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ABSTRACT

In this manuscript, an algorithm for the computation of numerical solutions to some variable order fractional

differential equations (FDEs) subject to the boundary and initial conditions is developed. We use shi�ed Legendre

polynomials for the required numerical algorithm to develop some operational matrices. Further, operational

matrices are constructed using variable order differentiation and integration.We are finding the operational matri-

ces of variable order differentiation and integration by omitting the discretization of data.With the help of aforesaid

matrices, considered FDEs are converted to algebraic equations of Sylvester type. Finally, the algebraic equations

we get are solved with the help of mathematical so�ware like Matlab or Mathematica to compute numerical

solutions. Some examples are given to check the proposed method’s accuracy and graphical representations. Exact

and numerical solutions are also compared in the paper for some examples. The efficiency of the method can be

enhanced further by increasing the scale level.

KEYWORDS

Operational matrices; shi�ed legendre polynomials; FDEs; variable order

1 Introduction

Fractional calculus has been given much recognition during the last few decades. It has been got

importance because of its variety of applications in mathematical modeling of real-world problems

like biological and physical phenomenons [1]. With the help of the aforesaid calculus, we can

comprehensively explain the dynamics of various processes and phenomena in more detailed ways.

Keeping these in mind, several researchers have been given attention to investigate FDEs for various

results and analysis. Researchers have given much attention to studying the said area from various

aspects including theoretical and numerical analysis [2]. For such goals, they have developed various

methods and procedures for numerical, analytical and theoretical results. These methods have been
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widely applied to study different problems for various results including existence, approximation and

stability theory [3].

Since it is a tedious job to solve various problems of FDEs for exact or analytical solutions,

therefore like classical differential equations, various tools and methods have been developed in the

previous few decades to handle the said area for approximate or analytical results. In this regard,

different tools and methods have been established for analytical or semi-analytical solutions like

decomposition technique [4], transform method [5], perturbation method [6], etc. On the other hand

several numerical procedures have been established for finding the approximate solution to various

problems of FDEs. Therefore, in last two decades number of terminologies have been developed for

numerical solutions to the aforesaid area. Some of the commonly used methods include Tau method

[7,8], collocation method [9] and spectral method [10]. The said methods have been derived by using

various orthogonal and non-orthogonal polynomials like Legendre, Jacobi, Chebshev and Bernstein

polynomials, etc. Spectral methods based on mentioned polynomials have been introduced for the

computation of numerical solutions to various kinds of FDEs. In these methods, researchers have

constructed some operational matrices of differentiation and integrations with non-integer order. To

form such matrices, we need to utilize some polynomials. For instance shifted Legendre, shifted Jacobi

and Bernstein polynomial have been used to construct operationalmatrices for the numerical solutions

of various FDEs in literature (for some detail, see [11–15]).

Here, we state that in aforesaid work, authors have used collocation techniques together with spec-

tral methods to perform numerical analysis of FDEs. Since collocation techniques need discretization

of time domain of the function which is time consuming and expensive for memory. To over come this

disadvantage, some authors have established operational matrices for fractional differentiation and

integration by using shifted Legendre polynomial for the numerical solution of FDEs [16] by omitting

the discretization and collocation.

Recently variable order FDEs have gotten some attention from researchers. Because variable order

differential and integral operators have various applications in modeling different complex real-world

problems. It is less well known part of calculus but has a lot of flexibility in simulating multidisci-

plinary processes [17]. Recognizing wide applications of the said area, scientists and researchers are

increasingly investigating applications of the said area to model systems of engineering and physics.

Here, we remark that the first definition has been presented by Samko and Ross in 1993 (see [18]).

After that, many researchers have been worked in fractional calculus by discussing the possibility of

variable orders derivatives and integrations.Many research articles have been published in recent years

about variable order FDEs (see [19]).

Therefore in last few years, variable order problems of integral and differential equations have

gotten significant attention. This is due to the fact that these kind problems more properly describe

real world phenomenon, (we refer [20]). Applications of variable order problems can also be traced in

[21]. Also some results about existence and existence as well as stability analysis have been published

recently. Also some authors have established various scheme for numerical solutions. For more

information and detail, we refer [22,23]. But to the best of our information, spectral methods in this

regard are very rarely used for the variable order problems.

