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ABSTRACT

In this work, We are looking at the characteristics of micropolar flow in a porous channel that’s being driven by
suction or injection. The working of the fluid is described in the flow model. We can reduce the governing nonlinear
partial differential equations (PDEs) to a model of coupled systems of nonlinear ordinary differential equations
using similarity variables (ODEs). In order to obtain the results of a coupled system of nonlinear ODEs, we discuss
a method which is known as the differential transform method (DTM). The concern transform is an excellent
mathematical tool to obtain the analytical series solution to the nonlinear ODEs. To observe beast agreement
between analytical method and numerical method, we compare our result with the Rung-Kutta method of order
four (RK4). We also provide simulation plots to the obtained result by using Mathematica. On these plots, we discuss
the effect of different parameters which arise during the calculation of the flow model equations.
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1 Introduction

The Navier-Stokes model of classical hydrodynamics has some limitations. It has no bearing on the
fluid’s microstructure. The best explanation for the hypothesis of microstructure fluid is micropolar
fluid. Eringen [1] proposed the theory of micropolar fluid for the first time in 1966, When he was
working on various classes of fluid that demonstrated specific microscopic effects coming from micro-
motion of the fluid elements. It consists of a non-Newtonian fluid and a combination of tiny hard
particles orientated randomly. To put it another way, a fluid whose molecules may spin independently
of the flow of the fluid stream. Micropolar fluid flow has a wide range of applications in industries
such as chemistry, biomedicine, and medicine. It may also be used on natural materials like sandstone,
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capillary blood system of the lungs and limestone. Researchers have recently concentrated their efforts
on micropolar fluids and related phenomena [2–7]. Mass and heat transport in the porous channel
and material media get much attention of researchers, because of many applications such as thermal
storage of power, geothermal recovery of energy, oil extraction, collector of solar power, process of
electro chemical, grain storage, regenerative heat and flow through filtering device [8–16].

The majority of scientific issues, particularly mass transfer and certain heat transfer, as well
as other phenomena in our environment, are nonlinear. Nonlinear DEs describe these nonlinear
issues and occurrences. Many mathematical models of physical systems give rise to nonlinear DEs.
As a result, some of them can be solved numerically while others may be solved analytically using
perturbation techniques, spectrum approaches and decompositions, etc. However, there are some
nonlinear situations that do not have a perturbation quantity like HAM [17,18], HPM [19], OHAM
[20] and ADM [21]. Similarly some further updated versions of the aforementioned methods have been
applied to study various problems in fluid mechanics, we refer few as [22–25].

The differential transform technique (DT) is a semi-analytical approach for solving nonlinear and
linear differential equations. DTM core concept was first proposed by Ayaz [26] in 1986 in electrical
circuit analysis for handling linear and nonlinear problems. The DTM is an iterative method for
obtaining analytical Taylor series solutions to nonlinear and linear differential equations. However,
it is not the same as the Taylor series approach. Because of the high order derivatives, the Taylors
series approach is computationally difficult. This approach has the benefit of being able to be used
directly to nonlinear and linear DEs without the need for linearization or discretization. As a result,
the discretization defect has no effect on DTM.

The DTM was utilized by Hatami et al. [27] to solve PDEs. The similar approach was also
utilized by Jang et al. [28], for the solution of a system of DEs. To demonstrate the correctness and
simplicity of this technique, Hatami et al. [29] adapted it for the solution of a coupled system of
nonlinear DEs. The two-dimensional DTM was presented by Sheikholeslami et al. [30], for the solution
of PDEs. This approach for solving non-Newtonian flow in an axi-symmetric porous channel was
presented by Sepasgozar et al. [31]. By taking into account thermophoresis and the Brownian effect,
Bejawada et al. [32] have expanded their work on DTM to the solution of nano-fluid flow between
parallel plates.

