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ABSTRACT

Robotic grasping is an essential problem at both the household and industrial levels, and unstructured objects
have always been difficult for grippers. Parallel-plate grippers and algorithms, focusing on partial information of
objects, are one of the widely used approaches. However, most works predict single-size grasp rectangles for fixed
cameras and gripper sizes. In this paper, a multi-scale grasp detector is proposed to predict grasp rectangles with
different sizes on RGB-D or RGB images in real-time for hand-eye cameras and various parallel-plate grippers.
The detector extracts feature maps of multiple scales and conducts predictions on each scale independently. To
guarantee independence between scales and efficiency, fully matching model and background classifier are applied
in the network. Based on analysis of the Cornell Grasp Dataset, the fully matching model can match all labeled grasp
rectangles. Furthermore, background classification, along with angle classification and box regression, functions as
hard negative mining and background predictor. The detector is trained and tested on the augmented dataset, which
includes images of 320 × 320 pixels and grasp rectangles ranging from 20 to more than 320 pixels. It performs up to
98.87% accuracy on image-wise dataset and 97.83% on object-wise split dataset at a speed of more than 22 frames
per second. In addition, the detector, which is trained on a single-object dataset, can predict grasps on multiple
objects.
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1 Introduction

Robotic grasping is becoming more challenging nowadays, as robots are indispensable in both
industrial and domestic environments. High-precision robotic manipulation [1] and various grippers,
such as vacuum and soft grippers [2–5], make demands for efficient grasp strategies. Traditionally,
grasp detection consists of object localization, pose estimation and grasp estimation [6]. Object
localization aims at finding locations of target objects in the given data. In this part, object detection
[7–17], object segmentation [18,19] and object localization without classification [20–24] are the widely
used approaches. The 6D pose estimation is to reconstruct objects in a camera coordinate system
[25–28]. Given reliable object models, grasp estimation is carried out. Analytical methods are firstly
proposed to evaluate the ability of the applied grasp to resist external disturbance, which is defined as
force closure [29,30]. Meanwhile, combining humanlike robotic hands and analytical methods, stable
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and precise grasps are conducted in both simulated and real-world problems [31]. Some of other studies
focus on grasp positions and styles [32] directly. However, the approaches above cost time and require
models of high quality. It puts forward requirements for quick detection and easy application.

Utilizing convolutional neural networks and various datasets, empirical approaches take fewer
stages and less time to generate the final grasp detection. Criteria and labeled data are abstracted
from previous studies and used for training. For novel objects or those without the entire information,
some of the methods generate candidate grasps with contact points based on point clouds [33,34]. In
other cases where complete 3D models are provided, approaches learn grasp gestures or positions that
are applied on the whole object [35,36]. Although grasp detection for multi-fingered robotic hands
is reliable in most conditions, it relies heavily on the completeness of the model and is still not fast
enough. Considering that rigid objects are the main targets in most cases, specialized algorithms
are designed for vacuum and parallel-plate grippers to perform real-time grasp. Mahler et al. [2,3]
trained a Grasp Quality Convolutional Neural Network on Dex-Net 3.0, which is a dataset containing
2.8 million pieces of point clouds and labels for suction grippers. Jiang et al. [37] proposed an
efficient five-dimensional representation method for parallel-plate grippers, laying the foundation
for the proceeding works. With grasps expressed as {x, y, w, h, θ}, grasp detection is transformed to
a 2D planar problem, where object detection approaches have superior performance. Among all
these approaches, some works [38–44] utilized two-stage networks while others [45–51] employed one-
stage networks. In traditional object detecting tasks, two-stage approaches tend to perform better
accuracy, especially on small targets, while one-stage methods make predictions faster. Adapted object
detectors inherit the above characteristics but perform differently in different conditions. However,
these approaches only predict grasp rectangles of similar sizes and are unable to balance speed and
accuracy on targets of different sizes. Furthermore, grippers of various sizes, hand-eye cameras [52]
and closed-loop control [53] still highlight the importance of an efficient multi-scale approach for
grasp detection for real-time grasping.

In this paper, a one-stage multi-scale grasp detector is proposed. This network utilizes several
feature maps of different scales to independently predict grasps, according to SSD [7] and FPN [8].
Top-down pathways are added between multi-scale features to improve the performance of high-
resolution features. Improvements also include an efficient fully matching model designed for boxes
from different scales based on analysis of the Cornell Grasp Dataset [44]. Anchor boxes in every single
layer are arranged as oriented anchor boxes [47] with different directions and ground truth (GT) boxes
are replaced by cover boxes, which guarantees that matching scores are consistent with the similarity
of center position and size between every two boxes. A background predictor is designed along with
grasp classification and box regression [45]. This mechanism separates the possible grasp region from
grasp prediction and also prevents the network from considering labels emanating from other scales
as negative examples in training as well. Contributions are summarized as follows:

• A multi-scale object detector is applied in grasp detection, consisting of multiple feature maps
and effective connections between layers.

