
echT PressScience
Computer Modeling in

Engineering & Sciences

DOI: 10.32604/cmes.2022.020639

ARTICLE

E�cient UAV-Based MEC Using GPU-Based PSO and Voronoi
Diagrams

Mohamed H. Mousa1,2,* and Mohamed K. Hussein2

1Department of Information Technology, College of Computing & Information Technology at AlKamil, University of Jeddah,

Jeddah, Saudi Arabia

2Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University, Ismailia, Egypt

*Corresponding Author: Mohamed H. Mousa. Email: mohamed mousa@ci.suez.edu.eg

Received: 04 December 2021 Accepted: 18 February 2022

ABSTRACT

Mobile-Edge Computing (MEC) displaces cloud services as closely as possible to the end user. This enables the

edge servers to execute the offloaded tasks that are requested by the users, which in turn decreases the energy

consumption and the turnaround time delay. However, as a result of a hostile environment or in catastrophic

zones with no network, it could be difficult to deploy such edge servers. Unmanned Aerial Vehicles (UAVs) can

be employed in such scenarios. The edge servers mounted on these UAVs assist with task offloading. For the

majority of IoT applications, the execution times of tasks are often crucial. Therefore, UAVs tend to have a limited

energy supply. This study presents an approach to offload IoT user applications based on the usage of Voronoi

diagrams to determine task delays and cluster IoT devices dynamically as a first step. Second, the UAV flies over

each cluster to perform the offloading process. In addition, we propose a Graphics Processing Unit (GPU)-based

parallelization of particle swarm optimization to balance the cluster sizes and identify the shortest path along

these clusters while minimizing the UAV flying time and energy consumption. Some evaluation results are given

to demonstrate the effectiveness of the presented offloading strategy.

KEYWORDS

Task offloading; mobile-edge computing; unmanned aerial vehicles; Internet of Things; voronoi diagrams;
GPU; particle swarm optimization

Table 1 describes the meaning of the common terms abbreviations and acronyms found

throughout the paper.

This work is licensed under a Creative Commons Attribution 4.0 International License,

which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

http://dx.doi.org/10.32604/cmes.2022.020639

414 CMES, 2022, vol.133, no.2

Table 1: List of abbreviations

Abbreviation De�nition

CUDA “Compute Uni�ed Device Architecture”

GA “Genetic Algorithm”

GPGPU “General Purpose GPU”

GPU “Graphical Processing Unit”

GPUPSO “GPU-Based PSO”

IoT “Internet of Things”

MEC “Mobile Edge Computing”

PSO “Particle Swarm Optimization”

QoS “Quality of Service”

UAC “UAV-Assisted Computing”

UAV “Unmanned Arial Vehicle”

UCMEC “UAV-Assisted Computing MEC”

VD “Voronoi Diagram”

1 Introduction

Mobile-Edge Computing (MEC) has been become the most promising framework for meeting

Quality of Service (QoS) requests, taking into account the requirements of processing cycles and

energy. This is essential for computationally intensive mobile applications and the Internet of

Things (IoT) to cope with capability limitations of mobile and IoT devices [1–3]. A cloud-based

layer supports an edge network of servers that handles computationally intensive tasks, allowing

for a reduction in the required energy and corresponding turnaround time. The close proximity of

the edge servers to IoT and mobile devices provides low latency and a high bandwidth for delay-

sensitive IoT applications [4–6]. However, in some locations, the deployment of edge servers may

be dif�cult, if not impossible [7–11]. As a real-life example, monitoring and observing forests and

woodlands is a dif�cult task because such monitoring is time-consuming and requires considerable

effort along with suitable resources. Stopping dangerous undertakings that can cause great damage

to nature is a major challenge and responsibility of monitoring forestlands. Because forests cover

such a wide area, it is dif�cult for forest managers and workers to take immediate action in cases

of problems such as forest �res and illegal tree felling. Communication with ground sensors, aerial

surveillance, mapping, aerial photography, and thermal imaging are some approaches in which

Unmanned Aerial Vehicles (UAVs) can carry out forest monitoring. Thus, monitoring by UAVs

contributes to the conservation of wildlife, biodiversity, and vegetation, the balance of ecology,

and other forestry-related issues.

1.1 Motivation

The UAV industry has made signi�cant advances with regard to both technology and cost

during the past decade, and many different applications have been demonstrated, such as intelli-

gent transportation, agriculture, and wilderness monitoring [12–15]. In addition, throughout this

period, communication technologies have advanced in various ways (e.g., IoT, cloud computing,

etc.) [16]. UAVs have been highly successful due to their cost-effective and �exible deployment

[17]. These advances in communication technologies have been used to improve the collaborative

computation between UAVs and ground devices. In fact, UAV-Assisted Computing (UAC) is

CMES, 2022, vol.133, no.2 415

regarded as computation services provided to ground devices using UAVs as �ying bases [18]. To

this end, UAVs can support of�oading in MEC architecture in various ways such as:

• UAV-assisted communication: For IoT devices, UAVs allow quick, �exible, and cost-effective

network coverage by acting as relays for distant ground base stations [19,20].

• UAV-assisted Computing MEC (UCMEC) architecture: For cloud services, UAVs equipped

with edge servers allow for the of�oading and processing of ground device tasks.

A uni�ed communication network that integrates a UAV with an MEC network, as well as

near line-of-sight wireless communication, are important for meeting the QoS speci�cations of

mobile applications with regard to energy consumption and sensitivity to delay [21,22]. UAVs are

constrained by their energy limitations, which lead to delays in their of�oading processes. Two

challenges must be taken into account in the development of any UAV-assisted computing MEC

method:

1. Locally, ground devices are not distributed uniformly. Hence, the of�oading and execution

of tasks must be partitioned and balanced along a set of clusters in order to achieve high

performance of the UCMEC of�oading system.

2. Despite the energy limitations, UAVs should collect IoT data from various locations, pro-

cess of�oaded tasks, and report the results back. These paths have to be optimized to

satisfy the energy constraints of the UAVs.

1.2 Contribution

This research designs a UCMEC framework to of�oad tasks with the goal of optimizing the

amount of required energy and computational turnaround time for both mobile devices and UAVs.

As depicted in Fig. 1, we propose a space partitioning of the of�oaded tasks into different regions,

with the UAV hovering over each region to process the of�oaded tasks. Finally, the UAV trajectory

is optimized considering the time and energy limits of the UAV. The contributions according to

the proposal are as follows:

Start
Voronoi

Construction

Initial

Partitioning
GPUPSO

Partitioning

Optimization

Path

Planning

End

Figure 1: The proposed of�oading framework

• “Voronoi Diagrams” (VDs) are used based on a formal mathematical model of the

UCMEC system to partition the IoT wireless devices into set regions, where the of�oaded

subset of tasks in each region meets the overall time constraint.

• The initial partitioning of the wireless devices is improved using the proposed “Graphics

Processing Unit” (GPU)-based Particle Swarm Optimization (PSO).

• The same GPU-based PSO (GPUPSO) steps are used for obtaining a near-optimum

path minimizing the UAV trajectory and load balancing tasks in the partitioned regions

according to both energy and time constraints.

• PSO has the advantage of being simple to implement and has a good capability for conver-

gence in comparison with many population-based approaches, such as Genetic Algorithms

416 CMES, 2022, vol.133, no.2

(GAs) [23]. The main disadvantage is that PSO may be attracted to local minima. We

overcome this issue by adding an aging factor that guarantees exploration of the global

search space.

