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ABSTRACT

The rapid production dynamic prediction of water-flooding reservoirs based on well location deployment has
been the basis of production optimization of water-flooding reservoirs. Considering that the construction of
geological models with traditional numerical simulation software is complicated, the computational efficiency of
the simulation calculation is often low, and the numerical simulation tools need to be repeated iteratively in the
process of model optimization, machine learning methods have been used for fast reservoir simulation. However,
traditional artificial neural network (ANN) has large degrees of freedom, slow convergence speed, and complex
network model. This paper aims to predict the production performance of water flooding reservoirs based on a deep
convolutional generative adversarial network (DC-GAN) model, and establish a dynamic mapping relationship
between well location deployment and output oil saturation. The network structure is based on an improved U-
Net framework. Through a deep convolutional network and deconvolution network, the features of input well
deployment images are extracted, and the stability of the adversarial model is strengthened. The training speed
and accuracy of the proxy model are improved, and the oil saturation of water flooding reservoirs is dynamically
predicted. The results show that the trained DC-GAN has significant advantages in predicting oil saturation by the
well-location employment map. The cosine similarity between the oil saturation map given by the trained DC-GAN
and the oil saturation map generated by the numerical simulator is compared. In above, DC-GAN is an effective
method to conduct a proxy model to quickly predict the production performance of water flooding reservoirs.
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1 Introduction

The development of new methods for oilfield production optimization has been an urgent problem
that should be solved in the process of oil production. The layout of injection and production wells
in the oilfield is the key to the optimization of reservoir development. The well location deployment
and well location optimization are directly related to the final development effect of the oilfield. Zhou
et al. [1] took Jilin’s two wells ultra-low permeability oilfield as the research object, using numerical
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simulation software to simulate and predict the diamond well location and rectangular well location
of the reservoir, selecting the best well location. Cao et al. [2] selected ultra-low permeability reservoirs
in Changqing’s Oilfield as the research object, through the adjustment of rhombic inverted nine-point
injection-production well location in this block, the feasibility analysis of well location conversion
and well location refinement was carried out, and the oil recovery rate was optimized and enhanced.
According to the characteristics of ultra-low permeability and tight reservoirs in Ordos Basin, Zhao
et al. [3] used the numerical simulation software to study the horizontal well and well location form.
Zhang et al. [4] conducted low permeability reservoir fracturing horizontal well pattern optimization.
Cai et al. [5] used numerical simulation and reservoir engineering methods, studied the horizontal
well and vertical well joint well pattern type and well spacing optimization. Zhao et al. [6] combined
seepage theory with reservoir numerical simulation, derived the productivity formula of staggered well
pattern in low permeability reservoir, obtained the relationship curve between well pattern form factor
and dimensionless production. There are also other excellent studies. combining numerical simulation
with well location optimization [7–14].

However, we know that the basis of reservoir production optimization is to be able to make
rapid production dynamic prediction based on well location deployment, to obtain the optimal
production mode and well layout mode in oilfield development planning [15,16]. The geological
modeling and simulation calculation process of the traditional numerical simulation method is very
time-consuming, and most optimization algorithms need to call numerical simulation tools repeatedly
and iteratively, which leads to the optimization efficiency being greatly reduced. Therefore, it is of great
significance to establish the rapid prediction model of water flooding reservoir production dynamic
under different well location deployment by intelligent method for well pattern optimization. With
the rapid development of artificial intelligence technology, an intelligent optimization algorithm is
gradually applied to the field of reservoir development and has achieved a lot of remarkable results
[17–23]. Gu et al. [24,25] proposed a new method of remaining oil distribution prediction based on
machine learning. According to the existing reservoir numerical simulation results, the remaining oil
distribution prediction training was carried out under the model of support vector machine and long-
term and short-term memory neural network, and the remaining oil prediction model was built to
accomplish the purpose of simple and rapid prediction of remaining oil in oil plane. Gu et al. [26]
proposed a prediction model based on an artificial neural network (ANN) for the problems existing
in the traditional water flooding reservoir production prediction method. The model selected the
Bayesian regularization algorithm to train the model and used the nonlinear autoregressive network
with external input as the structure of the oil production prediction model. Negash et al. [27] used the
embedded discrete fracture model to generate sample data for the development of water injection huff
and puff in fractured horizontal wells, and based on the artificial neural network model, a proxy model
for production performances prediction of the fractured horizontal well is constructed. Rao et al. [28]
established the production prediction model of extra-high water cut stage of water flooding reservoirs.
Although ANN has been widely used to conduct the proxy model for production prediction, the slow
convergence speed and low prediction accuracy also exist in ANN.

