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ABSTRACT

Rosewood is a kind of high-quality and precious wood in China. The correct identification of rosewood species is
of great significance to the import and export trade and species identification of furniture materials. In this paper,
micro CT was used to obtain the micro images of cross sections, radial sections and tangential sections of 24 kinds
of rosewood, and the data sets were constructed. PCA method was used to reduce the dimension of four features
including logical binary pattern, local configuration pattern, rotation invariant LBP, uniform LBP. These four fea-
tures and one feature not reducing dimension (rotation invariant uniform LBP) was fused with Gray Level Co-
Occurrence Matrix and Tamura features, respectively, a total of five fused features LBP+GLCM+Tamura, LCP
+GLCM+Tamura, LBPu2

P;R+GLCM+Tamura, LBPri
P;R+GLCM+Tamura and LBPriu2

P;R +GLCM+Tamura were
obtained. The five fused features were classified by extreme learning machine and BP neural network. The clas-
sification effect of feature LBPu2

P;R+GLCM+Tamura combined with extreme learning machine was the best, and
the classification accuracy of cross, radial and tangential sections reached 100%, 97.63% and 94.72%, respectively,
which is 0.83%, 2.77% and 5.70% higher than that of BP neural network. The classification running time of ELM
is less than 1 s, and the classification efficiency is high. In conclusion, the LBPu2

P;R+GLCM+Tamura method com-
bined with extreme learning machine can be used as a quick and accurate classifier, providing an efficient and
feasible classification method of rosewood.
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1 Introduction

Wood, with the characteristics of ecological and environment-friendly, is an anisotropic biomass
material. There are many kinds of wood, and there are great differences among different families and
genera. The characteristics of similarity and difference appear in different wood in a family and genus.
The category of wood is difficult to identify through macro structure, such as color, material and texture
[1,2]. Experienced experts are needed for wood identification, according to the distribution of wood
microstructure, such as vessel pores, wood rays and axial parenchyma in cross sections, radial sections
and tangential sections [3–5]. Although this identification method is very effective, the standard of wood
scientific knowledge and skills of personnel is highly required in order to realize wood classification
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[6,7]. Comparing with traditional anatomical methods, a micro CT was used to collect the images of cross
sections, radial sections and tangential sections of wood, and thousands of wood images were generated
efficiently in a short time.

Some specific features of the micro images of wood were extracted for feature fusion, which were
combined with ELM (Extreme Learning Machine) classifier to realize the rapid recognition of wood
through cross section, radial section and tangential section. The method of feature fusion could combine
the advantages of different features to improve the classification accuracy [8,9]. Ahmad et al. [10] applied
the method of deep feature fusion to waste classification to obtain high classification accuracy. Zhao et al.
[11] fused the characteristics of wood texture and spectrum, and BP neural network was used for wood
classification, with a correct rate of 90%. After the fusion of texture and near-infrared spectral features,
SVM (Support Vector Machine) was adopted by Wang et al. [12]. The accuracy could reach 100%
without interference, and the classification accuracy was better than the traditional algorithm in the case
of image distortion. The above feature fusion methods were based on spectral images, but a variety of
texture features were extracted, fused and classified from micro images in this paper.

ELM, as a single hidden layer feedforward neural network algorithm, was widely used in image
classification [13,14], data label classification [15], fingerprint classification [16] and other fields, with
good learning efficiency and generalization performance. Xiao et al. [17] classified 180 samples of
6 kinds of construction waste obtained by hyperspectral technology, and the accuracy of ELM can reach
100%, showing a strong classification ability. Yang et al. [18] extracted the data characteristics of wood
defects and used the ELM for classification. The accuracy rate reached 96.72% within 187 ms. Some
researchers [19,20] used ELM to classify the spectral images of wood, and the classification accuracy
reached more than 97%. Xiang et al. [21] proposed a wood classification algorithm based on LBP-
DEELM (Local Binary Pattern-DE-ELM) model, which has better classification accuracy than BP neural
network and SVM algorithm.