• An efficient fully matching model based on dataset analysis is proposed to ensure a high-quality
combination between anchor boxes and labels from all scales.

• A branch of the background classifier functions as hard negative mining and enhances the
generalization ability of the network.

In the following parts, Section 2 presents researches related to grasp detection, convolutional
neural networks and anchor boxes. The proposed matching model and multi-scale grasp detector are
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presented in Sections 3 and 4, respectively. The evaluation metric and experiment details are given in
Section 5. In Sections 6 and 7, results are analyzed and conclusions are drawn.

2 Related Works
2.1 Object and Grasp Detections

Neural networks have been used in many fields, such as medicine [54–56] and material analysis [57].
Object detection is one of the widely studied issues, which predicts classification and bounding boxes
on input data. Recent researches about grasp detections are based on two main approaches of object
detectors, two-and one-stage detectors [58]. The training process of two-stage detectors generates
predictions from coarse to fine. RCNN [9] proposed the first two-stage style, which extracted object
proposals by selective search, put resized feature maps into a CNN network and used linear SVMs for
final predictions. To reuse feature maps, SPPNet [10] introduced a Spatial Pyramid Pooling layer, which
did feature computation only once. Fast RCNN [11] replaced SVM training with neural networks and
realized training end-to-end after selective search. Faster RCNN [12] abandoned the time-consuming
selective search and introduced Region Proposal Network (RPN), which firstly trained a two-stage
object detector end-to-end. One-stage object detectors make predictions only in one step. YOLO
[13] employed a new strategy to evenly divide feature maps and make predictions on each grid
simultaneously, which achieved an unprecedentedly fast speed. SSD [7] used a feature pyramid and
made predictions independently on each different feature map, significantly improving the accuracy
of one-stage methods to detect small targets. FPN [8] and RetinaNet [15] were proposed to improve
the accuracy for multi-scale object detection of both two-and one-stage detectors. Most of the works
that followed, applied object detectors for their tasks. Zheng et al. [59] applied FPN for parking space
detection on street. Ma et al. [60] adapted Faster RCNN to detect pavement cracks. Different from
previous works, DiTNet [61] used 3D point clouds to directly track ID to objects.

Similar to object detection and its applications, studies on grasp detection using neural networks
began with a two-stage detector. Lenz et al. [44] proposed a model consisting of two neural networks for
grasp proposals and scores respectively, which was the first two-stage detector to be realized completely
using a neural network. Shortly after that invention, Redmon et al. [45] presented a direct regression
grasp model, which was the first one-stage detector even before YOLO. The following approaches
include two-stage methods [40–43] and one-stage methods [47–51]. Two-stage networks were usually
adapted based on specific grasp strategies. Chu et al. [40] adapted RPN for grasp candidate proposals.
Dong et al. [41] segmented mask area and then generated grasp predictions. Wang et al. [42] used RGB
data for grasp proposals and merged point cloud data for final proposals. Furthermore, most models
in previous studies used pre-trained feature extractors.

2.2 Anchor Box
Anchor boxes are pre-defined boxes that help precisely predict bounding boxes in object detection.

Early researches [43–46] used direct regression, which directly generates coordinates of predicted boxes
from fully connected layers. Ren et al. [12] proposed sliding windows and anchors for region proposal
network in Faster RCNN. A sliding window went over all grid cells of feature maps and anchor boxes
of 3 scales and 3 aspect ratios were centered at the sliding window. Intersection-over-union (IoU) was
the used metric for matching between anchor and GT boxes, shown as Eq. (1).

IoU = box1 ∩ box2

box1 ∪ box2

(1)
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Anchor boxes with IoU higher than the threshold were labeled as positive examples. Giving scores
and parameterized coordinates to anchors, region proposals were generated by transforming pre-
defined anchor boxes. This approach mapped relative positions of features to those of real images
and used a box regression method to train parameterized coordinates. SSD [7] designed anchor boxes
of linearly increasing sizes for increasing scales while YOLO9000 [14] used k-means to generate anchor
boxes based on datasets. Different from object detection, grasp detection considers angles and aspect
ratios of GT boxes, which largely affect the average IoU during matching. Guo et al. [38] divided 180°
into 18 classes and applied anchor boxes of 3 scales at each feature map grid. Zhou et al. [47] took
a different strategy using oriented anchor boxes of several directions and adding angle prediction to
box regression. As angle regression provided more precise angle prediction, fewer angle categories were
required. Therefore, oriented anchor boxes are used in the following works [39,49,50].