The major goal of this research is to use DTM to solve nonlinear DEs that are two-dimensional
laminar, steady flow and incompressible, that are governed by micropolar flow in a porous channel.
DTM may also be considered as a powerful tool for solving nonlinear systems, modeling ODEs
and PDEs, and solving integral equations. We compare our findings to those obtained using a
numerical approach such as RK4. We also evaluate the influence of factors like the bouncy ratio,
spin gradient viscosity parameter, Reynolds number and related parameters when calculating the flow
model equations. Using mathematica, the various behavior of these parameters is illustrated on graphs.

Here we remark that the DTM is a powerful method in handling many weakly and strongly
nonlinear problems. The computation is easy and the method does not need any kinds of axillary
parameters to control the procedure like HAM. Also the procedure does not required any prior
discretization or collocation like other numerical methods need. The method is rapidly convergent and
this phenomenon has been proved in many articles. We refer in this regards some papers as [33–35].
Here we give a Nomenclature in Table 1.
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Table 1: Nomenclature

Symbol Description and Dimensions or units

T Fluid temperature (k)
g Dimensionless stream function
f Dimensionless microrotation
k1 Thermal conductivity (W/m k)
u, v Cartesian components of velocity (m/s)
ξ Similarity variable
Pew Peclet number
ρ Fluid density (kg/m3)

Pr Prandtl number
Re Reynolds number
i Micro inertia density (m2)

Sc Schmidit number
� Stream function (m2/s)

2 Mathematical Formulation of the Flow Problem

We address laminar incompressible, steady, two-dimensional micropolar flow in a porous chan-
nel in this formulation. In this formulation, we consider steady, laminar incompressible and two-
dimensional micropolar flow in a porous channel. The flow uniformly injected or moved with speed
s. The channel walls placed at y = ±h and parallel to x−axis, 2h is the separated distance of channel
walls. The flow was evenly injected or transported at a constant s speed. 2w is the separated distance
of channel walls, which are located at y = ±w and parallel to the x−axis. The governing equations of
the flow in invariant form [36] is given as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂p
∂t

+ ∇
(

p
→
v
)

= 0,

ρ

(
D

→
v

Dt

)
= −∇p + (μ + k)∇2

→
v + k∇N,

ρ

(
DN
Dt

)
= − k

i

(
2N + ∇ × →

v
)

+ vs
i
∇2N.

(1)

By including temperature effect in (1), the following model [37] was formulated as

∂p
∂t

+ ∇
(

p
→
v
)

= 0, (2)

ρ

(
D

→
v

Dt

)
= −∇p + (μ + k)∇2

→
v + k∇N, (3)
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ρ

(
DN
Dt

)
= −k

j

(
2N + ∇ × →

v
)

+ vs

i
∇2N. (4)

ρCp

(→
v · ∇T

)
= k∇2T . (5)

In Fig. 1, we provide physical description of the considered model. Since the flow is in
2-dimension, so the above equation in component form can be written as

∂u
∂x

+ ∂v
∂y

= 0, (6)

ρ

(
u
∂u
∂x

+ v
∂u
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)
= −∂p
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(
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∂y2

)
+ k
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, (7)
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ρ
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ρ

(
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∂T
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+ v
∂T
∂y

)
= k1

cρ

∂2T
∂y2

. (10)

y=-w

y=+w

Figure 1: Plot which shows the physical description of the considered problem

Using

y = −w : v = v◦ , u = 0 A = −s
∂u
∂y

|y=−w,

y = +w : u = 0, v = v0, A = −s
∂u
∂y

|y=+w.
(11)

where v0 > 0 is suction case, and when v0 < 0 is injective case, and s is boundary parameter. If s = 0,
then concentrated particle flows where microclimates are unable to rata close to the wall. Next we
introduce the following similarity variables:

ξ = y
w

, ψ = −v0xg (ξ) , A = v0x
w2

f (ξ) ,

θ (ξ) = T − T2

T1 − T2

, T2 = T1 − Ax,
(12)

where A is constant. Further, we use stream functions as

u = ∂ψ

∂y
, v = −∂ψ

∂x
. (13)
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Using (11)–(13), the proposed equations from (6)–(10) are transformed to the following system of
nonlinear ordinary differential equations:

(1 + A1)giv − A1f ′′ − Re(gg′′′ + g′g′′) = 0, (14)

A2f ′′ + A1(g′′ − 2f ) − A3Re(gf ′ − fg′) = 0, (15)

θ ′′ + Pewg′θ − Pemgθ ′ = 0, (16)

with boundary conditions as

ξ = −1 : g = −1, f = g′ = 0, θ = 1,
ξ = −1 : g = +1 : g′ = f = θ = 0. (17)

The buoyancy ratio A , the Peclet number of the diffusion of heat Pew and mass Pem have of
fundamental interest. There are two cases for the Reynolds number (Re), if Re > 0 corresponding
to suction and if Re < 0 to injection. Also A1 = k

μ
, A2 = vs

μw
, A3 = i

w2 , Re = v0w

v
, Pr = vρcρ

k1
, Pew =

PrRe, Pem = ScRe, where Pr stands for Prandtl number and Sc is the generalized Schmidt number.
Also A1 and A2 are coupling parameter and spin gradient velocity parameter, respectively.

3 Basic Definitions and Operations of DTM

In this section, we define some basic operations and definitions of DTM [15] as given below: The
differential transform of function h(ξ) for the nth derivative of the function is define by

H (ξ) = 1
n!

[
dnh(ξ)

dξ n

]
ξ=ξ◦

, (18)

where H(n) is the transform function of h(ξ) in the domain “n” at ξ = ξ◦ . which also know as
T−function or spectrum of h(ξ).

The inverse transformation as define by

h(ξ) =
∞∑

n=0

H(n) (ξ − ξ◦)n . (19)

Combining Eqs. (18) and (19), we get the following result:

h(ξ) =
∞∑

n=0

[
dnh(ξ)

dξ n

]
ξ=ξ◦

(ξ − ξ◦)n

n!
. (20)

From above Eq. (20), it is clear that the basic concept of DTM is obtain from Taylor’s series
expansion, but the procedure does not calculate the derivatives symbolically, relative derivative are
evaluate by an iterative method. Which can be obtain from transformation of the given original
functions. In case of finite series, where M is the series size, the Eq. (19) can be express as follows:

h(ξ) =
M∑

n=0

H(n) (ξ − ξ◦)n . (21)
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The basic results and operations of DTM which are obtain from Eqs. (19) and (20) are need
throughout in this work, which are given below on the Table 2.

Table 2: Some basic results about differential transform (DTM) of various functions

Original functions Transform functions

h(ξ) = ah1(ξ) ± bh2(ξ) H[n] = aH1[n] ± bH2[n]

h(ξ) = dh(ξ)

dξ
H[n] = [n + 1]H[n + 1]

h(ξ) = dhm(ξ)

dξm
H[n] = [n + 1][n + 2] · · · [n + m]H[n + m]

h(ξ) = h1(ξ)h2(ξ) H[n] = ∑n

m=0 H1 [m] H2 [n − m]

h(ξ) = h(ξ)
dh1(ξ)

dξ

∑n

m=0 H[m] [n − m + 1] H1 [n − m + 1]

h(ξ) = h(ξ)
d2h(ξ)

dξ 2

∑n

m=0 H[m] [n − m + 1] [n − m + 2] H2 [n − m + 2]

h(ξ) = sin(δξ + β) H[n] = δn

n!
sin

(nπ

2
+ β

)
h(ξ) = cos(δξ + β) H[n] = δn

n!
cos

(nπ

2
+ β

)
h(ξ) = expnδ H[n] = δn

n!

h(ξ) = (1 + ξ)m H[n] = m(m − 1) . . . (m − n + 1)

n!