In this paper, the PCA (Principal Component Analysis) method was used to reduce the dimension of four
features logical binary pattern (LBP), local configuration pattern (LCP), rotation invariant LBP (LBPri

P;R),
uniform LBP (LBPu2

P;R) and one original feature (LBPriu2
P;R ) was respectively fused with GLCM and Tamura

features respectively, a total of five fused features LBP+GLCM+Tamura (LBP+G+T), LCP+GLCM+Tamura
(LCP+G+T), LBPu2

P;R+GLCM+Tamura (LBPu2
P;R+G+T), LBPri

P;R+GLCM+Tamura (LBPri
P;R+G+T) and

LBPriu2
P;R+GLCM+Tamura (LBPriu2

P;R+G+T) were obtained. Using ELM and BP neural network methods, five
fused features were classified. LBPu2

P;R+G+T method showed excellent classification performance with ELM
and BP neural network classification.

2 Materials and Dataset

2.1 Experimental Materials
According to the rosewood standard formulated by China in 2017, rosewood is divided into 29 species.

This paper takes 24 species of rosewood as the research objects from 3 families (Papilionaceae, Ebenaceae,
Caesalpiniaceae) and 5 genera (Pterocarpus, Dalbergia, Millettia, Senna, Diospyros). Among them,
Pterocarpus includes 4 species: Pterocarpus santalinus L.f., Pterocarpus erinaceus, Pterocarpus indicus
and Pterocarpus macrocarpus. Dalbergia includes 13 species: Dalbergia odorifera T. Chen, Dalbergia
cultrata, Dalbergia latifolia, Dalbergia louvelii R.Vig, Dalbergia melanoxylon, Dalbergia stevensonii
Standl, Dalbergia bariensis Pierre, Dalbergia cearensis Ducke, Dalbergia cochinchinensis Pierre,
Dalbergia frutescens Var.tomentosa (Vogel) Benth, Dalbergia granadillo Pittier, Dalbergia oliveri Prain,
Dalbergia retusa Hemsl. Millettia includes 2 species: Millettia laurenlii De Wild, Millettia leucantha.
Senna includes 1 species: senna siamea. Diospyros includes 4 species: Diospyros sp., Diospyros
crassiflora, Diospyros celebica, Diospyros sp. The Latin names of 24 kinds of rosewood, the types of
vessel pores, family names and origin information were given in Table 1. The experimental materials
were taken from the Specimens Museum of the Shandong Jianzhu University (Jinan, China).
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2.2 Dataset Construction
The wood was prepared into small specimens with a size of 5 mm × 5 mm × 20 mm and scanned by

micro-CT (SKYSCAN1272). The specimens and equipment are shown in Fig. 1. The specimen was put
into the micro-CT and fixed well. The scanning parameters were set to 50 kV, 200 mA, and the scanning
resolution was 2 μm. The height of the specimen was set to about 10 mm, and the scanning time of each
specimen was about 100 min. After the scanned specimens were reconstructed, images of cross sections,
radial sections and tangential sections of wood could be obtained.