3 Fully Matching Model

The five-dimensional representation uses {x, y, w, h, θ} to present a grasp rectangle, shown in
Fig. 1a. On a 2D plane, x and y stand for the center position, w and h are the weight and height,
and θ means the difference between the horizontal line and the orientation of the grasp rectangle.
Although it turns grasp detection into a 2D planar problem, the extra dimension of angle remains an
obstacle to improving matching quality. A novel anchor box model for fully matching is proposed by
analyzing the Cornell Grasp Dataset, transforming anchor and GT boxes, and analytically generating
anchor sizes and positions.

Figure 1: (a) A grasp rectangle. (b) Grouped anchor boxes. (c) Matching between a cover box and an
anchor box

3.1 Dataset Analysis
Like most studies conducted previously, Cornell Grasp Dataset, which consists of 885 images from

240 objects, is used in this research. Each object has several images containing RGB and point cloud
information. For each image, multiple positive grasp rectangles are labeled and few negative grasps
are given as well. Here only positive ones are included in the training.

In object detection tasks, a bounding box represents the smallest box that covers the whole
object. Since bounding boxes are represented as {x_min, y_min, x_max, y_max}, a slender object is
often covered by a wider box because of the angle of the object to the horizontal. Different from
bounding boxes, a grasp rectangle expresses how to place a robotic hand and information of a larger
area is required for computation. Furthermore, grasp rectangles are normally of large aspect ratios
when large grippers are used on very long objects or small grippers on thick objects. Fig. 2 shows
the characteristics of the two sets of data. The scatter plot uses the area as x-axis and aspect ratio as
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y-axis in a logarithmic coordinate system. The blue points stand for bounding boxes that cover grasp
rectangles while the red points represent the origin grasp rectangle. Bounding boxes have smaller aspect
ratios compared with origin grasp rectangles. Two types of boxes have aspect ratios with geometric
mean of 1.35 and 1.71, which shows the importance of grasp rectangles of large aspect ratios.

Figure 2: Aspect ratio-area scatter plot of bounding boxes and grasp rectangles

3.2 Box Transformation
In previous works, anchor boxes with multiple aspect ratios and areas are used to match GT boxes

with similar shapes. Inspired by this idea, transformation is made on both anchor and GT boxes. In
this work, square anchor boxes with directions, named oriented anchor boxes [47], and cover boxes
are used for matching.

3.2.1 Anchor Box

Traditional methods provide NAS × NS anchor boxes at each feature map grid, where NAS and
NS are numbers of aspect ratios and scales, respectively. In grasp detection tasks, they divide 180°
into Nclass parts and Nclass stands for the number of angle classes. Along with 4 regression parameters
and 2 values for graspable scores, Nclass + 6 values are used for the prediction of each anchor box and
NAS×NS predictions are made at each feature map grid. However, the above approaches bring two main
drawbacks. When multiple anchor boxes, that come from the NAS × NS ones at the same feature grid,
generate predictions with similar angles, only the most probable one is kept through Non-Maximum
Suppression, which decreases efficiency of anchor boxes. Furthermore, if grasp results in one direction
are better than the others, several anchor boxes tend to make similar predictions and thus the diversity
of predicting results is harmed, especially on symmetrical objects. Therefore, anchor boxes with the
same size at the same grid point are set as a group and are forced to predict different angles. Moreover,
combining anchor boxes with directions, angle regression is used by adding one more parameter in box
regression, that regresses the angle of an anchor box to that of the corresponding GT box. An anchor
box (xa, ya, la, la, θa) is used to present a GT box (x, y, w, h, θ) with the following regression parameters
given in Eq. (2).
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⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

tx = (x − xa) /la

ty = (y − ya) /la

tw = log (w/la)

th = log (h/la)

tθ = arctan ((θ − θa) /Δθ) /β

(2)

where Δθ = 180°/Nclass is the unit angle and β is the scaling factor that keeps tθ in the same scale as the
other four parameters. Given the angle class number Nclass, 5 regression parameters and 2 graspable
scores, NAS × NS × Nclass predictions are made and 7 values are required at each feature map grid.
By dividing angles and improving prediction accuracy, fewer parameters are required for a single
prediction and more predictions are made. Different from most networks adapted before, the multi-
scale detector makes predictions independently on feature maps of different scales, and the numbers
of anchor boxes at each scale should be reduced to maintain the total number of predictions. Inspired
by oriented anchor boxes [47], only aspect ratio of 1:1 is applied and thus NAS is set 1. One group
of anchor boxes is shown in Fig. 1b, where thick lines stand for the size and position of all anchor
boxes in the group and thin lines give an example of one orientation. The black dot is the center of the
grouped anchor boxes and the corresponding feature map grid is covered by the shadow area.

