-optimized ANN model coupled genetic algorithm optimization
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vibration [50]. The characteristic peaks at around 928 cm−1 and 764 cm−1 were due to glycoside bonds
vibrations and C–C stretch [51], respectively. The characteristic peaks at 859 cm−1 and 578 cm−1

represented the alkyl C-H swing vibration of the starch [49].

3.9 TGA Analysis of the Cassava Starch and CSA-OP
The thermal stability of the cassava starch and CSA-OP were evaluated by the thermos-gravimetric

analysis (TGA). The thermo-gravimetric (TG) and corresponding differential thermos-gravimetric (DTG)
curves were shown in Figs. 9a and 9b, respectively.

The thermos-gravimetric curves of the cassava starch in Fig. 9a can be separated into three stages at
25∼150°C, 150∼500°C, and 500∼800°C, respectively. The mass loss rate below about 150°C was
mainly caused by the evaporation of free water [45–47,49]. The large mass loss rate of the main
decomposition stage (150∼500°C) was attributed to the starch thermal decomposition. As shown in
Table 9, the residue of cassava starch was lower than that of CSA-OP due to the cassava starch had more
hydroxyl groups according to the results of FTIR. During the thermal decomposition, the hydroxyl
groups were the source of H2O, H2, CO2, and CH4 gases and so resulting in the reduction of residue for
cassava starch [46].

The mass loss of CSA-OP showed three stages. The first stage was 25∼240°C, the second stage was
240∼500°C and the third stage was 500∼800°C. The mass loss rate of the first stage were caused by the
evaporation of water and monomers [48]. The second stage between 240°C and 500°C was the main
decomposition stage. The mass loss rate with about 240°C and 500°C was due to the dehydration of
starch molecular chains and the complete decomposition of adhesive residues [48,52]. The mass loss rate
decreased slowly in the third stage.

Figure 8: FTIR of the cassava starch and CSA-OP
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The peak of decomposition temperature (Tp) was the temperature when the weight loss rate attained the
maximum value, which can be obtained from the peaks in the DTG curves. There was only one peak in the
DTG curve of the cassava starch as shown in Fig. 9b, and the value of Tp was 323.7°C. However, there were
two peaks in the DTG curve of CSA-OP.

The initial decomposition temperature (T0) and the peak of decomposition temperature (Tp) of cassava
starch were higher than that of CSA-OP as shown in Table 9. The reason of this phenomenon may be that the
hydrogen bonds between starch molecules were broken in NaOH solution [43,48], which was consistent with
the results of FTIR. As shown in Fig. 9b, the CSA-OP had the lower peak height than that of the cassava
starch. Furthermore, the final temperature (Tf) of CSA-OP were close to that of the cassava starch. The
reason of this phenomenon may be that the crosslinking reaction inhibited the decomposition of adhesive
residues, which can be verified by the improvement of adhesive residues [4,48,53].

3.10 SEM-EDS Analysis of the Cassava Starch and CSA-OP
The SEM images of the cassava starch and CSA-OP were shown in Fig. 10. From the Fig. 10a, it can

been seen that the cassava starch granules were regular and spherical. Cassava starch could be easily
gelatinized to obtain uniform glues due to the higher amylopectin content [4,46]. As can be seen in
Fig. 10b, the surface of the CSA-OP was smooth and compact, indicating that the starch molecules were
tightly bonded together and uniform [48].

The relative content of major elements of samples from the EDS analysis (Fig. 11) were shown in
Table 10. The main components were C and O, which indicated that the cassava starch and CSA-OP
mainly contained abundant carbon and oxygen functional groups as shown in FTIR analysis. It was also
found that the mass fraction of main components of the cassava starch was relatively higher than that of

Figure 9: TGA results of the cassava starch and CSA-OP: (a) TG curves; (b) DTG curves

Table 9: The initial temperature (T0), peak temperature (Tp) and final temperature (Tf) of the cassava starch
and CSA-OP

Sample T0 (°C) Tp (°C) Tf (°C) Residues (%)

Cassava starch 312.7 323.7 338.1 16.03

CSA-OP 245.7 251.1, 268.6 323.4 27.89
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the CSA-OP, while the content of oxygen atom of the CSA-OP was higher than that of the cassava starch. The
reason of this phenomenon may be that the starch molecules were amylolysis in NaOH solution [43], which
given rise to an increase in the content of oxygen atom. Besides, the NaOH can react with the hydroxyl
groups to weaken the hydrogen bonds, and make the adhesives having appropriate fluidity and adhesion [43].

Figure 10: The SEM images of (a) cassava starch and (b) CSA-OP

Figure 11: SEM micrograph and EDS plot of (a) the cassava starch, (b) CSA-OP

Table 10: The relative content of elements of the cassava starch and CSA-OP

Element Cassava starch CSA-OP

Weight (%) Atomic (%) Error (%) Weight (%) Atomic (%) Error (%)

C 54.03 61.02 7.9 47.76 42.54 7.5

O 45.97 38.98 7.6 44.28 52.53 6.9

Na – – – 7.96 4.93 0.6

Total 100.00 100.00 – 100.00 100.00 –
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4 Conclusions

In this research, four artificial intelligence (AI) models, namely artificial neural network (ANN), artificial
neural network optimized by genetic algorithm (GA-optimized ANN), support vector regression (SVR), and
adaptive neuro fuzzy inference system (ANFIS) were successfully applied to predict and optimize the shear
strength in preparation of the CSA-OP. By means of ANORA and ANOVA based on the orthogonal
experiment design, the optimal combination and the degree of influence of three experimental variables
were obtained. While the genetic algorithm (GA) integrated with the GA-optimized ANN model was
used to optimize the experimental variables, which was better than that of ANORA results based on the
orthogonal experimental. In addition, the sensitivity analysis indicated that the starch content had the
most significant effect on the shear strength, followed by NaOH concentration and reaction temperature,
which was in agreement with ANOVA results. FTIR results showed that the hydroxyl groups of the
cassava starch was higher than that of the CSA-OP. TGA results showed that the residue of the CSA-OP
was higher than the cassava starch. SEM-EDS results showed that there were abundant carbon and
oxygen functional groups in the cassava starch and CSA-OP. In conclusion, the obtained results revealed
that the use of AI methods was an adequate approach to model and optimize the experimental variables
of the shear strength of cassava starch adhesives though the process of adhesives still needed to be improved.
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