In 2020, Wang et al. [29] proposed an automatic well test interpretation method for the radial
composite reservoir based on a convolutional neural network (CNN). This article points out and
verifies that CNN can effectively avoid data overfitting, quickly and accurately obtain obvious feature
optimization networks through large data scale, and improve the accuracy of the model prediction.
In the same year, Li et al. [30] proposed the prediction of gas channeling direction based on DC-
GAN. The DC-GAN was used to establish the dynamic mapping of permeability field and gas
saturation distribution. The research shows that the DC-GAN has good performance in extracting
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permeability characteristics, and has an excellent performance in the mapping relationship between
input and output of high-dimensional model [31–33]. The deep convolution network is introduced
into the generative adversarial network, which can not only effectively extract features, but also quickly
converge data, and optimize the training model [34–38]. In addition, we also researched a large number
of references to verify the powerful potential of DC-GAN [39–43].

According to the above literature research, the authors found that the DC-GAN method can effec-
tively avoid data over-fitting, quickly and accurately extract data features, and has good performance
in dynamic prediction, author decided to use the DC-GAN model to predict the dynamic production
of water flooding reservoirs. Based on the improved U-Net framework [44], the dynamic mapping
relationship between the well location deployment and the output oil saturation under waterflooding
was established, and the proxy model that can quickly predict the production performance of water
flooding reservoirs was constructed, and the accuracy and efficiency of the dynamic prediction about
oil saturation under waterflooding reservoirs were significantly improved.

2 Research Methodology
2.1 Data Preparation

This paper aims to establish a prediction model based on DC-GAN to reflect the dynamic
mapping relationship between well location deployment and output oil saturation in waterflooding
reservoirs. Due to the production parameters such as well location deployment and geological
parameters such as oil saturation being mostly established on the whole reservoir scale, there will be
a large amount of calculation data and an uncertain geological model. Therefore, the methods used
ANN and other machine learning methods that directly train the data itself are difficult to obtain good
training results and cause the network model structure to be extremely large and complex. Therefore,
the idea of this paper is to convert these two kinds of data into an image. Through DC-GAN, the
features of input parameters are extracted, and the mapping relationship is established, then the proxy
model is optimized combined with GAN.

The quality of the sample is directly related to the accuracy and stability of the neural network
model. Therefore, this paper uses the traditional numerical simulator (MRST) for input image [45],
that this simulator is a famous open simulator developed by the Norwegian Institute of science,
technology and industry, and SINTEF, it can effectively reduce the difficulty of the input image and
improve the efficiency, and ensure the efficiency and accuracy of the preprocessing. Basic physical
properties used in this numerical example Table 1 and the data preprocessing process are shown in
Fig. 1.

Table 1: Basic physical properties used in this numerical example

Properties Values Properties Values

Porosity 0.3 Initial water saturation 0.15
Oil compressibility 3 × 10−3 MPa−1 Well radius 0.1 m
Rock compressibility 1 × 10−4 MPa−1 Permeability 100 mD
Water viscosity 0.6 mPa·s Water compressibility 5 × 10−4 MPa−1

Water volume factor 1.0 Oil viscosity 2 mPa·s
Reservoir thickness 10 m Injection rate 200 m3/d
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Figure 1: Data generation pre-processing flow