Table 1: Material information of 24 rosewood species in the experiment

ID Latin name Wood type Place of
origin

Species/genus

1 Pterocarpus santalinus L.f. Diffuse-porous India Papilionaceae

2 Pterocarpus erinaceus Diffuse-porous Africa Papilionaceae

3 Pterocarpus indicus Diffuse-porous Indonesia Papilionaceae

4 Pterocarpus macrocarpus Diffuse-porous Myanmar Papilionaceae

5 Dalbergia odorifera T. Chen Diffuse-porous/semi-ring
porous wood

Hainan Papilionaceae

6 Dalbergia cultrata Diffuse-porous Myanmar Papilionaceae

7 Dalbergia latifolia Diffuse-porous Indonesia Papilionaceae

8 Dalbergia louvelii R.Vig Diffuse-porous Madagascar Papilionaceae

9 Dalbergia melanoxylon Diffuse-porous Tanzania Papilionaceae

10 Dalbergia stevensonii Standl semi-ring porous wood Mexico Papilionaceae

11 Dalbergia bariensis Pierre Diffuse-porous Laos Papilionaceae

12 Dalbergia cearensis Ducke Diffuse-porous Brazil Papilionaceae

13 Dalbergia cochinchinensis Pierre Diffuse-porous Laos Papilionaceae

14 Dalbergia frutescens Var.tomentosa
(Vogel) Benth

Diffuse-porous/semi-ring
porous wood

Brazil Papilionaceae

15 Dalbergia granadillo Pittier Diffuse- porous Mexico Papilionaceae

16 Dalbergia oliveri Prain Diffuse-porous/semi-ring
porous wood

Wah City Papilionaceae

17 Dalbergia retusa Hemsl Diffuse-porous Nicaragua Papilionaceae

18 Millettia laurenlii De Wild Diffuse-porous Congo Papilionaceae

19 Millettia leucantha Diffuse-porous Myanmar Papilionaceae

20 senna siamea Diffuse-porous Myanmar Caesalpiniaceae

21 Diospyros ebenum Koenig Diffuse-porous Philippines Ebenaceae

22 Diospyros crassiflora Diffuse-porous Cameroon Ebenaceae

23 Diospyros celebica Diffuse-porous Sulawesi Ebenaceae

24 Diospyros philippinensis Gurke Diffuse-porous Philippines Ebenaceae
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There were 3000 images collected from each specimen, including 1000 images from the cross sections,
1000 images from the radial sections and 1000 images from the tangential sections. 100 images were
randomly selected from each section and then randomly cut into sub-images with the size of 500 px ×
500 px, which were used to construct the data set of wood three sections. Ultimately, 7200 micro images
of wood were obtained, which came from 2400 images of each tangential section, radial sections section
and tangential section of 24 tree species, for the training of ELM and BP neural network.

3 Method

3.1 Feature Extraction
The logical binary pattern (LBP), uniform LBP (LBPu2

P;R), rotation invariant LBP (LBPri
P;R), rotation

invariant uniform LBP (LBPriu2
P;R ), local configuration pattern (LCP), 5 forms were to extract cross

sections, radial sections and tangential sections of 24 wood species in this paper.

3.1.1 LBP (Logical Binary Pattern)
LBP is a kind of operator to describe texture features, which was first proposed by Ojala et al. [22]. The

original LBP operator is defined as a 3 × 3 window, taking the center pixel of the window as the threshold and
comparing it with the gray value of the 8 adjacent pixels. If the surrounding pixel is larger than the center
pixel, it is marked as 1; otherwise, it is marked as 0. Eight points produce an 8-bit unsigned number, the
LBP value of the form, which represents the texture information for the expected region. By replacing the
square neighborhood with a circular neighborhood, the 3 × 3 window of the classical LBP operator is
extended to an arbitrary range of radius R. Circular LBP operator was proposed by Ojala et al. [23] in
2002. The mathematical expression of circular LBP operator is:

wðxÞ ¼ 1 ; x � 0
0 ; x < 0

�
(1)

Figure 1: Acquisition of micro images. (A) is original samples; (B) is scanning specimens; (C) is scanning
equipment; (D) are micro images
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LBPP;R ¼
XP�1

i¼0

wðgi � gcÞ � 2i (2)

3.1.2 Uniform LBP
Uniform pattern is defined as LBP binary pattern, there are two jumps from 0 to 1 or from 1 to 0 at most.

For example, 00001000 (two jumps, 0-1,1-0) and 00110000 (0-1,1-0) are uniform patterns. The formula of
uniform pattern is as follows:

UðLBPP;RÞ ¼ sðgp�1 � gcÞ�sðg0 � gcÞj
�� þ

XP�1

i¼1

sðgi � gcÞ�sðgi�1 � gcÞjj (3)

When U ≤ 2 is in uniform pattern, it is expressed by LBPu2
P;R. The feature dimension of texture features is

reduced from 2P to P(P − 1) + 2, and the types of binary modes are greatly reduced.

3.1.3 Rotation Invariant LBP
In order to make the LBP operator rotation invariant, Ojala et al. [23] proposed the concept of Rotation

Invariant LBP. By rotating clockwise for one revolution according to the number of adjacent points, different
binary codes can be obtained in the circular region. The rotation invariant property is described by the LBP
value of the region, which is the minimum value in binary coding. The mathematical expressions are as
follows:

LBPri
P;R ¼ minfRORðLBPP;R; iÞ; i ¼ 0; 1; � � � ;P � 1g (4)

ROR(x, i) is a function used to rotate, performing a circular bit-wise right shift on the x-bit binary number
by i times.