Here we demonstrate that using spectral methods for linear problems are stable always under

some specific conditions. For instance, the spectral method based on Lagendre polynomials has been

proved stable for linear problem of differential equations (see [24]). Further a numerical scheme is said

to be stable if it keeps the control over the numerical solution in such a way that it only depends

on the degree of polynomials. For linear problems, the proposed method has been proved stable
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and convergent [25]. Since spectral methods are converging exponentially, which demonstrate their

significant accuracy than other local methods. Also spectral methods offer a suitable framework to

approximate the solution of many problems. Also aforesaid methods and finite difference numerical

schemes have close relation because both use same idea. The significant difference between these

methods is that spectral methods utilize basis functions which are nonzero over the entire domain,

while difference methods using basis functions that are nonzero only on very small sub-domains. Here

we remark that as compared to finite difference methods, spectral methods are global techniques. Also

numerical spectral methods use the idea of global representations to find greater order approximation.

Hence these features make spectral methods more popular in recent times among the researchers (see

[26]). The spectral properties of Legendre polynomials have been studied very well in literature. Here

we remark some related work on properties of the said method as [27–30].

Motivated from the above discussion and work, we extend our scheme based on shifted Legendre

polynomials for some variable order problems under initial and boundary conditions. We investigate

two classes of variable order initial and boundary value problem as
{

C
0
Dα(t)

t
U(t) + aU(t) = g(t), a ∈ R, 0 < t ≤ 1,

U(0) = û0, û0 ∈ R
(1)

and
{

C
0
D

α2(t)

t U(t) = l1
C
0
D

α1(t)

t U(t) + l2U(t) + g(t), l1, l2 ∈ R, 0 < t ≤ 1,

U(0) = û0, U(1) = û1, û0, û1 ∈ R,
(2)

where g is linear continuous function from [0, 1]) → R and 1 < α1(t) ≤ 2, 0 < α2(t) ≤ 1.

We establish operational matrices on the basis of shifted Legendre polynomials for our considered

problems. Keeping in mind that we avoid descritization and collocation to form some operational

matrices of variable order integration and differentiation. Based on these matrices, proposed problems

are converted to some algebraic type matrix equations of Sylvester type. Then upon using Matlab, we

solve the Sylvester equation to get the required numerical solution. The advantage of our proposed

method is that it saves time and extra memory. Further, we testify several examples and present their

solutions of variable order at different points graphically.

Our paper is structured as: Section 1 is devoted to introduction. Section 2 is related to basic results

and derivation of operational matrices. Section 3 is related to general algorithm. Section 4 is related

to numerical examples. Last section is devoted to brief conclusion and discussion.

2 Preliminaries

In this section, we recall definitions of variable order integration and differentiation which can be

read in [19,23,31,32].

Definition 2.1. The variable order integration of a function h ∈ L[0, 1] with α(t) > 0 is defined as

0I
α(t)

t
h(t) =

1

Ŵ(α(t))

∫ t

0

(t− τ)
α(τ)−1

h(τ )dτ , t > 0, (3)

where α(t) is a continuous and bounded function.

Definition 2.2.Let α(t) > 0 is a continuous and bounded function and h ∈ C[0, 1], then the Caputo

differential operator for variable order is defined as

C

0
Dα(t)

t
h(t) =

1

Ŵ(m− α(t))

∫ t

0

(t− τ)
m−α(τ)−1

h(m)(τ )dτ , m− 1 < α(t) ≤ m. (4)
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For more properties of variable order differentiations and integrations, we refer [21,22].

Definition 2.3. [11] The recursive relation for shifted Legendre polynomials over the interval [−1, 1]

is defined as

Lm+1(t) =
2m+ 1

m+ 1
tLm(t) −

m

m+ 1
Lm−1(t),where i = 1, 2, 3, . . . . (5)

First two polynomials are given as L0 = 1, L1(t) = t.

Next we recall orthogonality condition from [11,16] which are needed in our approximation.