3.2.2 Cover Box

Although square anchor boxes reduce the parameters needed, they lower the average IoU of GT
boxes with a large aspect ratio, which results in failure to match part of GT boxes. In this work, cover
boxes are proposed to replace GT boxes during the matching process. The cover box is the smallest
square that can cover the GT box. The center of the cover box is the same as the GT box while the
length of the side of the cover box is equal to the length of the long side of the GT box. Cover boxes
pay attention to the center position and the maximum one-dimensional length of GT boxes, which
is different from traditional methods where aspect ratio and size are focused on. Combining cover
boxes with oriented anchor boxes, the average IoU of matching is highly improved. In Fig. 3, IoU
with anchor boxes rotating around fixed GT boxes are discussed in each part. The size of anchor and
GT boxes is set to 1 and the center distance is 0.2. Each graph contains three GT boxes and one anchor
box. The thick lines stand for GT and anchor boxes while the colored thin lines indicate IoU values
in polar coordinates. GT boxes are set with sizes of 1 and aspect ratios of {1:1,2:1,1:3} while anchor
boxes are of different shapes in every situation. The filled shadow areas indicate regions of intersection
between GT and anchor boxes, and the pure shadow areas reveal the range of the variation of IoU. The
baseline of 0.5, as is the threshold used in many previous works, is marked in black thin line. Every
anchor box is drawn at an angle of 60° and the joint points with colored curves show the current
IoU. As shown in Figs. 3a–3c, widely used anchor boxes with multiple aspect ratios of {2:1,3:1,1:1}
perform well in selecting bounding boxes of similar shapes. Long anchor and GT boxes achieve IoU
high above 0.5 only when they are both of similar orientations and aspect ratios, and thus GT and
anchor boxes correspond one to one by aspect ratio and size. GT and anchor boxes with an aspect
ratio of 1:1 get IoU above 0.5 and are more stable than others for the case of angles changing. Fig. 3c
also shows the variance of IoU where only anchor boxes with aspect ratio of 1:1 are used. The IoU
reduces as the aspect ratio increases. Nevertheless, the GT box with an aspect ratio of 1:3 gets IoU
lower than the baseline regardless of relative positions, which exposes the major defect that square
anchor boxes fail to match long GT boxes. To solve this problem, a different strategy is applied that
anchor boxes are matched to the closest GT boxes with similar one-dimensional maximum lengths.
Cover boxes are introduced by enlarging the short side length of GT boxes to the long side length,
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shown in Fig. 1c. The cover boxes and anchor box with aspect ratio of 1:1 are presented in Fig. 3d.
The IoU curves are strongly correlated with the length of the long side and have little changes with
angles. Fig. 1c also presents an example that the IoU of a cover box is larger compared with the GT
box, when the GT and anchor boxes have a similar one-dimensional maximum length and center
position.

Figure 3: IoU between three GT boxes and four anchor boxes

3.3 Anchor Box Distribution
With cover boxes replacing GT boxes, anchor and GT boxes are both square boxes. Sizes of

anchor boxes become computable because IoUs are only depended on relative positions and sizes,
and a unified standard can be achieved. To ensure high-quality matching, the minimum IoU between
GT boxes and any anchor boxes of each scale is calculated, and the maximum value among them is
supposed to be above the baseline. In other words, cover boxes of any size and aspect ratio should
have at least one anchor box of IoU larger than the threshold. As anchor boxes are evenly distributed
at the centers of feature map grids, the minimum value appears in the middle of the four neighboring
anchor boxes, as shown in Fig. 4a. Dotted lines represent how feature maps are divided and anchor
box1 stands for anchor boxes of the corresponding scale. Anchor box2 represents anchor boxes from
the next upper scale, and its density is only a quarter of the former. Point1 and point2 mark minimum
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points on each scale respectively. With the position indicated, the minimum IoU in each scale can be
expressed by a fixed Eq. (3).