3.1.4 Rotation Invariant Uniform LBP
Combining the rotation invariant LBP with the uniform pattern to obtain the Rotation invariant uniform

LBP, which has better effect. It is represented by symbols LBPriu2
P;R , and the expression is as follows:

LBPriu2
P;R ¼

PP�1

i¼0
sðgi � gcÞ;UðLBPP;RÞ � 2

P þ 1

8<
: (5)

3.1.5 LCP (Local Configuration Pattern)
LCP model is used to describe the texture features of images. The algorithm consists of two parts: the

traditional LBP texture feature and the microscopic structure feature. By combining the above two features,
the image information expression of LCP model is more detailed [24]. LBP features are calculated by
comparing the gray values of a pixel with those of neighboring points. The structure of the LCP is
illustrated in Fig. 2.

In addition to LBP and its deformation features, GLCM (Gray Level Co-Occurrence Matrix) and Tamura
features were extracted, respectively. GLCM feature is a common method to describe texture by researching
the spatial correlation characteristics of image gray scale. Inspired by human visual perception and
psychological research, six Tamura texture features have been proposed. Roughness, contrast, directivity,
linearity, regularity and roughness are used to extract texture features of micro images in this paper.
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3.2 PCA Principle and Feature Dimension Reduction
PCA (Principal Component Analysis) is a method to build a new feature set by combining the existing

features to remove redundant features and reduce dimension. On the premise of better representing the
original feature data, PCA essentially projects the sample data in high-dimensional space to low-
dimensional space through linear transformation [25,26].

Assuming that there are N training images with the size ofm × n and the dimension ofM =m × n, the i-th
image is represented by one-dimensional vector xi, and N images can be represented as a training set X, as
shown in formula (6):

X ¼ fx1; x2; � � � ; xNg (6)

The mean value of training samples �x can be expressed as (7):

�x ¼ 1

N

XN
i¼1

xi (7)

The difference between the training sample and the sample mean A ¼ ½x1 � �x; x2 � �x; � � � ; xN � �x�, the
covariance matrix of the training sample set S, as (8) shows

S ¼
XN
i¼1

ðxi � �xÞðxi � �xÞT ¼ AAT (8)

Obviously, the covariance matrix S is a real symmetric matrix, and the existence of matrix u makes S
similar to the diagonal matrix, as shown in (9):

uTSu ¼ ½u1; u2; � � � ; uk ; � � � ; uM �TS½u1; u2; � � � ; uk ; � � � ; uM � ¼
λ1 � � � 0
..
. ..

.

0 � � � λM

0
B@

1
CA (9)

Among them λ1; λ2; � � � ; λM is the eigenvalue of covariance matrix S. u1; u2; � � � ; uM is the feature vector
corresponding to the covariance matrix. Selection of principal components and the M feature values are
arranged in order of size. Select the feature vector corresponding to the first k maximum feature values,
that is the final projection data. The selected projection data features are combined with classifiers for
recognition and classification.

Local structure

Microscopic 
configuration

Microscopic features

Local features

Mic

LBP

Image configuration

Pixel-wise interaction 
relationships

LCP

Figure 2: A structure for feature extraction of LCP
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3.3 Feature Fusion
For features (LBP, LCP, LBPri

P;R and LBPu2
P;R) with more feature dimensions, the classification takes a long

time. Therefore, after PCA dimensionality reduction, the projection data corresponding to the first 20 maximum
eigenvalues is selected as the feature vector. After dimensionality reduction LBP, LCP, LBPri

P;R and LBPu2
P;R are

fused with GLCM and Tamura features respectively to obtain LBP+G+T, LCP+G+T, LBPu2
P;R+G+T and

LBPri
P;R+G+T fused features, as shown in Fig. 3. Because the feature dimension of LBPriu2

P,R is only
10 dimensions and the feature dimension is less, dimension reduction is not carried out, and it is directly
fused with the features of GLCM and Tamura to obtain LBPriu2

P;R+G+T.