The rest of the paper is organized as follows. The next section presents the related work, fol-

lowed by a formulation of the optimization model in terms of the time and energy constraints as

well as the affecting factors in Section 3. Section 4 explains the proposed optimization framework

on the basis of clustering of the ground devices and the use of the GPU-based PSO. Finally,

Section 5 presents some experimental results, followed by the conclusions in Section 6.

2 Related Work

Edge servers are always privileged by their high bandwidths and low latency. Therefore, the

performance of of�oaded tasks is enhanced by MEC for restricted systems in terms of energy

and time [24,25]. When UAVs are equipped with MEC servers and communicating channels,

UAVs contribute to computing services and instant communications. This yields a better energy

consumption and rate of transmission for mobile devices. However, the UAV’s energy limitations

have an adverse effect on ground mobile equipment with regard to communication and compu-

tation [26]. To address these key challenges, a variety of research studies have been conducted to

explore different con�gurations, optimization objectives, and underlying constraints.

In [27], optimum planning of the UAV trajectory, ratio of of�oading tasks, and user schedul-

ing were studied together to minimize all users’ delays. In [28], UCMEC was proposed as a

novel framework of agent-based task of�oading. With the aim of obtaining the optimal of�oading

plan, the intelligence agent was led to obtain a plan that was as ef�cient as possible. However,

this study did not address UAV trajectory optimization. In [29], the authors demonstrated that

partial of�oading can be optimized through the optimization of of�oading ratios, local computing

frequencies, transmission power, and edge server computing frequencies. However, their framework

did not consider UAV mobility. In [30], the authors proposed an MEC system involving multi-

UAVs and ground IoT nodes to of�oad computational tasks that they could not handle using

their limited capabilities. To balance the computational load of the UAVs, they employed a deep

reinforcement learning approach. However, stable MEC clustering with greater computing power

does not guarantee generation by this method. In [31], using the Dinkelbath algorithm and

“successive convex approximation” (SCA) techniques, the authors solved a nonconvex optimization

problem formulated in the UAV scenario. In this system, neither the level of distribution of mobile

devices on the ground level nor the timing of tasks that are to be of�oaded were considered.

As part of resource allocation and joint computation of�oading, task assignment to MECs while

reducing turnaround time and required energy is an important issue. Reference [32] focused on

the number and location of UAVs in the development of algorithms for deploying multi-UAVs

in a FANET. Based on whether tasks are of�oaded or processed locally, a greedy algorithm was

proposed to determine the optimal solution. However, it is important to determine when and

how to of�oad tasks from IoT devices, particularly if the tasks are uncertain in order to improve

accuracy while reducing cloud communications costs. Using the UAV computing platform, Chen

et al. [33] proposed an intelligent task of�oading algorithm (iTOA) that can solve the compu-

tationally intensive problem of task processing. The of�oading operation is performed using the

deep “Monte Carlo Tree Search” algorithm (MCTS), which is the principal algorithm of Alpha

Go. To arrive at the optimal decision, MCTS simulates the future trajectory of the unloading

decision and optimizes the rewards based on this simulation. To be effective, the proposed of�oad-

ing strategy requires training data, a prediction model of the channel state, and a period of

CMES, 2022, vol.133, no.2 417

self-learning. In [34], the UAV served as a supporting unit for helping ground devices of�oad their

tasks to access points for further computations. They employed a greedy algorithm to optimize the

required energy based on a suitable selection of UAV paths and allocation of resources. However,

only the UAV velocity is taken into account in the optimization process. In [35], the relation

between energy consumption and latency is considered for task of�oading and for evaluating

MEC system performance. Their approach used iterative optimization to determine the path of

the UAV. However, this optimization does not take into account how clustered �xed slots should

be partitioned or consider time delays. In [36], the UAV energy consumption was minimized

by optimizing its trajectory and task scheduling. This will further shorten the operational time

if some memory-intensive and computation-intensive tasks are executed on the UAV. In [37],

greedy search optimization based on the uplink and downlink communications between UAVs and

devices was utilized as a means of of�oading and receiving data while ensuring energy-ef�cient

operation of the system. In [38], a new mobile edge system integrating UAVs and IoT devices was

developed. By launching a UAV, the system enables the provisioning of services to IoT devices by

using wireless communication. Additionally, their approach formulates the problem as a nonconvex

optimization problem by optimizing UAV position, resource allocation decisions, and task splitting

decisions jointly to minimize the total delay and consumption of energy. However, it does not

take task scheduling into account. In summary, the approach based on exhaustive and greedy

searches is not suitable for such optimization. In fact, the majority of problems in consideration

have many factors that must be optimized, such as the shortest path planning, ground user number

and locations, energy consumption, and time delay parameters. Thus, most researchers deployed

heuristic settings such as �xed partitions. However, their frameworks are not extensible due to their

high complexity. In addition, learning-based approaches [39,40] request a preprocessing training

step. Such a preprocessing step makes these approaches inapplicable to probabilistic problems.

Thus, the metaheuristic optimization framework is a suitable candidate for dealing with such

stochastic problems. In this study, we employ a combination of a computational geometry algo-

rithm, namely, the VD construction algorithm, and a natural phenomena simulation, namely, PSO,

to carry out the required minimization of the time delay and energy consumption of the task

of�oading problem using UCMEC in a reasonable timeframe.

3 UAV-Based Of�oading Framework

Now, we describe the employed time and energy models in this section. Table 2 lists the set

of symbols and factors employed in the suggested task of�oading model.

Table 2: List of symbols and parameters used in the proposed optimization framework

Symbol De�nition

N The number of wireless devices

D The set of wireless devices

di A wireless device

dik Euclidean distance between di and dk
H Flying altitude of the UAV

Rc The communication coverage radius of the UAV

(Continued)

418 CMES, 2022, vol.133, no.2

Table 2 (continued)

Symbol De�nition

Ri A region containing wireless devices

K The number of regions

tci The computing cycle of task ti
tτi The delay of task ti

tdi The data size of task ti
ρ0 The amount of power reception per 1 meter

β The bandwidth of the uplink channel

hi The channel gain

Pik The max transmission power

N0 The signal noise

f u The processing capacity of the UAV

κ1 The energy factor for wireless communication

κ2 The energy factor for computation processing

κ3 The energy factor for UAV hovering

v The speed of the UAV

E Battery storage capacity of the UAV

Two layers comprise an of�oading system based on UAVs. A ground layer consists primar-

ily of IoT and mobile devices that have N �xed-position wireless devices on the ground. Let

D = {d1,d2, ...,dN} denote the set of ground devices. To maximize ef�ciency and reduce overall

energy consumption, wireless devices are encouraged to of�oad their computations to a �ying

MEC server for faster calculations and minimum time delay. A single UAV in conjunction with an

MEC form the second layer, namely, a �ying MEC. This layer provides cloud-based computations

for the �rst layer devices while ensuring a minimal response time.

For the UAV, an altitude of H > 0 is maintained continuously. In addition, let Rc be the radius

of communication coverage of the UAV. Several K regions are covered by the UAV with respect to

a prede�ned path. Without loss of generality, let the path start at R0 and end at RK, i.e., following

the sequence R0 · · ·RK. At the end of the path cycle, the UAV returns to the starting position

after hovering over each region Rk to process the tasks that have been of�oaded to this region.