Input image: According to the actual reservoir size, the grid number (pixel point of the image)
and grid size are determined. The range of the number of water injection wells is given according to
the average well spacing information on the site, and the number of water injection wells is randomly
generated. The number of production wells is determined according to the ratio of randomly generated
water injection wells to the number of production wells. Then, the grid position of each well is
randomly determined according to the number of wells, and it is required that each grid has at
most one well (we set 1 as water injection wells, −1 as production wells, 0 as empty wells, and the
number of production wells should be much larger than that of water injection wells according to the
actual production). Finally, the corresponding well location deployment picture (Fig. 2a) is obtained.
According to the determined injection rate of water injection wells (200 square/day) and the injection-
production balance, the liquid production rate of production wells is determined, and the information
of each well location is taken into the numerical simulator for calculation,

Output image: As mentioned above, we use the traditional numerical simulation to obtain the
real-time oil saturation map (as shown in Fig. 2b) in the case of the corresponding well location
deployment map (input image) and the known geological parameters. We generally believe that the
injection-production balance of water-drive reservoirs, so the surface pressure changes little, that is,
the pore volume changes little. Therefore, the cumulative oil production of the whole block can be
estimated according to the distribution of oil saturation. The formula is as follows:

i=n∑
i=1

[(
S(0)

oi − S(n)

oi

)
Vi�i

]
(1)

where: Soi refers to oil saturation, Vi refers to pore volume, and �i refers to the porosity.

This oil saturation map is used as the output image to verify the output image of the sample
training of the input well deployment map through the DC-GAN.
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Figure 2: Result diagram

2.2 Deep Convolution Generative Adversarial Network Model (DC-GAN)
2.2.1 Generative Adversarial Network (GAN)

A generative adversarial network (GAN) is a network model of deep learning. It can force the
generated image to be almost indistinguishable from the real image in statistics, to generate quite
realistic synthetic images and predict the required data with new data. The GAN is composed of
the generator (G) and discriminator (D). The generator takes a random vector as the input data and
decodes it into a synthetic image. The image is introduced into the discriminator for discrimination.
The discriminator takes an image as the input and predicts whether the image is a real image from the
training set or a false image of the generator. In this paper, the input of the generator is directly the well
location deployment picture, and the discriminator determines whether the input picture is the real oil
saturation picture or the picture generated by the generator. The purpose of the generator network
can deceive the discriminator network. Therefore, with the operation of training, it can gradually
generate more and more realistic images, that is, images that can not be distinguished from real images.
At the same time, the discriminator is constantly adapting to the gradually improved ability of the
generator and improving its ability, which is the mutual competition between the generator (G) and
the discriminator (D), also known as confrontation training.

The generator G(x) is used to represent the mapping relationship G(x):X->Y of the input image,
and the discriminator (D) is used to identify whether the data comes from the model D(y) generated
by the generator or the obtained model D(G(x)). D attempts to maximize the probability of its correct
classification of true and false (log (x)), and G attempts to minimize D will predict that its output is
false (log(1−D(G(x)))), its loss function is L(G, D).

The formula of GAN is:

G = argminGmaxDV(G, D) (2)
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The distance between the two distributions is measured by V (G, D). The greater the V, the greater
the distance, and the greater the difference between the two distributions; D is to make the distance as
far as possible; G is to make the distance as small as possible, to form a confrontation:

V = Ex∼Pdata
× [lgD(x)] + Ex∼PG

[lg(1 − D(x)] (3)

where Ex∼Pdata
and Ex∼PG

represent solving expectations from real data and expectations from the proxy
model.

The loss function is expressed as:

L(G, D) = 1
m

m∑
i=1

lgD(Xi) + 1
m

m∑
i=1

lg(1 − D(G(zi))) (4)

In adversarial training, we continuously improve the ability of generators and discriminators by
iterative computation. The network construction idea of our GAN is shown in Fig. 3 below.

Figure 3: GAN network construction diagram

2.2.2 Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a feedforward neural network, which is composed of
the input layer, convolution layer, pooling layer, and full connection layer. The convolution layer is the
core layer of constructing a convolutional neural network, which produces most of the computation
in the network. The convolution layer can have several, and the main purpose is to detect features.
The pooling layer is generally sandwiched in the middle of the convolution layer, which is used to
compress the amount of data and parameters and to greatly reduce the order of magnitude, to avoid
the phenomenon of overfitting. The activation function follows the convolution layer, which adds
nonlinearity to the network and improves the performance and generalization of the neural network.
CNN can effectively reduce the dimension of big data pictures to a small amount of data, and can
effectively retain picture features. At the same time, CNN has translation invariance. It can make
efficient use of data when processing pictures and can obtain generalized data representation with
only a few training samples. Therefore, the convolutional neural network has the ability to efficient
and stable feature extraction.