4 Computation of Solution for the Obtained ODEs (14)–(16)

Now we apply DTM into governing coupled system of nonlinear ODEs (14)–(16) and boundary
conditions (17) as

(1+A1)(n + 1)(n + 2)(n + 3)(n + 4)G[n + 4] − (A1)(n + 1)(n + 2)F [n + 2]

−Re
n∑

m=0

G [n − m] (m + 1) (m + 2) (m + 3) G [m + 3]

−Re
n∑

m=0

(n − m + 1) G [n − m + 1] (m + 1) (m + 2) G [m + 2] = 0, (22)
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(A2)(n + 1)(n + 2)F [n + 2] + A1(n + 1)(n + 2)G[n + 2] − 2A1F [n]

− A3Re
n∑

m=0

G [n − m] (m + 1) F [m + 1]

+ A3Re
n∑

m=0

F [n − m] (m + 1) G [m + 1] = 0, (23)

(n + 1) (n + 2) � [n + 2] + eh

[∑
m=0

n (m + 1) G [m + 1] (n − m) � [n − m]

]

− eh

[
n∑

m=0

G [m] (n − m + 1)� [n − m + 1]

]
= 0, (24)

with boundary conditions are

ξ = −1 : G[0] = G[1] = 0, F [0] = 0, �[0] = 0
ξ = +1 : G[0] = 0, G[1] = −1, F [0] = 1, �[0] = 1, (25)

where G[n], F [n] and �[n] are the transformed function of g(ξ), f (ξ) and θ(ξ), respectively, and are
given below:

g (ξ) =
∞∑

n=0

G [n] ξ n, (26)

f (ξ) =
∞∑

n=0

F [n] ξ n. (27)

and

θ (ξ) =
∞∑

n=0

� [n] ξ n. (28)

Hence, we substituting the value of G[n], F [n] and �[n] in Eqs. (26)–(28) to get the series solution
of coupled system of nonlinear ODEs.

We consider the following additional boundary conditions which lead the solution of the
Eqs. (22)–(24) as

G[0] = α1, G[1] = α2, G[2] = α3, G[3] = α4,
F [0] = β1, F [1] = β2, �[0] = γ1, �[1] = γ2,

(29)

where αi(i = 1, 2, 3, 4), βi(i = 1, 2) and γi(i = 1, 2) are constants which can be determine through the
computational software like mathematica. For instance, if A1 = A2 = A3 = 0.5, Peh = Pem = 0.3 and
Re = 0.7, we compute the approximate values of αi(i = 1, 2, 3, 4), βi(i = 1, 2) and γi(i = 1, 2) as

α1 = −0.04567, α2 = 1.01879, α3 = 0.056743, α4 = −1.02735, β1 = 0.0123456,

β2 = −1.02735, γ1 = 0.78765, γ2 = −0.168694 (30)
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Using the values given in (30), we obtain the required series solution as

g(ξ) = −0.005678 + 1.01879ξ + 0.0345678ξ 2 − 1.02735ξ 3 − 0.0463553ξ 4 + 0.0352885ξ 5

− 0.0023456ξ 6 − 0.00234516ξ 7 − 0.00032145ξ 8 + · · · ,

f (ξ) = 0.0123456 − 0.168694ξ − 0.66879ξ 2 + 0.733401ξ 3 + 0.055008ξ 4 − 2.12446ξ 5

− 0.00654321ξ 6 − 0.0123789ξ 7 − 0.000453217ξ 8 + · · · ,

θ(ξ) = 0.78765 − 0.78768ξ + 0.00056789ξ 2 − 0.0000000453ξ 3 − 0.000055008ξ 4 − 0.0065432ξ 5

− 0.000001326ξ 6 − 0.000000089ξ 7 − 0.0000009876ξ 8 + · · · . (31)

Remark 1. Here we remark that DTM is rapidly convergent procedure. In this regards, various
results related to convergence of the mentioned method for ODEs has been given in [33–35].