On the other hand, the position of each ground device di is speci�ed in advance by the Cartesian

coordinates (xi,yi). In addition, the stopping position of the UAV over the region Rk is speci�ed

by the Cartesian coordinates uk = (xk,yk). Therefore, by calculating the Euclidean distance, we

can evaluate the distance between the UAV and each di as follows:

dik =

√

(xi− xk)
2+ (yi− yk)

2+H2 (1)

Provided that the UAV with device di is in the covered region, i.e., the following condition is

satis�ed:

dik < Rc (2)

CMES, 2022, vol.133, no.2 419

While the UAV hovers over a region Rk, device di requests to of�oad its tasks ti = (tci , t
τ
i , t

d
i),

where tdi , t
τ
i , and tci correspond to the data size, task delay, and needed computing cycles,

respectively. The presented UCMEC framework divides the set of devices D into K clusters

on each UAV to of�oad the requested tasks. Let δik = 1 indicate that the ground device di is

permitted to of�oad task ti by the UAV while �ying over Rk. The following subsections describe

the suggested optimization approach according to the energy consumption, computational, and

communicating models.

3.1 Communication Model

In this section, we will describe the communicating model controlling the UAV. Suppose that

device di is within cluster Rk. This means that when the UAV is hovering over Rk, di lies in the

Rc coverage of the UAV. Therefore, the channel gain resulting from the communication between

the UAV and di is evaluated as follows [12]:

hik =
ρ0

d2
ik

(3)

where ρ0 is the amount of power reception per 1 meter. Similarly, considering that signal noise

is denoted by N0, the power of transmission is denoted by Pi, and the bandwidth of the com-

municating channel is denoted by β. Therefore, the rate of transmission is evaluated using the

following equation [41]:

rik = β log2(1+
Pihik

N0
) (4)

Let T trans
ik

be the time required to transmit a task from di. T
trans
ik

is evaluated as follows:

T trans
ik =

tdi
rik

(5)

Based on Eq. (5), the time required to of�oad all of the tasks within Rk is as follows:

T trans
k =

∑

i

δikT
trans
ik (6)

Depending on the decision value, δik, device di is either permitted or not permitted to of�oad

its task to the UAV.

3.2 Computation Model

In this section, we will formulate the time of the computation model based on the computa-

tion capacity of the UAV. Let f u be the UAV computational capacity; therefore, the time required

to execute task ti is evaluated as follows:

T
comp

ik
=
tci
f u

(7)

Similar to T trans
k

, the total computational time is evaluated as follows:

T
comp

k
=
∑

i

δikT
comp

ik
(8)

420 CMES, 2022, vol.133, no.2

Using Eqs. (6) and (8), the overall time required within Rk is evaluated as follows:

Tk =T
trans
k +T

comp

k
(9)

3.3 Energy Consumption Model

In this section, we will describe the required energy to of�oad the tasks in Rk. In fact, the

consumption of energy results from the following:

• the energy required to send the receive tasks’ data,

• the energy required to execute the received tasks, and

• the energy required to the �ying operation.

For the transmission and reception of data, let the communication energy factor be denoted

by κ1. Therefore, communication energy, Etrans
k

, is evaluated by:

Etransk = κ1

∑

i

δikt
d
i (10)

Let κ2 be the computational energy factor. Therefore, the computational energy, E
comp

k
, is

evaluated as follows:

E
comp

k
= κ2

∑

i

δikt
c
i f
u2 (11)

For the UAV hovering energy, we followed the propulsion energy model of [42]. Let κ3 denote

the hovering energy factor. Therefore, the hovering energy, Eh
k
, is evaluated using the following

equation:

Ehk = κ3Tk (12)

Using Eqs. (10)–(12), the required energy is given by:

Ek =E
trans
k +E

comp

k
+Ehk (13)

3.4 Objective Function

In this section, we present the principal factors of the objective function on which the PSO

will be based. In fact, the set of ground devices is arranged into a set of clusters. This set is

dynamically constructed based on the following factors: the maximum cluster capacity, ṁ, and the

sum of distances, Ḋ, between the devices and their corresponding cluster center. These factors are

evaluated as follows:

ṁ=max
k

(
∑

i

δik) (14)

Ḋ=
∑

k

∑

i

δikdik (15)

In the same manner, based on Eq. (13), the required energy, E, along all clusters is evaluated

as follows:

E =
∑

k

Ek (16)

CMES, 2022, vol.133, no.2 421

We formulate the function, F, to be minimized as a mixed-integer, nonlinear constraints

problem as follows:

min : F=
KE

ṁḊ
(17)

subjected to:

C1:dik−Rc < 0 ∀ i= {1, ...,N} (18)

C2:
∑

k

Tk−Tu < 0 (19)

C3:
∑

k

Ek−Eu < 0 (20)

C4:

(

∑

k

δik

)

− 1= 0 ∀ i= {1, ...,N} (21)

The �rst constraint, C1, guarantees the coverage of each device when the UAV hovers over

the corresponding cluster. C2 guarantees that the total time does not exceed the maximum allowed

�ying time. Similarly, C3 guarantees that the total energy does not exceed the UAV battery

maximum. Finally, the �nal constraint, C4, guarantees that of�oading of each device is associated

with one and only one cluster. Finally, we combine Eqs. (19)–(21) as a single objective function

as follows:

Ḟ= F+ γ

4
∑

i=1

C
2
i (22)

where γ denotes the weight of the penalty sum.

4 The Optimization Model

In this section, we describe our proposed optimization approach. First, we propose a parti-

tioning of the set of wireless devices, D, using the VDs with respect to the UAV communication

range Rc. Second, optimization is performed using the GPUPSO algorithm to obtain better clus-

tering and the shortest path for the UAV. We propose the implementation of a customized PSO

on a GPU. The customized PSO is as simple as the classical PSO but shows better performance.

Our aim is to speed up the computation and introduce a better local communication topology

between the particles within the population as part of the global search. The parallelization of the

PSO on a GPU enables a better exploration of search spaces with a high number of dimensions

using a large population swarm.

4.1 Voronoi Diagram

VD partitions a two-dimensional plane containing a set of N anchors, called sites, with a set

of N Voronoi polygons. Each Voronoi polygon is associated with a unique site (see Fig. 2a) such

that any points inside that polygon are closer to the speci�ed site [43,44]. In addition, the vertices

of the Voronoi polygon are called Voronoi vertices, and the circles centered at these vertices that

pass through the neighboring sites are called Voronoi circles [45] (see Figs. 2b). We note that the

site may be shared with more than one Voronoi circle.

422 CMES, 2022, vol.133, no.2

Given a region R containing a set of mobile devices D, where D = {d1,d2, · · · ,dN}, VD

partitions the region R into a set of Voronoi polygons. Each polygon contains a single mobile

device and can be considered an of�oading region to be visited by the UAV. We show how to

merge these regions to of�oad multiple devices in a single visit, taking into consideration that any

resulting region should satisfy the following:

1. All of the associated mobile devices in the region should be in the coverage area, Rc, of

the UAV.

2. The sum of the transmission time and the computation time of the assigned devices in the

region should be less than Tu,
∑

kTk <Tu, as stated in constraint C2 in Eq. (19).