Cross Section

Radial Section 

Tangential Section

Three sections

PCA

PCA

PCA

PCA

Feature extraction PCA dimension reduction Feature fusion

GLCM feature
(5 dimensions)

Tamura feature
(6 dimensions)

LBP feature
(20 dimensions)

feature
(20 dimensions)

LBP+G+T

+G+T

+G+T

+G+T

feature
(20 dimensions)

LCP feature
(20 dimensions)

feature
(10 dimensions)

feature
(36 dimensions)

feature
(59 dimensions)

LCP feature
(81 dimensions)

LBP feature
(256 dimensions)

U,2
P,RLBP

ri
P,RLBP

riu2
P,RLBP

ri
P,RLBP

U,2
P,RLBP

ri
P,RLBP

riu2
P,RLBP

U,2
P,RLBP

LCP+G+T

Figure 3: PCA reduction dimension and feature fusion

3.4 Classification
In view of the cross sections, radial sections and tangential sections of each species in 24 kinds of

rosewood, five feature fusion methods (LBP+G+T, LCP+G+T, LBPu2
P;R+G+T, LBPri

P;R+G+T and
LBPriu2

P;R +G+T) were used to obtain the features. ELM and BP neural network were used to classify the
five fusion features obtained from each section. The data of training set and test set were 70% and 30%,
respectively.

ELM is a new single hidden layer feedforward neural network proposed by Huang [27]. This algorithm
does not require complex iterative calculation, which is straightforward to select parameters, rapid learning
speed and good generalization performance [17]. By setting the number of hidden layer nodes, the network
can generate a unique optimal solution through random input weights and hidden layer bias. For the five
fused features, the number of nodes in the hidden layer is set as 50 in this paper.

The BP neural network consists of three layers: the input layer, the hidden layer and the output layer. The
hyperbolic tangent function tanh was used as the transfer function from the input layer to the hidden layer,
and the purelin function was used as the transfer function from the hidden layer to the output layer. The
training times were 1000 and the learning rate was 0.01, the error rate of the training target was 0.00001,
the momentum parameter was 0.01, and the minimum performance gradient was 1e−6.

4 Results and Analysis

The classification results of five fused features by ELM and BP neural network were given in this paper,
and the classification performance of the two classifiers in cross sections, radial sections and tangential
sections were compared.
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4.1 Classification of ELM
Five fused features (LBP+G+T, LCP+G+T, LBPu2

P;R+G+T, LBP
ri
P;R+G+T and LBPriu2

P;R +G+T) were
combined with ELM to classify cross sections, radial sections and tangential sections. From Fig. 4, it is
known that all the five features exhibit the highest classification accuracy of the cross sections, followed
by the radial sections, and ultimately the tangential sections. The classification accuracy of LBPri

P;R+G+T
is low in three sections, and the accuracy of cross sections, radial sections and tangential sections are
96.67%, 88.75% and 73.19%. The classification effect of LBPu2

P;R+G+T feature is the best, and the
accuracy of cross sections, radial sections and tangential sections is 100%, 97.63% and 94.72%.

4.2 BP Neural Network Classification
Five fused features (LBP+G+T, LCP+G+T, LBPu2

P;R+G+T, LBP
ri
P;R+G+T and LBPriu2

P;R +G+T) were
combined with BP neural network to classify the cross sections, radial sections and tangential sections.
As can be seen from Fig. 5, the five fused features show that the classification accuracy of cross sections
is the highest, followed by radial sections, and finally tangential sections. LBPri

P;R+G+T has low accuracy
in the classification of three sections, and the accuracy of cross, radial and tangential sections is 94.86%,
86.67% and 80.97%. The classification effect of feature LBPu2

P;R+G+T is the best, and the accuracy of
cross, radial and tangential sections is 99.17%, 94.86%, 89.02%.
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Figure 4: Classification of three sections by ELM

Classification of three sections by BP neural network
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Figure 5: Classification of three sections by BP neural network
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4.3 Comparison of ELM and BP Neural Network Results
In order to evaluate the performance of the two classifiers, the classification results of ELM and BP

neural network in three sections are compared, as shown in Fig. 6. In the classification of cross sections
as shown in (A), the classification accuracy of ELM is higher than that of BP neural network. In the
classification of radial sections as shown in (B), except for LCP+G+T features, the classification accuracy
of other four features ELM is higher than that of BP neural network. In the classification of tangential
sections as shown in (C), except for LBPri

P;R+G+T features, the classification accuracy of the other four
features ELM is higher than or equal to that of BP neural network. Consequently, in the classification
of three sections, the classification effect of ELM for the fused features (LBPu2

P;R+G+T, LBP
riu2
P;R +G+T,

LBP+G+T) is better than that of BP neural network.