Definition 2.4. The orthogonality condition is defined as

∫ 1

0

Lr(t)Ls(t)dt =







1

2r+ 1
, if r = s,

0, if r 6= s.
(6)

Using the orthogonality condition given in Eq. (6), any function h can be approximated in terms

of aforementioned polynomial as

h(t) ≈

m
∑

r=0

qrLr(t), where qr = (2r+ 1)

∫ 1

0

h(t)Lr(t)dt. (7)

The above Eq. (7) can also be written in vector form as

h(t) ≈ KT

N
L̂N(t). (8)

Lemma 2.1. Convergence analysis: If h ∈ CN+1[0, 1], then the best approximation of h given in

Eq. (8) over [0, 1] is defined by

‖h(t) − KT

N
L̂N(t)‖2 ≤

1

4NN+1

∑

t∈[0,1]

|hN+1(t)|. (9)

In same line if h ∈ S , such that S denotes the spanning set of first N Legendre polynomials.

Then, we take h(t) ≈
m
∑

r=0

qrLr
T
(t) and

‖h(t) −

m
∑

r=0

qrLr
T
(t)‖2 ≤

∞
∑

r=m

r(r+ 1)q2

r
,

where qr = (2r+ 1)
∫ 1

0
h(t)Lr

T
(t)dt.

Proof. The proof is same as given in [33].

Operational matrices corresponding to variable order integration and differentiation are estab-

lished by following the procedure given in [11,16].

Lemma 2.2. If ˆLN(t) be the vector function of Legendre polynomials, then the variable order

integration is defined as

0I
α(t)

t
(LN(t)) ≈ Bα(t)

N×N
ˆLN(t),
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where Bα(t)

N×N is the α(t) order operational matrix of integration as follows:

Bα(t)

N×N
=



































0
∑

e=0

ρ0,0,e

0
∑

e=0

ρ0,1,e · · ·
0

∑

e=0

ρ0,b,e · · ·
0

∑

e=0

ρ0,n,b

1
∑

e=0

ρ1,0,e

1
∑

e=0

ρ1,1,e · · ·
1

∑

e=0

ρ1,b,e · · ·
1

∑

e=0

ρ1,n,b

...
...

...
...

...
...

a
∑

e=0

ρa,0,e

a
∑

e=0

ρa,1,e · · ·
a

∑

e=0

ρa,b,e · · ·
a

∑

e=0

ρa,n,e

...
...

...
...

...
...

n
∑

e=0

ρn,0,e

n
∑

e=0

ρn,1,e · · ·
n

∑

e=0

ρn,b,e · · ·
n

∑

e=0

ρn,n,e



































, (10)

where

ρa,b,e = (2b+ 1)

b
∑

p=0

(−1)
a+b+e+p

Ŵ(a+ e+ 1)Ŵ(p+ b+ 1)

Ŵ(a− e+ 1)Ŵ(e+ 1)Ŵ(e+ α(t) + 1)Ŵ(b− p+ 1)Ŵ2(p+ 1)(e+ p+ α(t) + 1)
,

where b = 0, 1, 2, . . . .

Corollary 1. With the help of operational matrix given in Eq. (10), the error

|ÊN| = |0I
α(t)

t
ˆLN(t) − KT

N
Lα(t)

N×N
L̂N(t)|

is bounded. The concerned error bound is computed as

|ÊN| ≤ |

∞
∑

e=n+1

dk

n
∑

a=0

�a,b,e|,

where the constants dk are denoting the spectral coefficients of ˆLN(t).

Lemma 2.3. Let L̂N(t) be the vector function, then fractional variable order differentiation of

L̂N(t) is given by C
0
Dα(t)

t
L̂N(t) ≈ Hα(t)

N×NL̂N(t), where Hα(t)

N×N is operational matrix of variable order α(t)

differentiation given by

Hα(t)

N×N
=



































1
∑

e=0

φ1,1,e

1
∑

e=0

φ1,2,e · · ·
1

∑

e=0

φ1,b,e · · ·
1

∑

e=0

φ1,n,b

2
∑

e=0

φ2,1,e

2
∑

e=0

φ2,2,e · · ·
2

∑

e=0

φ2,b,e · · ·
2

∑

e=0

φ2,n,b

...
...