Figure 2: VD construction. (a) Each Voronoi polygon corresponds to a unique site, and (b) the

Voronoi circles are centered at Voronoi vertices and pass through the corresponding sites

Algorithm 1: The initial partitioning of D into a set of of�oadable regions

input: A set of mobile devices D= {d1,d2, ...,dN}

1 Construct the Voronoi diagram, VD(D);

2 Determine the Voronoi circle for all VD(D) vertices;

3 for i= 1 to N do

4 {di1 · · ·dil }← the set of devices sharing at least one Voronoi

circle with di;

5 cdi← the �tting circle containing di ∪ {di1 · · ·dil };

6 end

7 L← Sort the set of all cdi w.r.t their radii;

8 i← 0;

9 repeat

10 L′←{L[j] :L[j]∩L[i] 6=8} ; // neighboring regions

11 for j← 0 · · ·#L′ do

12 if
(

L′[j]∪L[i]≤Rc

)

and
(

TL′[j]∪L[i] ≤Tu
)

then

13 L[i]←L′[j]∪L[i] ;

14 L←L\L′[j] ;

15 end

16 end

17 i← (i+ 1)%#L;

18 until There are no more regions to merge;

CMES, 2022, vol.133, no.2 423

Algorithm 1 summarizes the steps for the initial partitioning of D. The input of the algorithm

is the set of mobile devices D. The algorithm starts by constructing the Voronoi diagram of

the set of devices, VD(D). Once VD is constructed, we identify all of the Voronoi circles of

the diagram. For each device di, we identify the corresponding devices, {di1 · · ·dil }, that share at

least one Voronoi circle with di. Then, the algorithm �nds the �tting circle, cdi , that contains

di ∪ {di1 · · ·dil }. The set of all cdi is considered as the initial partitioning of the area R. Since

each device is shared by at least one Voronoi circle and each Voronoi circle passes through at

least three devices, cdi has at least three devices. In addition, the set of �tting circles may not be

disjointed, i.e., cdi ∩ cdj 6=8. The set of all cdi(i= 1, · · · ,N) are sorted in a list L with respect to

their radii in ascending order. Now, we show how to merge the regions cdi with respect to the

boundary condition C2 expressed in Eq. (19).

Starting with the smallest �tting circle L[i], where i = 0, we identify of all the �tting circles

L[j] that share at least one device with L[i]. Now, for each L[j], we test whether the circle can

be merged with L[i] without violating the constraint speci�ed in Eq. (19). If the merge is eligible,

then L[i] is updated to L[j]∪L[i], and L[j] is removed from the list L. The algorithm stops when

there are no more regions eligible for merging in L.

In fact, the initial partitioning of the given devices may produce unbalanced partitions.

Although these initial partitions are constructed in accordance with the time constraints of the

UAV, these partitions may increase the transfer time necessary to achieve all the tasks in each

partition. When the UAV is in a speci�ed region, the UAV may cover devices from neighboring

partitions as shown in Fig. 3. The existence of these overlapping areas creates the possibility of

improving the transfer time of such devices. In Fig. 3, device s can be covered from regions R2

and R3. The question here is which is better, of�oading the device s within region R2 or within

region R3? We use PSO to answer this question by associating s with the corresponding region,

which optimizes the overall time, namely, the of�oading time, along the UAV trajectory. In the next

section, we describe the proposed implementation of GPU-based PSO that �nds the optimized

association of shared devices and the optimal UAV path that minimizes the overall time and

energy consumption.

R1

R2

R3s

Figure 3: An example of three regions (dashed circles) with shared devices (red)

4.2 GPU-Based Particle Swarm Optimization

In this section, we illustrate how to implement PSO on a GPU architecture. We start by

introducing the classical PSO. Then, we summarize the bene�ts of the current advances of

GPUs [46]. In addition, we show how to use GPU-based PSO in optimizing the wireless device

424 CMES, 2022, vol.133, no.2

association to improve the clustering of the set of devices D. Finally, we illustrate how to choose

the shortest path for the UAV that minimizes the problem stated in Eq. (17).

4.2.1 Particle Swarm Optimization

The classical PSO algorithm is classi�ed as a stochastic global optimization technique. PSO

was developed in 1995 by Eberhard and Kennedy based on the social behavior of birds or

�sh [47]. Fig. 4 depicts the overall process of the classical PSO, in which each particle Pi is

provided with the following information:

• xti : the current position at time t,

• vti : the current velocity at time t, and

• bi: the historical best position of Pi.

Start

In
it

ia
li

ze
x

t=
0

i
,v

t=
0

i

E
va

lu
at

e
fi

tn
es

s:
f

(P
i
)

U
p

d
at

e
lo

ca
l

b i

U
p

d
at

e
g

lo
b

al
g

U
p

d
at

e
v

t+
1

i
,x

t+
1

i

Quit

criteria

End

(1) (2) (3) (4) (5)

yesno

Figure 4: The classical particle swarm optimization algorithm

The algorithm shares the information of the historical global best position among all particles

in the swarm, g. Using the PSO, each particle in the swarm adjusts its velocity, vti , according to

the following two items of information: (1) the best position at which the particle has been thus

far, bi, and (2) the historical best position along the whole swarm, g. This is accomplished using

the following formula:

vt+1i =ωvti + c1r1
(

bi− x
t
i

)

+ c2r2
(

g− xti
)

(23)

where ω ∈ [0, 1] is the inertia coef�cient, c1, c2 ∈ R
+ are the acceleration coef�cients, and r1, r2 ∈

[0, 1] are random numbers. The �rst term of Eq. (23) represents the momentum part, in which the

previous �ight direction is memorized, preventing the particle from drastically changing direction.

In the same manner, the second term is the cognitive part, in which the previous best position

of the particle is memorized and the performance is quanti�ed relative to the past performances.

Finally, the third term is the social part, in which the performance is quanti�ed relative to that of

its neighbors. Once the velocity is updated, the current position of each particle is updated using

the following equation:

xt+1i = x
t
i + v

t+1
i (24)

This makes all the particles align their positions in the search space to the local and global

best positions in the search space. Fig. 5 shows a graphical illustration of the effect of Eqs. (23)

CMES, 2022, vol.133, no.2 425

and (24) describe the inertia and cognitive and social behaviors of particle Pi. The choice of a

convenient value for ω is crucial for the convergence of the algorithm [48]. A greater value of ω

corresponds to a more global exploration of the search space. By contrast, smaller values of ω

focus on the local investigation of the search space. Our experiments show that it is preferable to

initialize ω with large values to encourage the global investigation of the search space and then

decrease this value using an aging factor according to the running time to obtain �ner solutions.

x t
i

g

bi

v t
i

(a)

x t
i

g

bi

v t
iωvt

i

x t +1
i

v
t +

1
i

(b)

Figure 5: The alignment of the particle position according to cognitive and social behaviors. The

orange, red and green solid lines correspond to the inertia and cognitive and social behaviors,

respectively, of particle Pi

In fact, PSO has been considered one of the most powerful nature-inspired optimization

algorithms. However, for high-dimensional space or large swarm optimization problems, PSO

requires performance improvements. This is due to successive evaluations of the �tness function

as well as the need to update the particle locations. The �rst intuitive solution for overcoming

this performance degradation is to parallelize the steps from (2)–(5); see the blue shaded loop in

Fig. 4 [49]. However, it is insuf�cient to set subjobs in a parallel calculation job by introducing a

single thread for each job that includes a time-consuming evaluation task.