As can be seen from Table 2, among the five fusion features classified by ELM and BP neural network,
LBPu2

P;R+G+T has the best effect. Combined with BP neural network classification, the classification
accuracy of cross sections, radial sections and tangential sections are 99.17%, 94.86% and 89.02%,
respectively, and the time taken is 230.82, 236.15 and 215.53 s. After ELM classification, the
classification accuracy of cross sections, radial sections and tangential sections is improved by 0.83%,
2.77% and 5.7%, respectively, and the classification time is only 0.72, 0.70 and 0.68 s. ELM classifier
not only reduces operation time, but also improves classification accuracy.

Figure 6: Compared the classification results of ELM and BP neural network in three sections, (A) is Cross
sections classification accuracy; (B) is radial sections classification accuracy; (C) is tangential sections
classification accuracy
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5 Conclusions

1. In the classification of three sections using five fused texture features (LBP+G+T, LCP+G+T,
LBPu2

P;R+G+T, LBP
ri
P;R+G+T and LBPriu2

P;R +G+T) combined with ELM and BP neural network, the
classification accuracy of the cross sections was the highest, followed by the radial sections, and
ultimately the tangential sections. The classification accuracy of the cross sections is higher than
that of the radial and tangential sections, indicating that the cross sections contain a large amount of
texture information of wood micro images, which should be considered as an important factor for
classification. Meanwhile, the radial and tangential sections also contain a large amount of micro
image information, which can be used as an important reference basis for classification.

2. Among the five texture feature fusion methods, LBPu2
P;R+G+T method shows excellent classification

performance in ELM and BP neural network classification. The classification effect of LBPu2
P;R+G

+T combined with ELM is the best. The classification accuracy of cross sections, radial sections
and tangential sections reaches 100%, 97.63% and 94.72% respectively, which is 0.83%, 2.77% and
5.70% higher than that of BP neural network. The classification running time of ELM is less than
1 s, and the classification efficiency is high. In conclusion, the LBPu2

P;R+G+T method combined with
ELM can be a quick and accurate classifier, providing an efficient and feasible classification method
of rosewood.
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Table 2: Classification results of ELM and BP neural network

Classifier Feature fusion Cross sections Radial sections Tangential sections

Accuracy
(%)

Time
(s)

Accuracy
(%)

Time
(s)

Accuracy
(%)

Time
(s)

ELM

LBP+G+T 98.05 0.72 91.39 0.73 84.44 0.71

LCP+G+T 96.94 0.65 85.83 0.71 84.44 0.72

LBPri
P,R+G+T 96.67 0.68 88.75 0.70 73.19 0.73

LBPriu2
P,R +G+T 99.16 0.69 97.22 0.65 85.83 0.64

LBPu2
P,R+G+T 100.00 0.72 97.63 0.70 94.72 0.68

BP
neural
network

LBP+G+T 98.05 229.63 89.72 242.23 82.63 235.46

LCP+G+T 95.83 200.02 86.94 268.25 84.44 255.95

LBPri
P,R +G+T 94.86 206.34 86.67 236.15 80.97 261.74

LBPriu2
P,R +G+T 96.11 112.22 87.36 177.01 82.22 145.27

LBPu2
P,R+G+T 99.17 230.82 94.86 236.15 89.02 215.53

3596 JRM, 2022, vol.10, no.12



References
1. Barmpoutis, P., Dimitropoulos, K., Barboutis, I., Grammalidis, N., Lefakis, P. (2017). Wood species recognition

through multidimensional texture analysis. Computers and Electronics in Agriculture, 144(4), 241–248. DOI
10.1016/j.compag.2017.12.011.

2. Jahanbanifard, M., Beckers, V., Koch, G., Beeckman, H., Gravendeel, B. et al. (2020). Description and evolution
of wood anatomical characters in the ebony wood genus Diospyros and its close relatives (Ebenaceae): A first step
towards combatting illegal logging. IAWA Journal, 41(4), 577–619. DOI 10.1163/22941932-bja10040.