...
...

...
...

a
∑

e=0

φa,1,e

a
∑

e=0

φa,2,e · · ·
a

∑

e=0

φa,b,e · · ·
a

∑

e=0

φa,n,e

...
...

...
...

...
...

n
∑

e=0

φn,1,e

n
∑

e=0

φn,2,e · · ·
n

∑

e=0

φn,b,e · · ·
n

∑

e=0

φn,n,e



































, (11)
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where

φa,b,e = (2b+ 1)

b
∑

l=0

(−1)
a+b+e+l

Ŵ(a+ e+ 1)Ŵ(l + b+ 1)

Ŵ(a− e+ 1)Ŵ(e+ 1)Ŵ(e− α(t) + 1)Ŵ(b− l + 1)Ŵ2(l + 1)(e+ l − α(t) + 1)
,

with b = 0, 1, 2, . . . .

Corollary 2. The error in computation of variable order differentiation of a functionU is given by

|ÊN| = |Dα(t)L̂N(t) − KT

N
Hα(t)

N×N
L̂N(t)|.

Further the said error is bounded by

|ÊN| ≤ |

∞
∑

c=n+1

dk

n
∑

a=[α(t)]

φa,b,τ |.

Lemma 2.4. Let 2(t) be defined over the interval [0, 1] and V(t) = KT
N
L̂N(t), then

2(t)[Iα(t)V(t)] = KT

N
Qα(t),2

N×N
L̂N(t),

where Qα(t),2

N,N is the operational matrix given by

Qα(t),2

N×N
=



















℘0,0 ℘0,1 · · · ℘0,r · · · ℘0,n

℘1,0 ℘1,1 · · · ℘1,r · · · ℘1,n

...
...

...
...

...
...

℘s,0 ℘s,1 · · · ℘s,r · · · ℘s,n

...
...

...
...

...
...

℘n,0 ℘n,1 · · · ℘n,r · · · ℘n,n



















, (12)

where

℘s,r = (2j + 1)1a

∫ 1

0

2(t)Lr(t)dt, 1a =

s
∑

p=0

(−1)
s+p

Ŵ(s+ p+ 1)

Ŵ(s− p+ 1)Ŵ(p+ 1)Ŵ(α(t) + p)
.

Proof. The proof is same as done in [16].

3 General Algorithms for Variable Orders Problems

Here, we establish the required scheme for initial and boundary value problems of variable order

FDEs in two sub-sections.

3.1 Construction of Algorithm for Variable Initial Value Problem

Consider the following case, when α(t) ∈ (0, 1] as
{

C
0
Dα(t)

t
U(t) + aU(t) = g(t), a ∈ R, 0 < t ≤ 1,

U(0) = û0, û0 ∈ R.
(13)

Consider

C

0
Dα(t)

t
U(t) = KT

N
L̂N(t). (14)
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By the application of fractional variable integration with order α(t), Eq. (14) implies that

U(t) = KT

N
Bα(t)

N×N
L̂N(t) + a0. (15)

By using initial condition, one has a0 = û0. Insert value of a0 in Eq. (15) yields

U(t) = KT

N
Bα(t)

N×N
L̂N(t) + û0. (16)

We write the approximation as û0 = QT
N
L̂N(t) and g(t) = HT

N
L̂N(t). After simplification, Eq. (13)

gives

KT

N
L̂N(t) + a

[

KT

N
Bα(t)

N×N
L̂N(t) +QT

N
L̂N(t)

]

−HT

N
L̂N(t) = 0. (17)

Further simplification implies that
[

KT

N
+

(

aKT

N
Bα(t)

N×N
+ aQT

N
−HT

N

)]

L̂N(t) = 0. (18)

KT

N
+ a

(

KT

N
Bα(t)

N×N
+QT

N

)

−HT

N
= 0. (19)

This is a simple Sylvester type algebraic equation. Upon using Matlab, we solve it to compute the

coefficient matrix KT
N
to receive the required numerical solution of (13).