4.2.2 CUDA Architecture

Due to the emergence of General Purpose GPUs (GPGPUs) and their rapid arithmetic

kernels, performance has dramatically improved in many �elds. In fact, a GPU performs com-

putations faster than a CPU. Due to the high transistor density, �oating-point operations can

be performed much faster with a GPU than with a CPU because it devotes more transistors

to data processing than to data caching and �ow control. The second bene�t of GPUs is their

data-parallel capabilities; they are particularly well suited to problem solving in data-parallel

computations with a high arithmetic intensity, that is, for problems where there is a high ratio of

arithmetic operations to memory operations.

Furthermore, programming on GPUs has been greatly simpli�ed by the existing platforms,

particularly by the Compute Uni�ed Device Architecture (CUDA) [50]. For the CUDA program-

ming concept, as shown in Fig. 6, GPUs can be considered a high-performance computing device

capable of handling many threads at the same time. Kernels are the heart of CUDA, and a batch

of threads is responsible for executing these kernels simultaneously. This batch is organized as

a grid consisting of a number of thread blocks. Generally, a block of threads is a collection

of threads. This collection collaborates by allowing data sharing using an ef�cient and dedicated

shared memory. In addition, the collection synchronizes their execution to �awlessly optimize their

426 CMES, 2022, vol.133, no.2

memory hits. A key feature of CUDA is its memory model that is closely related to the mechanism

used by the batch of threads. Every thread has its own local memory, registers, and a unique

id. Global memory can be accessed by all threads within a grid, while shared memory can only

be accessed within a block. For our implementation, we mostly use shared memory and global

memory.

CUDA kernel

Texture

memory

Global

memory

Constant

memory

Grid

Block 0

T0,0

T0 ,n

Tm, 0

Tm,n

Shared

Memory

Block k

Shared

Memory

Figure 6: The programming architecture of the CUDA kernel

In this research, we propose a robust implementation of PSO using CUDA. The GPU-based

PSO can enhance optimization performance, increase the swarm population, enlarge the size of the

problem, and greatly speed up implementation. This allows users to solve critical time problems

or complex optimization problems in a reasonable amount of time.

4.2.3 Optimization Structure

Based on the initial partitioning described in the previous section, we propose a multiobjective

GPUPSO that minimizes:

1. The routing path of the UAV,

2. The energy consumption, and

3. The shared devices’ of�oading time.

In fact, the association of shared devices affects the overall time and transmission energy since

the of�oading time and energy depend on the positions of the UAV and the devices, as described

in Eqs. (1), (3), (4), and (10). On the other hand, the path of the UAV affects both the time and

energy consumption.

CMES, 2022, vol.133, no.2 427

Let R= {R1,R2, · · · ,RK} be the set of initial partitions and T trans
k
=
∑

i δikT
trans
ik

, where T trans
k

is the time required to of�oad the devices of Rk and T trans
ik

is the transmission time of device

i ∈Rk. Consider that D′ = {d ′1,d
′
2, · · · ,d

′
n′
} is the set of shared devices such that:

∀d ′ ∈D′⇔
(

∃k1,k2 : (1≤ k1 6= k2 ≤K)∧ (d ′ ∈Rk1 ∩Rk2)
)

(25)

In addition, we de�ne the set of regions R′ = {R′1,R
′
2, · · · ,R

′
K
} such that R′

k
= Rk\D

′. Now,

we describe the proposed particle structure. In fact, each particle Pi consists of two parts:

1. Gi = (g1i , · · · ,g
n′

i), which represents the association of shared devices, and

2. Ci = (c1i , · · · , c
K
i), which represents the routing path of the UAV.

Now, we de�ne the structure of the part concerning the �rst objective. First, each g
j
i is

associated with the corresponding device d ′j ∈ D
′, j = 1 · · ·n′. The value of g

j
i is chosen from the

set of integers kj, 1≤ kj ≤K, representing the indices of the candidate partitions R′
kj

such that d ′j

is coverable when the UAV hovers over Rkj . In addition, we de�ne |g
j
i| as the cardinality of the

set of possible values of g
j
i . Therefore, the values of Gi = (g1i ,g

2
i · · ·g

n′

i) can be, for example, as

follows:

g1i ∈ {0≡R
′
ki1

, 1≡R′
ki2
} |g1i | = 2

...
...

g
j
i ∈ {0≡R

′
kj1

, 1≡R′
kj2

, 2≡R′
kj3
} |g

j
i| = 3

...
...

gn
′

i ∈ {0≡R
′
kn′

1

, 1≡R′
kn′

2

} |gn
′

i | = 2

The cost consists of the sum of the total time and energy transmission for devices in D′. For

the second objective, we de�ne the structure of this part as a set of �oating values describing the

priority of visiting the partitions Ri by the UAV; Ci = (c1i , c
2
i , · · · , c

K
i). The region with the highest

priority is visited �rst. The cost consists of the �ying, hovering and transmission energy of the

UAV over path Ci.

The �nal structure of particle Pi is the concatenation of GiCi ∈R
n′+K. The two parts Gi and

Ci are not independent since the association of a device with a certain region affects the hovering

time and energy of that region. Similarly, G does not affect the total computation time and

energy. The application of the parallelized PSO to the proposed GC is summarized as depicted

in Algorithm 2. The algorithm starts by initializing the values of the particle positions. Initially,

the best position for each particle will be the current position, and the global position is the best

position among the local best. Then, the algorithm iterates in parallel using the CUDA kernel

move() that locates the next position for each particle Pi. After each move, the global and local

best positions are updated if necessary.

428 CMES, 2022, vol.133, no.2

Algorithm 2: The GPU-based particle swarm optimization algorithm

// initialization

1 foreach Pi do // in parallel

2 initialize x0i & v0i ;

3 bi← x0i ;

4 end

5 g=min
i
bi;

6 a= 0.99 ; // aging factor

7 for t= 0 to MaxIter do

8 foreach Pi do // in parallel

9 move(Pi,ωa
t,C1,C2, t+ 1);

10 update(bi,g) ; /* if needed */
11 end

12 end

// CUDA kernel

13 __global__ move(Pi,ω,C1,C2, t+ 1){

14 r1← rand();

15 r2← rand();

16 vt+1i ←ωvti + c1r1
(

bi− x
t
i

)

+ c2r2
(

g− xti
)

;

17 xt+1i ← xti + v
t+1
i ;

// xt+1i ≡Gt+1i Ct+1i

// conversion of Gt+1i to a discrete value

18 g
j,t+1
i ←⌊g

j,t+1
i ⌋%|g

j
i| ∀ j ∈ (1 · · ·n′);

19 }

5 Results and Discussion

The experiments are performed on an NVIDIA CUDA Maxwell architecture embedded in

an Intel Core i7-8565U CPU running at 1.8 and 1.99 GHz and a GeForce MX130 GPU with 4

GB RAM under Windows 10. Here, we present some experimental results that demonstrate the

effectiveness of the proposed approach. A set of wireless devices is randomly distributed over the

square region of 200× 200 m2. Many studies have been devoted to determining the �ying and

energy parameters for UAVs [51,52]. Similar simulation parameters are presented in Table 3. First,

the partitioning of the devices is performed on the CPU, and then the proposed optimization

using the PSO is applied on the GPU. The results concerning the optimization step are the average

of 10 independent runs. The inertia ω, cognitive C1, and social C2 parts are set as 0.75, 2.5, and

1.5, respectively. The aging factor for the inertia ω is set to 0.99 and applied every 10 iterations.

We have set the number of iterations to 1000.