IoU =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l2
b

l2
ai

, lb < lai − xi

(
lai +lb−xi

2

)2

l2
ai

+ l2
b −

(
lai +lb−xi

2

)2 , lai − xi ≤ lb ≤ lai + xi

l2
ai

l2
b

, lb > lai + xi

(3)

where lai and lb are the side lengths of anchor boxes from the ith scale and the GT box, respectively, and
xi stands for the offset of anchor boxes in the ith feature map, as shown in Fig. 4b.

Figure 4: (a) Center positions of GT boxes that get the minimum IoUs with multi-scale anchor boxes.
(b) The minimum IoU of the GT box and the anchor box of the ith scale

Furthermore, exponentially increasing anchor sizes are adopted in this work. Given images of
320 × 320 pixels, feature maps have sizes of {40 × 40, 20 × 20, 10 × 10, 5 × 5, 3 × 3}, and anchor
box offsets of {8 × 8, 16 × 16, 32 × 32, 64 × 64, 106 × 106} pixels are generated, which will be
explained in the following part. Compared with linearly increasing anchor sizes used in previous
works, exponentially increasing anchor sizes perform better when dealing with GT boxes of widely
ranging sizes. Meanwhile, the detector uses anchor boxes of two sizes at each grid point to make up
for the relatively low IoU between scales and to increase the probability of matching. The set of anchor

box sizes can be expressed as
{
(Ai, rAi) |Ai = A1α

log2(xi/x1), i = 1, 2, . . . , 5
}

, where r and α stand for the

increasing factors in between scales and throughout all scales respectively, and A represents the side
length of the anchor.

4 Network Architecture

As GT boxes from all scales can get matched anchor boxes, a multi-scale multi-grasp detector is
proposed. The detector is made up of a backbone and three predictors, as shown in Fig. 5.
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Figure 5: Network architecture

4.1 Backbone
The backbone uses truncated Resnet-50 [62] as the basic extractor. ResNet-50 consists of 4 blocks

and the first three blocks are reserved, and the three blocks have 3, 4 and 6 building blocks respectively.
Each building block includes a shortcut as the residual layer and a group of 3 Conv layers. The 3 × 3-S2
Conv layer of the first branch of shortcut in block 3 is replaced by a 3 × 3-S1 Conv layer. These three
blocks take an image of 320 × 320 pixels as input and then produce an output of a 40 × 40 feature map.
They are followed by a group of additional layers to further extract the feature maps. An additional
layer is made up of 1 × 1-S1 and 3 × 3-S2 Conv layers. The extractor takes an RGB-D or RGB image
of 320 × 320 as input and output feature maps as {40 × 40, 20 × 20, 10 × 10, 5 × 5, 3 × 3} which are
denoted as {P1, P2, P3, P4, P5}. To introduce feature pyramid networks [8], top-down connections are
added between adjacent feature maps without changing the input and output sizes of the extractors.
Every feature map goes through a 1 × 1-S1 Conv layer respectively to unify output channels, producing{
C′

1, C′
2, C′

3, C′
4, C′

5

}
feature maps. Before merging, C′

5 and C′
4 pass through 3 × 3-S1 Conv layers as C5

and C4. Starting from C4 and C′
3, the higher feature map is upsampled by a 2 × 2 upsampling layer and

merged to the lower one by a concatenating layer, and C3 is obtained via a 3 × 3-S1 Conv layer on the
merged feature maps of C4 and C′

3. After repeating this procedure and reusing the higher-resolution
features, a group of new feature maps of {C1, C2, C3, C4, C5} is generated for separate predictions.

4.2 Predictor and Loss Function
Apart from the grasp classifier and the box regressor applied in many studies, a novel branch of

the background classifier is added in this network. The three predictors are constructed according to
subnetworks [15]. In this work, each predictor has three 3 × 3-S1 Conv layers as middle layers and a
convolutional predict layer.

The background classifier acts as a criterion on whether to take a group of anchor boxes into
the computation and uses a background threshold Tb. In the background classifier, anchor boxes are
trained in groups as mentioned in Section 2.2, and the maximum IoU of all anchor boxes in the group
is regarded as the corresponding background score. Groups with scores less than Tb are considered
as backgrounds and negative examples in the background classifier. Meanwhile, groups with scores
higher than Tb are positive examples. As background labels b̂i for the ith group is set to 1 and 0 for
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positive and negative examples respectively, the loss function for the background classifier is written
as Eq. (4).

Lbackground ({bi}) = −
N∑
i

[∣∣∣bi − b̂i

∣∣∣
γ

log
(

1 −
∣∣∣bi − b̂i

∣∣∣
)]

(4)

where N is the total number of anchor box groups, bi stands for the predicted background score of the
ith group, and γ is the focusing parameter according to the focal loss [15].