3.2 Algorithm for Variable Order Boundary Value Problem

Here, we construct the general scheme for variable order problems, when 1 < α2(t) ≤ 2, 0 <

α1(t) ≤ 1 as
{

C
0
D

α2(t)

t U(t) = l1
C
0
D

α1(t)

t U(t) + l2U(t) + g(t), l1, l2 ∈ R, 0 < t ≤ 1,

U(0) = û0, U(1) = û1, û0, û1 ∈ R.
(20)

Assume that

C

0
Dα2(t)

t
U(t) = KT

N
L̂N(t). (21)

By applying the fractional order integration of order α2(t), Eq. (21) implies that

C

0
Iα2(t)

t

[

C

0
Dα2(t)

t
U(t)

]

=C

0
Iα2(t)

t

[

KT

N
L̂N(t)

]

. (22)

Eq. (22) can be written as

U(t) = KT

N
B

α2(t)

N×NL̂N(t) + c1 + c2t. (23)

By using the initial and boundary conditions, we can easily get c1 = û0 and for c2 use U(1) = û1

in Eq. (23) to get

c2 = û1 − û0 − KT

N
B

α2(t)

N×NL̂N(1). (24)

By inserting the values of constants c1, c2 in Eq. (23), we have

U(t) = KT

N
B

α2(t)

N×NL̂N(t) + û0 + (û1 − û0)t− tKN

T
B

α2(t)

N×NL̂N(1). (25)

On using Lemma 2.4 and after simplification Eq. (25), one has

U(t) = KT

N

(

B
α2(t)

N×N −Q
α2(t),2

N×N

)

H
α1(t)

N×N
ˆLN(t) + G2

T

N
L̂N(t), (26)
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where

G2

T

N
ˆLN(t) = û0 +

(

û1 − û0

)

t.

Now by the use of Lemma 2.4, one has

C

0
Dα1(t)

t
U(t) = KT

N
(B

α2(t)

N×N −Q
α2(t),2

N×N )H
α1(t)

N×N
ˆLN(t) + G2

T

N
L̂N(t). (27)

Insert Eqs. (21), (25) and (27) in (20), one has

KT
N

ˆLN(t) = l1K
T
N

(

B
α2(t)

N×N −Q
α2(t),2

N×N

)

H
α1(t)

N×N
ˆLN(t) + l2K

T
N

(

B
α2(t)

N×N −Q
α2(t),2

N×N

)

ˆLN(t)

+l1G2

T

N
H

α1
N×N(t) ˆLN(t) + l2G2

T

N
+ F1

T

N
L̂N(t),

(28)

where F1
T

N
L̂T

N
= g(t). By further simplification and rearranging terms, Eq. (28) can be written as

(KT

N
− KT

N

(

B
α2(t)

N×N −Q
α2(t),2

N×N

(

l1H
α1(t)

N×N + l2IN×N

)

−DN×N

)

ˆLN(t) = 0. (29)

After simplification, we get

KT

N
− KT

N

(

B
α2(t)

N×N −Q
α2(t),2

N×N

) (

l1H
α1(t)

N×N + l2IN×N

)

−DN×N = 0. (30)

Eq. (30) is simple algebraic equation of Sylvester type and can be solved through the Matlab

software for required numerical solution.

4 Illustrative Examples

Here we give examples for both kinds of problems in two sub-sections.

4.1 Numerical Examples for Variable Initial Value Problems

Consider the following example as

Example 1.
{

C
0
Dα(t)

t
U(t) + 2U(t) = g(t), 0 < α(t) ≤ 1, t ∈ [0, 1],

U(0) = 2.
(31)

For α(t) = e−t, the exact solution is given by

U(t) = 2(1 − t)
2
,

where

g(t) =
4t2−e

−t

Ŵ (3 − e−t)
−

4t1−e
−t

Ŵ (2 − e−t)
+

2t2−e
−t

Ŵ (1 − e−t)
+ 2(1 − t)2.