The input and convolution kernel of the convolution layer is usually multi-dimensional array data.
Convolution operation can be regarded as the process of convolution kernel sliding on the input data.
Convolution operation reads the sum of pixels in each region through the movement of convolution,
inputs feature map, extracts blocks, and applies the same transformation to all these blocks to generate
an output feature map. Unlike regular networks, the neurons in each layer of a convolution neural
network are arranged in three dimensions: width, height, and depth, and the depth in the convolution
neural network grid refer to the number of layers of the network. The dimension of the input well
location deployment map in this paper is (width, height, and depth) We can see that the neurons in the
layer connect only to a small area in the previous layer, not to a full connection, as shown in Fig. 4.
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Figure 4: Convolutional neural network field of view connection graph

2.2.3 Deep Convolution Generative Adversarial Network Model (DC-GAN)

The structure of DC-GAN and GAN is similar, GAN is difficult to train mapping relationships
between images directly, while CNN is an effective way to process images, so DC-GAN adds a means
to process images within the framework of GAN, thus enabling adversarial neural networks to train
mapping relationships between images effectively, so it transforms the multi-layer perceptron of the
original GAN generation model G and the discriminant model D into two convolutional neural
networks. In the process of constructing the generator, the deep convolutional network is used to
replace the traditional nonlinear mapping. By inputting multidimensional vector parameters and
through a series of convolution operations, the well location deployment map is convoluted, offset,
normalized, activated, and other steps to form the middle parameter feature image. At the same time,
we use deconvolution network operation for up-sampling to form the output oil saturation map after
multi-dimensional mapping and use the normal distribution to sample points in the potential space,
to improve randomness and further improve the robustness of GAN training.

The network model in the generator is constructed based on an improved U-Net framework
(as shown in Fig. 5). Using dropout in the discriminator to reduce neuronal connections and avoid
overfitting, generally speaking, the sparse gradient will hinder the training of GAN, and the maximum
pooling operation and ReLU activation function will result in sparse gradient, so we use step
convolution instead of the maximum pooling layer for upsampling, the generator hide layer uses ReLU,
the last layer uses tanh as the activation function, and the D hide layer uses LeakyReLU layer to
replace ReLU activation. The last layer uses softmax as the activation function. LeakyReLU is similar
to ReLU, but it allows a smaller negative activation value, thereby relaxing the sparsity limitation.

We use Pytorch to draw several common activation functions (Fig. 2 for details). Our innovation
is that the input sample changes directly from the original noise to the well location deployment map,
which simplifies the steps and improves the calculation rate. At the same time, the input sample of the
generator changes from the original random vector to the feature vector output by the convolution
layer mentioned above, and the new oil saturation map is predicted according to the characteristics of
the well location deployment map.

We introduce a deconvolution layer in the model. The size of the deconvolution layer corresponds
to the size of the connected convolution layer. The convolution parameters are the same. The left side
extracts the characteristics of the well location deployment map by convolution, and the right side
obtains the real oil saturation information through the deconvolution layer. The left input dynamic well
location deployment map, the right output oil saturation map of water drive, the generator transforms
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image to image, and the discriminator is similar to a classifier, giving the probability of the real data of
the generator output data, then they are confronted and trained. Only in this way, the trained generator
model can generate the corresponding output data according to the input samples provided, rather
than the traditional adversarial neural network, which is just to copy a type of image to achieve the
purpose of predicting saturation.

Figure 5: U-Net framework

The same points: (1) The ‘U’ structure of the U-Net framework is adopted, and the blue box is
represented as a multi-channel feature map. During the down-sampling, each module has two effective
convolutions and one maximum pooling calculation. The convolution kernel of the convolution layer
is 3 × 3, and the convolution kernel of the maximum pooling layer is 2 × 2. In the up-sampling, each
module performs one deconvolution and two convolution networks, and the convolution kernel of the
deconvolution layer is 2 × 2.