3. IAWA Committee (2004). IAWA list of microscopic features for softwood identification. IAWA Journal, 25(1), 1–
70. DOI 10.1163/22941932-90000349.

4. Wheeler, E. A. (1989). IAWA list of microscopic features for hardwood identification. IAWA Journal, 10(3),
219–332.

5. Helmling, S., Olbrich, A., Heinz, I., Koch, G. (2018). Atlas of vessel elements. IAWA Journal, 39(3), 249–352.
DOI 10.1163/22941932-20180202.

6. Kamal, K., Qayyum, R., Mathavan, S., Zafar, T. (2017). Wood defects classification using laws texture energy
measures and supervised learning approach. Advanced Engineering Informatics, 34, 125–135. DOI 10.1016/j.
aei.2017.09.007.

7. Stepanova, A. V., Vasilyeva, N. A. (2021). Wood identification of an ancient Greek coffin from the Bosporan
Kingdom. IAWA Journal, 42(2), 209–215. DOI 10.1163/22941932-bja10048.

8. Yusof, R., Rosli, N. R., Khalid, M. (2010). Using gabor filters as image multiplier for tropical wood species
recognition system. IEEE 2010 12th International Conference on Computer Modelling and Simulation, pp.
289–294. Cambridge, UK.

9. Yan, M. Z., Wang, H. Y., Wu, Y. Y., Cao, X. X., Xu, H. L. (2021). Detection of chlorophyll content of Epipremnum
aureum based on fusion of spectrum and texture features. Journal of Nanjing Agricultural University, 44(3), 568–
575. DOI 10.7685/jnau.2020060131.

10. Ahmad, K., Khan, K., Al-Fuqaha, A. (2020). Intelligent fusion of deep features for improved waste classification.
IEEE Access, 8(99), 96495–96504. DOI 10.1109/ACCESS.2020.2995681.

11. Zhao, P., Dou, G., Chen, G. S. (2014). Wood species identification using feature-level fusion scheme. Optik,
125(3), 1144–1148. DOI 10.1016/j.ijleo.2013.07.124.

12. Wang, C. K., Zhao, P. (2020). Wood species recognition using hyper-spectral images not sensitive toi llumination
variation. Journal of Infrared, Millimeter, and Terahertz Waves, 39(1), 72–85. DOI 10.11972/j.issn.1001-
9014.2020.01.011.

13. Qing, Y., Zeng, Y., Li, Y., Huang, G. B. (2020). Deep and wide feature based extreme learning machine for image
classification. Neurocomputing, 412(1–3), 426–436. DOI 10.1016/j.neucom.2020.06.110.

14. Tang, J., Deng, C., Huang, G. B. (2015). Compressed-domain ship detection on spaceborne optical image using
deep neural network and extreme learning machine. IEEE Transactions on Geoscience and Remote Sensing, 53(3),
1174–1185. DOI 10.1109/TGRS.2014.2335751.

15. Hu, X. H., Zeng, Y. J., Xu, X., Zhou, S. H., Liu, L. (2021). Robust semi-supervised classification based on data
augmented online ELM with deep features. Knowledge-Based Systems, 229(7), 107307. DOI 10.1016/j.
knosys.2021.107307.

16. Zabala-Blanco, D., Mora, M., Hernandez-Garcia, R., Barrientos, R. J. (2020). The extreme learning machine
algorithm for classifying fingerprints. IEEE Computer Society, 2020, 1–8. DOI 10.1109/SCCC51225.2020.9281232.

17. Xiao, W., Yang, J. H., Fang, H. Y., Zhuang, J. T., Ku, Y. D. (2019). A robust classification algorithm for separation of
construction waste using NIR hyperspectral system.Waste Management, 90, 1–9. DOI 10.1016/j.wasman.2019.04.036.

18. Yang, Y., Zhou, X., Liu, Y. (2020). Wood defect detection based on depth extreme learning machine. Applied
Sciences, 10(21), 7488. DOI 10.3390/app10217488.

19. Zhang, W. Y. (2015). Research and application of near infrared spectroscopy to the discrimination of rare woods
(Master Thesis). Zhejiang Agriculture Forestry University.