Here, we give graphical presentation of approximate solution for different values of variable order

at t and the corresponding absolute error using scale level equal to 5 in Figs. 1 and 2, respectively.
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Figure 1: Graphical presentation of approximate solutions and absolute error of Example 1
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Figure 2:Graphical presentation of approximate solutions and absolute error of Example 1 at various

scale level and at t = 0.75

Example 2. Consider another problem as
{

C
0
Dα(t)

t
U(t) +U(t) = g(t), 0 < α(t) ≤ 1,

U(0) = 1.
(32)

For α(t) = t+1

2
, the exact solution is given by

U(t) = t2 + t+ 1,

where the source function g is given as

g(t) =
2t2−

t+1
2

Ŵ(3 − t+1

2
)

+
t1−

t+1
2

Ŵ(2 − t+1

2
)

+
t−

t+1
2

Ŵ(1 − t+1

2
)

+ t2 + t+ 1.

Here, we give graphical presentation of approximate solution for various values of variable order

at t and the corresponding absolute error using scale level equal to 6 in Figs. 3 and 4, respectively.
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Figure 3: Graphical presentation of approximate solutions and absolute error of Example 2
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Figure 4:Graphical presentation of approximate solutions and absolute error of Example 2 at various

scale level and at t = 0.75

4.2 Numerical Examples for Variable Order Boundary Value Problems

To demonstrate the second scheme for boundary value problems, we give some examples here.

Example 3. Consider the problem
{

Dα(t)U(t) +U(t) = g(t), 1 < α(t) ≤ 2,

U(0) = 0,U(1) = 1.
(33)

For α(t) = sin(t)+1, the exact solution is given byU(t) = t4. Further, the source function is given

as

g(t) =
120t4−α(t)

Ŵ(5 − α(t))
+ t4.
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Here, we give graphical presentation of approximate solution for various values of variable order

at t and the corresponding absolute error using scale level equal to 6 in Figs. 5 and 6, respectively.
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Figure 5:Graphical presentation of approximate solutions and absolute error of Example 3 at various

values of t and scale level 6
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Figure 6: Graphical presentation of approximate solutions and absolute error of Example 3

Example 4. Consider the problem as
{

Dα(t)U(t) +U(t) = g(t), 1 < α(t) ≤ 2, t ∈ (0, 1],

U(0) = 0,U(1) = 2.
(34)

For α(t) = et+1

2
, the exact solution is given as U(t) = t6 + t4 and the source function as

g(t) =
720t6−α(t)

Ŵ(6 − α(t))
+

24t4−α(t)

Ŵ(5 − α(t))
+ t6 + t4.

Here, we give graphical presentation of approximate solution for various values of variable order

at t and the corresponding absolute error using scale level equal to 6 in Figs. 7 and 8, respectively.
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Figure 7:Graphical presentation of approximate solutions and absolute error of Example 4 at various

values of t and scale level 6
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Figure 8: Graphical presentation of approximate solutions and absolute error of Example 4

5 Conclusion and Discussion

In this research paper, various classes of variable order FDEs have been studied under boundary

and initial conditions for numerical solutions. Properties of shifted Legendre polynomials have been

used to develop operational matrices for fractional variable order derivative and integration. Based on

these operationalmatrices, considered problemswith initial/boundary conditions have been reduced to

algebraic equations of the Sylvester type. By using mathematical softwares likeMatlab, we have solved

the obtained algebraic equation for the required numerical solution. In this regard, various examples

have been solved based on the proposed method. We have omitted the collocations and sub-division

of the time domain in small intervals. Also, the proposed spectral method has been proved stable.

Moreover, some error analysis has been recorded which shows that the greater the scale level higher

be the accuracy and vice versa. From our numerical experiments, we have observed that the accuracy

of the proposed method is excellent and can be improved further by enlarging the scale level. Because

of using a higher scale level, the efficiency of the proposed method can be improved very well. An

absolute error has also been computed at different scale levels.We have also examined various problems
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using different fractional variable order to check the results. Hence, from numerical examples, we have

concluded that the operational matrices method based on shifted Legendre polynomials can also be

used as a powerful tool to handle different classes of variable order FDEs as well as integral equations

for their numerical solutions.
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