Differences: (1) The U-Net framework does not use padding for boundary nulling when perform-
ing convolution operations, but in this paper, we use padding for boundary nulling to ensure that the
size of the output feature graph remains unchanged.

(1) ReLU: Rectified Linear Unit from Fig. 6c, it can be seen that the value greater than 0 is not
affected by this function, and the value less than 0 is returned to 0 by this activation function:
ReLU(x) = max(0, x). The ReLU converges faster than the Sigmoid/Tanh function and has no
exponential operation, requiring a small amount of computation, where the ReLU function
sets all negatives to zero.
(2) LeakyReLU: It is an improved version of ReLU, which solves the necrosis problem of ReLU
and uses a small probability at the time, that is x < 0, it is also involved in gradient descent.
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Figure 6: Images of four commonly used activation functions and derivatives

3 Training Results and Discussion
3.1 Comparison and Evaluation of Training Results

We use the traditional numerical simulator to generate input well location deployment and output
oil saturation samples. According to the technique of [46], which had compared the suitable number
of image samples. We take the samples at five times points, respectively, 60, 120, 180, 240, 300 days,
we each time the amount of data for 6000 samples. The reservoir model is of injection-production
balance, and well locations are stochastically generated. The true oil saturation map (generated by
the numerical simulator) is compared with the “false” oil saturation map generated by the DC-GAN
model to verify the accuracy of the model, as shown in Fig. 7.
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Figure 7: (Continued)
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Figure 7: Comparison of true and false oil saturation at 5 moments. (a) t = 60 d; (b) t = 120 d; (c) t =
180 d; (d) t = 240 d and (e) t = 300 d

According to the oil saturation samples at five times in Fig. 3, we compared the image generation
speed between the numerical simulator and the DC-GAN proxy model. The comparison is shown in
Table 2.

Table 2: Comparison of training time between numerical simulator and DC-GAN

Time DC-GAN model Numerical simulator

T = 60 d 2.45′′ 11.33′′

T = 120 d 2.32′′ 10.56′′

T = 180 d 2.53′′ 11.29′′

(Continued)
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Table 2 (continued)

Time DC-GAN model Numerical simulator

T = 240 d 2.26′′ 11.34′′

T = 300 d 2.08′′ 11.06′′

The results show that the training speed of the DC-GAN proxy model is faster than the traditional
numerical simulator, it is worth noting that this is still the case of a small number of grids when the
reservoir numerical model has a large number of grids, the proxy model in this paper will be more
obvious to reduce the computational time. To some extent, it shows that the DC-GAN proxy model
has fast training speed and great development potential. It is an efficient intelligent algorithm.

At the same time, we take the training of samples at 60 days as an example to show the data
changes of generator and discriminator loss rate during DC-GAN training, as shown in Table 3. The
generator functions as close as possible to the real sample generated by the DC-GAN model, that is,
the closer D(G(x)) is to 1, the better. The role of the discriminator is to make D(y) as close as 1 and
D(G(x)) as close as 0, However, whether the real sample or the generated sample, when the probability
of the discriminator D(y) is 0.5, the state is the most ideal, it is impossible to distinguish whether the
sample comes from the real sample or the generated sample.

Table 3: Training process generator and discriminator loss value of samples at t = 60 d

Iteration times/times Loss_D/Loss_G D(y) D(G(x)) in the generator/D(G(x)) in
the discriminator

1 4.8023/0.2627 0.9958 0.9900/0.7751
50 2.8546/3.5333 0.9756 0.9409/0.0293
94 1.3205/ 2.8172 0.8234 0.6754/0.0598
180 1.1609/0.8134 0.5237 0.4001/0.4433
382 1.1650/1.1287 0.5446 0.4255/0.3235
521 1.2240/0.9093 0.5161 0.4281/0.4028

As shown in Table 3, we take the number of iterations six times and find that with the increase
of the number of iterations, the loss rate of generator D and discriminator G gradually decreases,
while D(y) is used to judge whether data comes from a real model or DC-GAN proxy model, so it
is closer and closer to 0.5, which it is best. The generator functions as close as possible to the real
sample generated by the DC-GAN model, that is, the closer D(G(x)) is to 1, the better. D(G(x)) in
the generator and discriminator is closer to 0.5, indicating that the stability of the model is gradually
enhanced.