JRM, 2022, vol.10, no.12 3597

http://dx.doi.org/10.1016/j.compag.2017.12.011
http://dx.doi.org/10.1163/22941932-bja10040
http://dx.doi.org/10.1163/22941932-90000349
http://dx.doi.org/10.1163/22941932-20180202
http://dx.doi.org/10.1016/j.aei.2017.09.007
http://dx.doi.org/10.1016/j.aei.2017.09.007
http://dx.doi.org/10.1163/22941932-bja10048
http://dx.doi.org/10.7685/jnau.2020060131
http://dx.doi.org/10.1109/ACCESS.2020.2995681
http://dx.doi.org/10.1016/j.ijleo.2013.07.124
http://dx.doi.org/10.11972/j.issn.1001-9014.2020.01.011
http://dx.doi.org/10.11972/j.issn.1001-9014.2020.01.011
http://dx.doi.org/10.1016/j.neucom.2020.06.110
http://dx.doi.org/10.1109/TGRS.2014.2335751
http://dx.doi.org/10.1016/j.knosys.2021.107307
http://dx.doi.org/10.1016/j.knosys.2021.107307
http://dx.doi.org/10.1109/SCCC51225.2020.9281232
http://dx.doi.org/10.1016/j.wasman.2019.04.036
http://dx.doi.org/10.3390/app10217488


20. Zhao, Y., Han, J. C., Wang, C. K. (2021). Wood species classification with microscopic hyper-spectral imaging based
on I-BGLAM. Texture and Spectral Fusion, 41(2), 599–605. DOI 10.3964/j.issn.1000-0593(2021)02-0599-07.

21. Xiang, D., Chen, Y., Chen, G. S. (2015). Wood texture classification algorithm based on LBP. Journal of Fujian
Forestry Science and Technology, 42(4), 57–63. DOI 10.13428/j.cnki.fjlk.2015.04.012.

22. Ojala, T., Matti, P., Topi, M. (2013). A generalized local binary pattern operator for multiresolution gray scale
and rotation invariant texture classification. Lecture Notes in Computer Science, (1), 399–408. DOI 10.1007/3-
540-44732-6-41.

23. Ojala, T., Pietikainen, M., Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(7), 971–987. DOI 10.1109/TPAMI.2002.1017623.

24. Guo, Y., Zhao, G., Pietikäinen, M. (2011). Texture classification using a linear configuration model based
descriptor. Proceedings of the British Machine Vision Conference, pp. 119.1–119.10. BMVA Press. DOI
10.5244/C.25.119.

25. Dong, E. Z., Wei, K. X., Yu, X., Feng, Q. (2017). A model recognition recognition algorithm integrating PCA into
LBP feature dimension reduction. Computer Engineering and Science, 39(2), 359–363. DOI 10.3969/j.issn.1007-
130X.2017.02.021.

26. Erick, A., Okeyo, G. O., Kimwele, M. W. (2021). Feature selection for classification using principal component
analysis and information gain. Expert Systems with Applications, 174, 114765. DOI 10.1016/j.eswa.2021.114765.

27. Huang G. B. (2014). An insight into extreme learning machines: random neurons, random features and kernels.
Cognitive Computation, 6(3), 376–390. DOI 10.1007/s12559-014-9255-2.

3598 JRM, 2022, vol.10, no.12

http://dx.doi.org/10.3964/j.issn.1000-0593(2021)02-0599-07
http://dx.doi.org/10.13428/j.cnki.fjlk.2015.04.012
http://dx.doi.org/10.1007/3-540-44732-6-41
http://dx.doi.org/10.1007/3-540-44732-6-41
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.5244/C.25.119
http://dx.doi.org/10.3969/j.issn.1007-130X.2017.02.021
http://dx.doi.org/10.3969/j.issn.1007-130X.2017.02.021
http://dx.doi.org/10.1016/j.eswa.2021.114765
http://dx.doi.org/10.1007/s12559-014-9255-2

	Research on Rosewood Micro Image Classification Method Based on Feature Fusion and ELM
	Introduction
	Materials and Dataset
	Method
	Results and Analysis
	Conclusions
	References