The grasp classifier is used to predict grasp probability for each single anchor box. Furthermore,
only anchor boxes in groups, that are considered positive in the background classifier, are used
in the training process. The anchor boxes grouped as backgrounds are ignored, which is different
from previous studies. Most works [14,15] regarded positive and negative examples as objects and
backgrounds, and ignore data in the middle, which decreases accuracy once trained. However, the
proposed fully matching model can encode all positive grasp examples and draw a clear line between
the positive and negative examples. Therefore, the grasp classifier is aimed at focusing more on
predicting angles than on distinguishing graspable region from backgrounds. With a grasp threshold
Tg, the jth anchor box in the ith group is labeled by ĝij, and ĝij is set to 1 if the corresponding IoU is
higher than Tg and otherwise 0. The loss function for the grasp classifier is given as Eq. (5).

Lgrasp

({
gi

}) = −
Npos_1∑

i

Nclass∑
j

[∣∣gij − ĝij

∣∣γ

log
(
1 − ∣∣gij − ĝij

∣∣)] (5)

where Npos_1 is the number of positive examples in the background classifier, Nclass is the number of
angle classes mentioned in Section 3.2.1 and gij stands for the predicted grasp score. Grasp scores gij

are generated by the sigmoid function and thus are independent of each other, which allows multiple
grasp predictions at the same feature map grid.

The box regressor predict grasp rectangles based on pre-defined anchor boxes, and only positive
grasp examples are trained in this part. CIoU [16] and SMOOTHL1 [11] are applied to regress the offsets
for rectangles (x, y, w, h) and angles θ respectively. Since CIoU loss uses dimensionless parameters
to describe the similarity between predicted boxes and target boxes, it can be directly expressed by
regression parameters

{
tx, ty, tw, th

}
without anchor boxes. The loss function for the box regressor is

shown as Eq. (6).

Lbox ({ti}) =
Npos_2∑

i

[
CIoU

(
txi, tyi, twi, thi, t̂xi, t̂yi, t̂wi, t̂hi

) + SMOOTHL1

(
tθ i, t̂θ i

)]
(6)

where Npos_2 is the number of positive grasp examples that score higher than Tg.

The total loss is written as Eq. (7).

L
({bi} ,

{
gi

}
, {ti}

) = Lgrasp

({
gi

}) + λ1Lbackground ({bi}) + λ2Lbox ({ti}) (7)

where λ1 and λ2 are the weights for the background classifier and the box regressor.

5 Experiment
5.1 Dataset

To exhibit the ability of the multi-scale grasp detector, Cornell Grasp Dataset is divided in two
approaches:
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• Image-wise split Images are randomly divided into training and validating set. This treatment
tests the ability of the model to predict grasps on known objects.

• Object-wise split Images of the same object are divided into the same set, which represents the
generalization ability of the model to predict grasps on novel objects.

5-Fold Cross-Validation is used in this work. At each time the dataset is randomly divided into 5
sets by different split approaches. RGB and RGB-D images are applied in training and predicting.
When depth information is needed, RGB and depth images are concatenated together as 4-layer
RGBD data. Since 885 images in the dataset are far from enough for training deep neural networks,
data augmentation methods are applied on raw images, including up-down and left-right flipping,
random scaling and Gaussian noise. Finally, augmented images are randomly cropped to 320 × 320
pixels containing at least one grasp rectangle. Side lengths of grasp rectangles after augmentation vary
from 20 pixels to 400 pixels, which completely covers image size. The test sets consist of images with
objects fixed at the center.

5.2 Evaluation Metric
A widely accepted metric is adopted in this model, which consists of angle matching and

overlapping:

• The angle between orientations of the predicted and GT grasp boxes is no greater than 30°.

• The Jaccard index of the predicted and GT grasp boxes is greater than 0.25.

The Jaccard index is expressed as Eq. (8).

J
(
g, ĝ

) = g ∩ ĝ
g ∪ ĝ

(8)

where g and ĝ are the predicted and GT grasp boxes, respectively. Predicted grasp boxes that meet the
requirements are regarded as successful grasps.

5.3 Implementation Details
The model is constructed in Tensorflow and computations are run on a NVIDIA RTX2080ti

graphics card. The optimizer used in this work is Adam with weight decay, referred to as AdamW. The
learning rate is set to 0.0001 and weight decay is set differently depending on input data and models.
Learning rate decreases with increasing epochs. The model starts with random initialization requiring
no pre-training and is trained end-to-end.