The relationship between training loss values and time obtained from training for DC-GAN is
shown in Fig. 8. The relationship between training loss values and the number of iterations under
different production times is analyzed. To better observe the state of iteration reaching equilibrium,
we set the maximum number of iterations for 3000 times at different times. Each training includes an
independent training process for the generator and the discriminator.
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Figure 8: DC-GAN training process at different time (a) t = 60 d; (b) t = 120 d; (c) t = 180 d; (d)
t = 240 d and (e) t = 300 d

Obviously, for most models, the model can reach the Nash equilibrium state and the accuracy of
the model reach equilibrium before 300 training iterations. In the model of 300 days of production, oil
saturation is more complex and changeable due to the distribution pattern, and water breakthrough
in most of the production wells. The characteristic parameters are more complex than those before,
which requires a lot of training time to reach equilibrium.

3.2 Image Cosine Similarity
For two vectors, we can imagine them as two lines in space, starting from the origin ([0, 0, . . . ])

and pointing in different directions. There is an angle between the two lines. If the angle is 0 degrees,
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it means the same direction and the line overlap. If the angle is 90 degrees, that means forming a
right angle, the direction is completely different. If the angle is 180 degrees, that means the opposite
direction. Therefore, we can judge the similarity of vectors by the angle. The smaller the angle is, the
more similar it represents.

Assuming A and B are two n-dimensional vectors, A is [A1, A2, . . . , A n], B is [B1, B2, . . . , Bn],
then the cosine of the angle θ between A and B equals

similarty = cos
A · B

‖ A ‖‖ B ‖ =

n∑
i=1

Ai × Bi√
n∑

i=1

(Ai)
2 ×

√
n∑

i=1

(Bi)
2

The closer the cosine value is to 1, the closer the angle is to 0 degree, that is, the more similar the
two vectors are, which is called 'cosine similarity. By comparing the true and “false” (generated) maps
of six groups about oil saturation distribution, the corresponding cosine similarity values are obtained,
as shown in Table 4.

Table 4: Cosine similarity of pictures

the first group the second group the third group

cosine similarity 0.97133 0.82315 0.84498

the fourth group the fifth group the sixth group

cosine similarity 0.94325 0.92961 0.86217

The numbers in the table represent the cosine similarity between the two images, and it can be
seen that the similarity between the images is generally above 80% and even up to 97%, which shows
the high accuracy of the training model.

Under the condition of the same geological parameters, according to the same well location
deployment map, taking 300 days as an example, the oil saturation map obtained by DC-GAN model
training is drawn, and compared with the oil saturation map obtained by reservoir numerical simulator,
as shown in Fig. 9. According to the similarity of images, the training results are consistent with the
traditional digital simulation results. The oil saturation map based on DC-GAN model training can
accurately extract the variation characteristics of the oil saturation map, and can effectively predict the
dynamic mapping relationship between well location deployment and oil saturation in water flooding
reservoirs, reflecting the reliability of the DC-GAN model.
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Figure 9: Comparison of oil saturation at 300 days

4 Conclusion

DC-GAN is a model of deep learning and has great advantages in extracting image features
and high-dimensional mapping. Based on the DC-GAN framework, the convolution layer and
deconvolution layer are used to extract the feature of well location deployment images, and the oil
saturation images are output. The real oil saturation map and the oil saturation map generated by the
DC-GAN model are distinguished. Then, the model is continuously trained by the discriminant results,
and an efficient proxy model for the dynamic mapping of well location deployment to oil saturation



1920 EE, 2022, vol.119, no.5

distribution is established. The actual example shows that the model can predict the distribution of
oil saturation in the case of water flooding with high efficiency and high accuracy. By comparing the
cosine similarity between the model results in different time points and the oil saturation images from
the numerical simulator, good image similarity is found, which also verifies the good performances of
the DC-GAN based proxy model. In addition, the work done in this paper may provide a reference
for the application of DC-GAN to more reservoir engineering fields.
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