5 Numerical Simulation and Results and Discussion

In this section, we introduce graphical representation of our results to show accuracy of DTM for
the solution of micropolar flow in a porous channel. The Fig. 2 shows the combine graph of function
f , g and θ . The Fig. 3 demonstrates the accuracy of DTM for the flow model. Here, we compare
our result with the results of RK4 method for the obtained nonlinear Eqs. (14)–(16). We see that our
solution has good agreement with the numerical solution obtained by RK4 method. Beside this, we
also check the parametric effects which show different effect on the profile of f , g and θ . In Figs. 4–6,
we have shown the effect of Re on the profile of f , g and θ by fixing the values of Ai(i = 1, 2, 3). Also,
in Figs. 7–9, we have testified the effect of Ai(i = 1, 2, 3) on the profile of f, g and θ by taking the values
Re = 1. From Figs. 4–9, we see that Re as well as the values of Ai(i = 1, 2, 3) have great effect on the
profile of f , g and θ . The effect on the concerned profile can be obviously observed from Figs. 4–9.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Figure 2: Combine of the profiles of f , g and θ
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Figure 3: Comparison of 9th-order approximate solation of DTM with RK4 with Re = 0.4, Peh =
Pem = 0.4
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Figure 4: Effect of Re on g with A1 = A2 = A3 = 0.5
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Figure 5: Effect of Re on f with A1 = A2 = A3 = 0.5
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Figure 6: Effect of Re on θ with A1 = A2 = A3 = 0.5
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Figure 7: Effect of A1, A2, A3 on the profile of g with Re = 1
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Figure 8: Effect of A1, A2, A3 on the profile of f with Re = 1
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Figure 9: Effect of A1, A2, A3 on the profile of θ with Re = 1

In Table 3, we have computed absolute error of different numbers of polynomials of DTM that are
for n = 40 polynomials, n = 50 and n = 60 polynomials. We see that as the numbers of polynomials
are increasing, the error is reducing, so we conclude that the more the numbers of DTM polynomials
more will be the accuracy and vice versa.

Table 3: Comparison for different number of DTM polynomials in the series solutions of the
considered problem at A1 = A2 = A3 = 0.5, Re = 0.7

ξ n = 40 n = 50 n = 60

Ef Eg Eθ Ef Eg Eθ Ef Eg Eθ

−1.0 0 0 0 0 0 0 0 0 0
−0.75 0.000645 0.00094 0.01200 0.00053 0.00055 0.00991 0.00009 0.000055 0.00088
−0.50 0.0007 0.00027 0.02801 0.00054 0.00054 0.00841 0.00007 0.000075 0.000866
−0.25 0.00093 0.0029 0.02201 0.000491 0.00047 0.00832 0.00006 0.0000765 0.000754
0.0 0.000105 0.00039 0.03002 0.000452 0.00046 0.00806 0.00005 0.000066 0.000654
0.25 0.00099 0.00049 0.03010 0.000432 0.00045 0.00800 0.000045 0.000054 0.000554
0.50 0.00078 0.00058 0.03121 0.000412 0.00044 0.00789 0.000044 0.000051 0.000553
0.75 0.000495 0.00064 0.02201 0.000398 0.00036 0.00654 0.000043 0.000050 0.000324
1.0 0 0 0 0 0 0 0 0 0

6 Concluding Remarks

We have examined in detail the nature of micropolar flow in porous channels with high mass
transfer through the channel wall. The problem has been solved via a sort of analytical method called
DTM. Hence we concluded that DTM is the powerful and efficient approach for solving nonlinear
ODEs and their systems arising from micropolar flow in porous channel walls. In alternate ways, for
this problem, we have compared our results with the famous numerical method RK4, which revealed
that our analytical results have a close agreement with the numerical results (see Fig. 3). We have
also discussed different parametric effects on the solutions of stream function, velocity profile and
temperature of the flow model. The effect of Re and others parameters including Ai(i = 1, 2, 3) have
been investigated. The respective effect on the profiles of the mentioned quantities has been presented
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graphically in Figs. 4–9. Here it should be kept in mind that DTM needs no prior discretization of 
data nor requires any collocation of data elements. Further, the method is independent of axillary 
parameters which control the procedure like in Homotopy analysis and perturbation method. Further, 
the DTM is a rapidly convergent method.
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