6 Results
6.1 Fully Matching Model

The angle class number Nclass grouped at each grid point is set to be 6. Taking A1 = 28,
r = 1.414 and α = 2, a set of anchor sizes of {(28, 40), (56, 79), (112, 224), (224, 317), (373, 527)} pixels
is generated. With multi-scale anchor boxes, the minimum IoU of an arbitrary cover box with a certain
side length and anchor boxes from each scale are computed using Eq. (3), as shown in Fig. 6. Lines of
dark and light colors represent small and large anchor boxes at the same grid point respectively. The
two types of anchor boxes complement each other, and thus the envelope curve stays high above the
baseline of 0.5 throughout the range of (20, 600), indicating that for any GT box, anchor boxes are
matching it perfectly from at least one scale. Furthermore, replacing GT boxes with cover boxes for
matching improves the average IoU, as shown in Table 1. Origin grasp rectangles get an average IoU



292 CMES, 2022, vol.133, no.2

of 0.5988, which surpasses 0.58 mentioned in the previous work [50]. Also, the usage of cover boxes
guarantees that all grasp rectangles receive matched anchor boxes with IoU threshold of 0.5 and the
average IoU achieves 0.7522.

Figure 6: Minimum IoU of multi-scale anchor boxes and a GT box with certain side length

Table 1: IoU of all anchor and GT boxes

Cover box Average IoU >0.7 >0.5 >0.3 Total

× 0.5988 8008 26958 35442 35524√ 0.7592 29106 35524 35524 35524

6.2 Single Grasp
Single-grasp method, which generates a grasp with the highest score among all candidates as the

final proposal, is used in this part. For each image in the test set, the predicted grasp is judged whether
to be successful by the evaluation metric mentioned above and therefore the accuracy is generated
after going through the test set. In Fig. 7, rows (a) and (c) show the best predictions and GT boxes,
respectively. With RGB-D images, the proposed model achieves an average accuracy of 96.27% and
95.45% on the image-and object-wise split datasets respectively. In addition, the detector achieves up to
98.87% and 97.82% on each dataset. With RGB images, the detector performs with an average accuracy
of 94.12% and 93.38% on two types of datasets and gets the maximum accuracy of 97.74% and 96.20%,
respectively. Table 2 shows results in this work compared with previous studies and the proposed multi-
scale grasp detector performs competitive accuracy on randomly scaled objects. Tables 3 and 4 present
the variance of the best accuracy depending on angle and IoU threshold. As the angle threshold
decreases to 15° and the IoU threshold increases to 0.35, the accuracy remains high, which proves
an efficient fully matching model. Although most of the predictions are successful, some grasps do
not match GT boxes, shown in Fig. 8. In Fig. 8, columns (a) and (b) show grasps from other scales,
which scores higher than the origin one, and column (c) shows grasps, that are semantically wrong.
The wrong grasps indicate that the detector prefers grasps on long thin structures and edges on objects,
which is acceptable because it can be screened by giving a specific gripper size. Fed images of batch size
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1, the model outputs grasp predictions at more than 22 frames per second, including time of processing
results using OpenCV library. The fast detecting speed can support real-time grasp.

Figure 7: Examples of single grasp and multi-scale grasp prediction

Table 2: Single-grasp evaluation on cornell grasp dataset

Approach Accuracy (%) Speed (fps)

Image-wise Object-wise

Kumra et al. [46] Uni-model 88.53 88.40 16.03
Multi-model 89.21 88.96 9.71

Guo et al. [38] 93.2 89.1
Asif et al. [63] 90.6 90.2 41.67

Chu et al. [40] VGG-16 95.5 91.7 16
ResNet-50 96.0 96.11 8

Zhou et al. [47] ResNet-50 97.74 94.92 9.89
ResNet-101 97.74 96.61 8.51

Zhang et al. [39] RGB 93.6 93.5 25.16

RGD 92.3 91.7

Dong et al. [41] 96.4 96.5 9.43
Wang et al. [42] 98.5 98.1

Ours RGB-D 98.87 97.82 22

RGB 97.74 96.20
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Table 3: Accuracy with IoU threshold of 0.25 and different angle thresholds

Angle threshold Accuracy (%)

Image-wise Object-wise

30° 98.87 97.83
25° 98.30 96.20
20° 97.18 95.11
15° 94.92 91.30

Table 4: Accuracy with angle threshold of 30° and different IoU thresholds

IoU threshold Accuracy (%)