Fig. 7 shows a graphical illustration of the proposed approach. First, a set of 40 wireless

devices is randomly generated, as shown in Fig. 7a. The VDs of these devices are created using

the sweep-line algorithm [53,54], as shown in Fig. 7b. For each device, the corresponding Voronoi

circles are determined, as shown in Fig. 7c, to apply the merging step. In the merging step,

the Voronoi vertices are merged together, as described in Algorithm 1 with respect to the UAV

covering radius Rc, as shown in Fig. 7d. Once the clusters of devices are obtained, the proposed

CMES, 2022, vol.133, no.2 429

GPU-based particle swarm algorithm is applied to obtain the shortest path for the UAV, as shown

in Fig. 7e.

Table 3: Parameter settings of the UAV for the evaluation experiments

Parameter Value

β 40 MHz

hi −30 dB

N0 10−9 W

κ 10−26

Pik 0.4 W

v 30 m/s

H 50 m

td 200 KB–3 MB

tc 6× 109–9× 1010

f u 300 MHz

E 5× 105 J

Figure 7: (a) The set of devices, (b) the Voronoi diagram of the devices, (c) the Voronoi vertices

(red) and their corresponding Voronoi circles, (d) the initial partitioning of the devices, and (e)

the shortest path

430 CMES, 2022, vol.133, no.2

Moreover, we compare the proposed optimization of our system vs. a GA. In fact, the

GA is a metaheuristic optimization approach based on natural reproduction phenomena. The

GA simulates the three main Darwinian operators of natural evolution, namely, selection of

the �ttest, crossover, and mutation operators. The algorithm starts by randomly initializing an

initial population and selecting the �ttest individuals for reproduction (applying the crossover and

mutation) of the next generation offspring. The individual structure is called a chromosome. In

our experiments, we use a chromosome structure similar to the proposed particle structure, as

described in Section 4.2.3, and apply the classical GA operators. Fig. 8 shows a comparison of

the proposed optimization and a GA. The population size is 800 particles (or individuals for GA).

Fig. 8 shows that the proposed GPU-based PSO has a higher convergence rate than the GA.

0 200 400 600 800 1,000

0

1,000

2,000

3,000

4,000

Generation

F
it

n
es

s

GPUPSO

GA

Figure 8: A comparison between the proposed GPU-based PSO (red) and a GA (blue). The GPU-

based PSO converges faster to the optimal value than the GA

Table 4: The timing (in msec) of the proposed approach for different numbers of wireless devices

(positioned randomly)

#D
CPU GPU

VD Part PSO

50 8 10 516

100 8.8 14 1350

150 9.5 19 2020

200 10 26 2784

250 10.4 29 3406

The analysis of the computational time shows that the GPU architecture speeds up calcula-

tion, as presented in Table 4. The columns from left to right are the number of wireless devices,

the Voronoi construction time, the partitioning time, and the optimization time. The number

of iterations and swarm size are set to 1000 and 800, respectively. The timings presented in

Table 4 show that the optimization process incurs the main bulk of the computational cost of the

proposed approach. In addition, when the number of wireless devices increases, the dimensionality

of the problem also increases, and the optimization step is the most strongly affected portion

CMES, 2022, vol.133, no.2 431

of the proposed approach. However, due to the high performance of the GPU architecture, the

performance difference is negligible.

6 Conclusion

This paper proposed a UCMEC system to improve the performance of of�oading tasks from

mobile devices with the goal of minimizing the task delay and the energy consumption of the

system. The proposed system partitions the ground devices into regions where the UAV can hover

over each region to process the of�oaded tasks. A VD is used for the partitioning process. The

UAV trajectory over the regions is optimized using a GPU-based PSO. The performance of the

proposed system was validated by comparison with other algorithms in the literature.

The limitation of the proposed of�oading process is that it is valid only for stationary devices.

In other words, it does not take into account the dynamic positioning of the ground sensors. In

addition, the performance of the PSO in de�ning the optimal clustering and the shortest path of

the UAV is very sensitive to the intrinsic parameters of the PSO, namely, the inertia, cognitive,

and social parameters. In fact, this is a general drawback for all metaheuristic approaches. Our

future work will consider the mobility of ground devices as well as the adaptive setting of the

algorithm parameters.

Funding Statement: This work was funded by the University of Jeddah, Saudi Arabia, under Grant

No. (UJ-20-102-DR). The authors, therefore, acknowledge the technical and �nancial support by

the University.

Con�icts of Interest: The authors declare that they have no con�icts of interest to report regarding

the present study.

References

1. Hussein,M. K.,Mousa,M. H. (2020). Ef�cient task of�oading for IoT-based applications in fog computing

using ant colony optimization. IEEE Access, 8, 37191–37201. DOI 10.1109/Access.6287639.

2. Jiang, E., Wang, L., Wang, J. (2021). Decomposition-based multi-objective optimization for energy-aware

distributed hybrid �ow shop scheduling with multiprocessor tasks. Tsinghua Science and Technology, 26(5),

646–663. DOI 10.26599/TST.2021.9010007.

3. Xu, X., Li, H., Xu, W., Liu, Z., Yao, L. et al. (2022). Arti�cial intelligence for edge service opti-

mization in internet of vehicles: A survey. Tsinghua Science and Technology, 27(2), 270–287. DOI

10.26599/TST.2020.9010025.

4. Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J. et al. (2017). A survey on mobile edge net-

works: Convergence of computing, caching and communications. IEEE Access, 5, 6757–6779. DOI

10.1109/ACCESS.2017.2685434.

5. Mabrouki, J., Azrour, M., Dhiba, D., Farhaoui, Y., Hajjaji, S. E. (2021). IoT-Based data logger for weather

monitoring using arduino-based wireless sensor networks with remote graphical application and alerts. Big

Data Mining and Analytics, 4(1), 25–32. DOI 10.26599/BDMA.2020.9020018.

6. Malek, Y. N., Najib, M., Bakhouya, M., Essaaidi, M. (2021). Multivariate deep learning approach for elec-

tric vehicle speed forecasting. Big Data Mining and Analytics, 4(1), 56–64. DOI

10.26599/BDMA.2020.9020027.

7. Mohamed, N., Al-Jaroodi, J., Jawhar, I., Noura, H., Mahmoud, S. (2017). UAVFog: A UAV-based fog

computing for internet of things. 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &

Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People

and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), San Francisco, CA,

USA, IEEE. https://ieeexplore.ieee.org/document/8397657/.

http://dx.doi.org/10.1109/Access.6287639
http://dx.doi.org/10.26599/TST.2021.9010007
http://dx.doi.org/10.26599/TST.2020.9010025
http://dx.doi.org/10.1109/ACCESS.2017.2685434
http://dx.doi.org/10.26599/BDMA.2020.9020018
http://dx.doi.org/10.26599/BDMA.2020.9020027
https://ieeexplore.ieee.org/document/8397657/

432 CMES, 2022, vol.133, no.2

8. Cheng, N., Xu, W., Shi, W., Zhou, Y., Lu, N. et al. (2018). Air-ground integrated mobile edge net-

works: Architecture, challenges, and opportunities. IEEE Communications Magazine, 56(8), 26–32. DOI

10.1109/MCOM.35.

9. Liu, Y., Song, Z., Xu, X., Ra�que, W., Zhang, X. et al. (2021). Bidirectional GRU networks-based next POI

category prediction for healthcare. International Journal of Intelligent Systems. DOI 10.1002/int.22710.

10. Yuan, L., He, Q., Chen, F., Zhang, J., Qi, L. et al. (2022). CSEdge: Enabling collaborative edge storage for

multi-access edge computing based on blockchain. IEEE Transactions on Parallel and Distributed Systems,

33(8), 1873–1887. DOI 10.1109/TPDS.2021.3131680.

11. Xu, X., Liu, X., Yin, X., Wang, S., Qi, Q. et al. (2020). Privacy-aware of�oading for training tasks of genera-

tive adversarial network in edge computing. Information Sciences, 532, 1–15. DOI 10.1016/j.ins.2020.04.026.

12. Bejaoui, A., Park, K. H., Alouini, M. S. (2020). A QoS-oriented trajectory optimization in swarming

unmanned-aerial-vehicles communications. IEEE Wireless Communications Letters, 9(6), 791–794. DOI

10.1109/LWC.5962382.

13. Zhu, B. J., Hou, Z. X., Lu, Y. F., Shan, S. Q. (2015). The direction zone of engineless UAVs in dynamic soar-

ing. Computer Modeling in Engineering and Sciences, 105(6), 467–490. DOI 10.3970/cmes.2015.105.467.

14. Zhu, B. J., Hou, Z. X., Wang, X. Z., Chen, Q. Y. (2015). Long endurance and long distance trajectory

optimization for enginelessUAVby dynamic soaring.ComputerModeling in Engineering&Sciences, 106(5),

357–377. DOI 10.3970/cmes.2015.106.357.

15. Liu, D. N., Hou, Z. X., Guo, Z., Yang, X. X., Gao, X. Z. (2016). Permissible wind conditions for optimal

dynamic soaring with a small unmanned aerial vehicle. Computer Modeling in Engineering & Sciences,

111(6), 531–565. DOI 10.3970/cmes.2016.111.531.

16. Aggarwal, S., Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions,

and challenges. Computer Communications, 149, 270–299. DOI 10.1016/j.comcom.2019.10.014.

17. Zhang, J., Chen, T., Zhong, S., Wang, J., Zhang, W. et al. (2019). Aeronautical AdHoc networking for the

internet-above-the-clouds. Proceedings of the IEEE, 107(5), 868–911. DOI 10.1109/PROC.5.

18. Qi, X., Li, B., Chu, Z., Huang,K., Chen,H. et al. (2019). Secrecy energy ef�ciency performance in communi-

cation networks withmobile sinks. Physical Communication, 32, 41–49. DOI 10.1016/j.phycom.2018.06.009.

19. Wang, J., Jiang, C., Wei, Z., Pan, C., Zhang, H. et al. (2019). Joint UAV hovering altitude and power

control for space-air-ground IoT networks. IEEE Internet of Things Journal, 6(2), 1741–1753. DOI

10.1109/JIoT.6488907.

20. Fu, S., Tang, Y., Zhang, N., Zhao, L., Wu, S. et al. (2020). Joint unmanned aerial vehicle (UAV) deployment

and power control for internet of things networks. IEEETransactions on Vehicular Technology, 69(4), 4367–

4378. DOI 10.1109/TVT.25.

21. Mao, Y., You, C., Zhang, J., Huang, K., Letaief, K. B. (2017). A survey on mobile edge computing:

The communication perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358. DOI

10.1109/COMST.2017.2745201.

22. Zhou, F., Hu, R. Q., Li, Z., Wang, Y. (2020). Mobile edge computing in unmanned aerial vehicle networks.

IEEE Wireless Communications, 27(1), 140–146. DOI 10.1109/MWC.7742.

23. Wang, D., Tan, D., Liu, L. (2018). Particle swarm optimization algorithm: An overview. Soft Computing,

22(2), 387–408. DOI 10.1007/s00500-016-2474-6.

24. Yu, Y. (2016). Mobile edge computing towards 5G: Vision, recent progress, and open challenges. China

Communications, 13(Supplement 2), 89–99. DOI 10.1109/CC.6245522.

25. Zakaryia, S. A., Ahmed, S. A., Hussein, M. K. (2021). Evolutionary of�oading in an edge environment.

Egyptian Informatics Journal, 22(3), 257–267. DOI 10.1016/j.eij.2020.09.003.

26. Nguyen, V., Khanh, T. T., van Nam, P., Thu, N. T., Seon Hong, C. et al. (2020). Towards �ying mobile edge

computing. 2020 International Conference on Information Networking (ICOIN), Barcelona, Spain, IEEE.

https://ieeexplore.ieee.org/document/9016537/.

27. Hu, Q., Cai, Y., Yu, G., Qin, Z., Zhao, M. et al. (2019). Joint of�oading and trajectory design for

UAV-enabled mobile edge computing systems. IEEE Internet of Things Journal, 6(2), 1879–1892. DOI

10.1109/JIoT.6488907.

http://dx.doi.org/10.1109/MCOM.35
http://dx.doi.org/10.1002/int.22710
http://dx.doi.org/10.1109/TPDS.2021.3131680
http://dx.doi.org/10.1016/j.ins.2020.04.026
http://dx.doi.org/10.1109/LWC.5962382
http://dx.doi.org/10.3970/cmes.2015.105.467
http://dx.doi.org/10.3970/cmes.2015.106.357
http://dx.doi.org/10.3970/cmes.2016.111.531
http://dx.doi.org/10.1016/j.comcom.2019.10.014
http://dx.doi.org/10.1109/PROC.5
http://dx.doi.org/10.1016/j.phycom.2018.06.009
http://dx.doi.org/10.1109/JIoT.6488907
http://dx.doi.org/10.1109/TVT.25
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1109/MWC.7742
http://dx.doi.org/10.1007/s00500-016-2474-6
http://dx.doi.org/10.1109/CC.6245522
http://dx.doi.org/10.1016/j.eij.2020.09.003
https://ieeexplore.ieee.org/document/9016537/
http://dx.doi.org/10.1109/JIoT.6488907

CMES, 2022, vol.133, no.2 433

28. Wang, R., Cao, Y., Noor, A., Alamoudi, T. A., Nour, R. (2020). Agent-enabled task of�oading inUAV-aided

mobile edge computing. Computer Communications, 149, 324–331. DOI 10.1016/j.comcom.2019.10.021.

29. Tang, Q., Chang, L., Yang, K., Wang, K., Wang, J. et al. (2020). Task number maximization

of�oading strategy seamlessly adapted to UAV scenario. Computer Communications, 151, 19–30. DOI

10.1016/j.comcom.2019.12.018.

30. Yang, L., Yao, H., Wang, J., Jiang, C., Benslimane, A. et al. (2020). Multi-UAV-enabled load-balance

mobile-edge computing for IoT networks. IEEE Internet of Things Journal, 7(8), 6898–6908. DOI

10.1109/JIoT.6488907.

31. Li, M., Cheng, N., Gao, J., Wang, Y., Zhao, L. et al. (2020). Energy-ef�cient UAV-assisted mobile edge

computing: Resource allocation and trajectory optimization. IEEE Transactions on Vehicular Technology,

69(3), 3424–3438. DOI 10.1109/TVT.25.

32. Wang, Y., Ru, Z. Y., Wang, K., Huang, P. Q. (2020). Joint deployment and task scheduling optimization for

large-scale mobile users in multi-UAV-enabled mobile edge computing. IEEE Transactions on Cybernetics,

50(9), 3984–3997. DOI 10.1109/TCYB.6221036.