Image-wise Object-wise

0.2 99.44 98.91
0.25 98.87 97.83
0.3 96.61 96.20
0.35 93.78 92.39

Figure 8: Unsuccessful grasp predictions

6.3 Multiple Grasps
The multi-scale grasp detector performs grasps with changing object sizes. To exhibit predicted

grasp rectangles of different sizes, a newly designed test is based on multi-grasp research, where grasps
of top n scores are collected and few candidates are reserved by Non-Maximum Suppression that
merges several similar predicted boxes. As shown in Fig. 7b, the detector makes predictions containing
both large and small grasp candidates at the same time, which come from anchor boxes either of single
scale or of multiple scales. Furthermore, predictions from different scales are presented separately.
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Images of the same object with different sizes are put into the network, and predictions from five scales
are listed together in the form of heat maps, shown in Fig. 9. Column (a) stands for input images,
columns (b)–(f) are heat maps of scores in five different scales, and the color bar, that marks color
ranging from 0 to 1, is listed on the right side. As the size of objects becomes larger, the main areas
of grasp features move to a larger scale and the highest score is performed on larger feature maps.
Meanwhile, the same part of the object suggests different grasp sizes and types in different scales. The
multi-scale detector prefers grasps across the small objects and applies grasps on a small part for large
objects. Coupled grasp styles are conducted on objects of medium sizes. The changing results strongly
prove that the proposed detector can predict multi-scale grasps.

Figure 9: Heat maps of grasp scores on multiple feature maps

6.4 Ablation Study
The ablation study is designed to examine the effectiveness of the proposed approaches. A set of

controlled experiments is carried out on both image-and object-wise split RGB-D datasets and two
modules are considered in this part, as the background classifier and the FPN connections. One of the
two modules is abandoned at each time and all results are compared to the origin model. As shown in
Table 5, the model without the background classifier performs with an average accuracy of 94.35% and
94.24% on the image-and object-wise datasets respectively and achieves an accuracy of up to 96.61%
and 95.11%. The missing background branch brings a loss of nearly 2% accuracy on the image-wise
split dataset and 1.2% on the object-wise split dataset. In addition, the lack of a background classifier
makes positive predictions less separated from negative ones. Fig. 10 shows the output of heat maps by
the controlled model after the same training epochs. Compared with those in Fig. 9, scores on feature
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maps of each scale show smaller differences between the maximum and minimum values, which proves
the weakened ability of the model. Meanwhile, the detector without FPN connections achieves the
average accuracy of 94.94% and 94.83% on two types of datasets and has the maximum accuracy of
98.30% and 96.34%, respectively. Compared with the background classifier, the FPN module leads to
a smaller accuracy loss.

Table 5: Ablation study on background classifier and FPN connections

Background classifier FPN connections Accuracy (%)

Image-wise Object-wise

× √ 96.61 (94.35) 95.11 (94.24)√ × 98.30 (94.92) 96.34 (94.83)√ √ 98.87 (96.27) 97.83 (95.45)

Figure 10: Heat maps of grasp scores of the controlled model

6.5 Grasp Detection on Novel Objects
The multi-scale detector is tested on novel objects in two approaches. The dataset used in this

part is collected by an RGB-D camera placed on top of a robotic arm. The first test uses images
captured during rotation and translation of the camera around objects, shown in Fig. 11. The proposed
detector can make predictions dealing with the variance of the orientation and distance. Moreover,
each image in the second group of images consists of multiple objects, shown in Fig. 12. Multiple
grasps are performed on all objects contained in images. Both of the tests verify the generalization
ability to grasp according to partial information. Furthermore, the detector predicts grasp rectangles
with multiple sizes depending on the size of grasp features in one stage. The multiple grasp predictions
given in Figs. 11 and 12 provide various options for different gripper sizes and orders of grasping
rectangles. By combining the specific size and object to grasp, the best grasp prediction can be chosen
from the multiple candidates. Therefore, single grasp tasks are not carried out on novel objects because
the lack of relative semantic information.
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Figure 11: Multi-grasp on single objects from different relative positions

Figure 12: Multi-grasp on multiple objects

7 Conclusion

A multi-scale grasp detector is proposed using a fully matching model and multiple feature maps.
It can predict multiple grasps of different scales through a single shot. With cover boxes replacing GT
boxes in matching, the average IoU is highly increased and all positive examples are encoded through
anchor boxes. The background classifier prevents large amounts of unwanted easy negative examples
and focuses angle predictor on positive and hard negative examples, which brings better performance
on grasp angle predicting and enhances the generalization ability especially on multiple scales. This
model achieves an accuracy of up to 98.87% and 97.82% on the image-and object-wise split datasets
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at a real-time speed of 22 frames per second, which is competitive among the most advanced studies.
Furthermore, the experiments on novel objects present the effectiveness of the proposed detector.
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