33. Chen, J., Chen, S., Luo, S., Wang, Q., Cao, B. et al. (2020). An intelligent task of�oading algorithm

(iTOA) for UAV edge computing network. Digital Communications and Networks, 6(4), 433–443. DOI

10.1016/j.dcan.2020.04.008.

34. Hu, X., Wong, K. K., Yang, K., Zheng, Z. (2019). UAV-Assisted relaying and edge computing: Scheduling

and trajectory optimization. IEEE Transactions on Wireless Communications, 18(10), 4738–4752. DOI

10.1109/TWC.7693.

35. Li, L., Wen, X., Lu, Z., Jing, W. (2020). An energy ef�cient design of computation of�oading enabled by

UAV. Sensors, 20(12), 3363. DOI 10.3390/s20123363.

36. Zhan, C., Hu, H., Sui, X., Liu, Z., Niyato, D. (2020). Completion time and energy optimization in the

UAV-enabled mobile-edge computing system. IEEE Internet of Things Journal, 7(8), 7808–7822. DOI

10.1109/JIoT.6488907.

37. Guo, H., Liu, J. (2020). UAV-Enhanced intelligent of�oading for internet of things at the edge. IEEE

Transactions on Industrial Informatics, 16(4), 2737–2746. DOI 10.1109/TII.9424.

38. Yu, Z., Gong, Y., Gong, S., Guo, Y. (2020). Joint task of�oading and resource allocation in UAV-enabled

mobile edge computing. IEEE Internet of Things Journal, 7(4), 3147–3159. DOI 10.1109/JIoT.6488907.

39. Lan, Y., Wang, X., Wang, C., Wang, D., Li, Q. (2019). Collaborative computation of�oading and

resource allocation in cache-aided hierarchical edge-cloud systems. Electronics, 8(12), 1430. DOI

10.3390/electronics8121430.

40. Wang, L., Wang, K., Pan, C., Xu, W., Aslam, N. et al. (2021). Deep reinforcement learning based dynamic

trajectory control for UAV-assisted mobile edge computing. IEEE Transactions on Mobile Computing, 1.

DOI 10.1109/TMC.7755.

41. He, H., Zhang, S., Zeng, Y., Zhang, R. (2018). Joint altitude and beamwidth optimization

for UAV-enabled multiuser communications. IEEE Communications Letters, 22(2), 344–347. DOI

10.1109/LCOMM.2017.2772254.

42. Wu, F., Yang, D., Xiao, L., Cuthbert, L. (2019). Energy consumption and completion time tradeoff in

rotary-wing UAV enabled WPCN. IEEE Access, 7, 79617–79635. DOI 10.1109/Access.6287639.

43. Aurenhammer, F., Klein, R. (2000). Voronoi diagrams**Partially supported by the Deutsche Forschungsge-

meinschaft, grantK1 655 2-2.Handbook of Computational Geometry, pp. 201–290. North-Holland: Elsevier.

https://linkinghub.elsevier.com/retrieve/pii/B9780444825377500061.

44. Guiling, W., Guohong, C., LaPorta, T. (2003). A bidding protocol for deploying mobile sensors. 11th IEEE

International Conference on Network Protocols, USA, http://ieeexplore.ieee.org/document/1249781/.

45. Edla, D. R., Jana, P. K. (2012). A novel clustering algorithm using voronoi diagram. Seventh

International Conference on Digital Information Management (ICDIM 2012), Macau, Macao, IEEE.

http://ieeexplore.ieee.org/document/6360125/.

46. Mousa,M.H., Hussein,M.K. (2021). High-performance simpli�cation of triangular surfaces using aGPU.

PLoS One, 16(8), e0255832. DOI 10.1371/journal.pone.0255832.

http://dx.doi.org/10.1016/j.comcom.2019.10.021
http://dx.doi.org/10.1016/j.comcom.2019.12.018
http://dx.doi.org/10.1109/JIoT.6488907
http://dx.doi.org/10.1109/TVT.25
http://dx.doi.org/10.1109/TCYB.6221036
http://dx.doi.org/10.1016/j.dcan.2020.04.008
http://dx.doi.org/10.1109/TWC.7693
http://dx.doi.org/10.3390/s20123363
http://dx.doi.org/10.1109/JIoT.6488907
http://dx.doi.org/10.1109/TII.9424
http://dx.doi.org/10.1109/JIoT.6488907
http://dx.doi.org/10.3390/electronics8121430
http://dx.doi.org/10.1109/TMC.7755
http://dx.doi.org/10.1109/LCOMM.2017.2772254
http://dx.doi.org/10.1109/Access.6287639
https://linkinghub.elsevier.com/retrieve/pii/B9780444825377500061
http://ieeexplore.ieee.org/document/1249781/
http://ieeexplore.ieee.org/document/6360125/
http://dx.doi.org/10.1371/journal.pone.0255832

434 CMES, 2022, vol.133, no.2

47. Kennedy, J., Eberhart, R. (1995). Particle swarm optimization. International Conference onNeural Networks,

vol. 4. Perth, WA, Australia, IEEE. http://ieeexplore.ieee.org/document/488968/.

48. Cui, H., Shu, M., Song, M., Wang, Y. (2017). Parameter selection and performance comparison of particle

swarm optimization in sensor networks localization. Sensors, 17(3), 487. DOI 10.3390/s17030487.

49. Lalwani, S., Sharma, H., Satapathy, S. C., Deep, K., Bansal, J. C. (2019). A survey on parallel particle

swarm optimization algorithms. Arabian Journal for Science and Engineering, 44(4), 2899–2923. DOI

10.1007/s13369-018-03713-6.

50. NVIDIA (2021). Compute Uni�ed Device Architecture (CUDA) Programming Guide. https://docs.nvidia.

com/cuda/.

51. Elloumi, M., Escrig, B., Dhaou, R., Idoudi, H., Saidane, L. A. (2017). Designing an energy ef�cient UAV

tracking algorithm. 2017 13th International Wireless Communications and Mobile Computing Conference

(IWCMC), Valencia, Spain, IEEE. http://ieeexplore.ieee.org/document/7986274/.

52. Al-Shabi, M. A., Hatamleh, K. S., Asad, A. A. (2013). UAV dynamics model parameters estimation tech-

niques: A comparison study. 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing

Technologies (AEECT), Amman, Jordan, IEEE. http://ieeexplore.ieee.org/document/6716436/.

53. Fortune, S. (1987). A sweepline algorithm for voronoi diagrams. Algorithmica, 2(1–4), 153–174. DOI

10.1007/BF01840357.

54. Software (2019). A C implementation for creating 2D voronoi diagrams. https://github.com/JCash/voronoi.

http://ieeexplore.ieee.org/document/488968/
http://dx.doi.org/10.3390/s17030487
http://dx.doi.org/10.1007/s13369-018-03713-6
https://docs.nvidia.com/cuda/
https://docs.nvidia.com/cuda/
http://ieeexplore.ieee.org/document/7986274/
http://ieeexplore.ieee.org/document/6716436/
http://dx.doi.org/10.1007/BF01840357
https://github.com/JCash/voronoi

	Introduction
	Motivation
	Contribution

	Related Work
	UAV-Based Offloading Framework
	Communication Model
	Computation Model
	Energy Consumption Model
	Objective Function

	The Optimization Model
	Voronoi Diagram
	GPU-Based Particle Swarm Optimization
	Particle Swarm Optimization
	CUDA Architecture
	Optimization Structure

	Results and Discussion
	Conclusion

