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ABSTRACT 

The aim of present study is an influence of viscous dissipation and heat source on an unsteady MHD mixed convective, fluid flow past an impulsively 
started oscillating plate embedded in a porous medium in presence of magnetic field, heat and mass transfer. The modeling equations are converted to 
dimensionless equations then solved through Galerkin finite element method and discussed in the flow distributions with the help of MATLAB.  
Numerical results for the velocity, temperature and concentration distributions as well as the skin-friction coefficient, Nusselt number and Sherwood 
number are discussed in detail and displayed graphically for various physical parameters. It is observed that increasing the values of porous medium 
improves the velocity profile, while increasing 'M' and Prandtl number decreases it. As the values of the heat source parameter increase, the temperature 
profile decreases. This model may be useful in view of lab experimental results for correctness and applicability and useful to analyze the fluid behavior 

in thermal engineering industries with the influence of the thermal, magnetic and chemical reaction effects etc. A comparison of present results with 
previously published results shows an excellent agreement. 
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1. INTRODUCTION 

Current research has been mingled with a mixed convective flow of 
porous media. The mathematical developments were used to characterize 
the flow within porous media prior to 1969 reviewed.  Flow in porous 

media is important in many areas of science and technology including 
biology, soil science, reaction engineering, waste treatment, and 
separation science. The mixed physical process of MHD convection flow 
has been gaining increasing research attention owing to its increased 
utilization in diverse physical chemical and engineering applications.  
     In the presence of strong magnetic fields, the Hall Effect becomes an 
important mechanism for electrical conduction in ionized gases and 
plasmas. Unlike metals, the number density of charge carriers in ionized 
gases is low, which results in anisotropic behavior of the electrical 

properties. Hence, a current is induced in the direction normal to both the 
electric and magnetic fields. The Hall Effect has important engineering 
applications, such as the Hall generators, Hall probes, and Hall Effect 
thrusters used for space missions. 
     The study of heat and mass transfer with chemical reactions is of great 
practical importance to engineers and scientists because of its almost 
universal occurrence in many branches of science and engineering. 
Combined heat and mass transfer in fluid-saturated porous media finds 

applications in a variety of engineering processes such as heat exchanger 
devices, petroleum reservoirs, chemical catalytic reactors and processes, 
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geothermal and geophysical engineering, moisture migration in a fibrous 
insulation and nuclear waste disposal and others. 
     As of late, magneto hydrodynamics boundary layer stream and heat 

transfer of electrically conducting liquids have different science, 
designing, and mechanical applications such as petrol businesses, 
precious stone development, geothermal designing, atomic reactors, fluid 
metals, streamlined features, and metallurgical cycles. MHD principles 
also find its applications in Medicine and Biology. 
Hydro magnetic unsteady mixed convection and mass transfer past a 
vertical porous plate were investigated by Sharma and Chaudhary 
(2008). The effects of thermal radiation and viscous dissipation on MHD 

heat and mass diffusion flow past an oscillating vertical plate embedded 
in a porous medium with variable surface conditions is described by 
Kishore et al. (2012). Finite element analysis of soret and radiation 
effects on transient MHD free convection from an impulsively started 
infinite vertical plate with heat absorption is narrated by Jithender Reddy 
et al. (2014).  An attempt to study an unsteady oscillatory hydro magnetic 
mixed convection flow through a porous medium with periodic 
temperature variation by Ramana Reddy et al.  (2014). Thermal diffusion 

and diffusion thermo effects on unsteady MHD fluid flow past a moving 
vertical plate embedded in porous medium in the presence of Hall current 
and rotating system is reported Jithender Reddy et al. (2016). Transfer 
effects on an unsteady MHD mixed convective flow past a vertical plate 
with chemical reaction is chronicled Srinivasa Raju (2017). 
Venkateshwara Raju et al. (2018)analyzed unsteady MHD free 
convection Jeffery fluid flow of radiating and reacting past a vertical 
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porous plate in slip-flow regime with heat source. Chemical reaction and 
radiation effects on MHD free convection flow past an exponentially 
accelerated vertical porous plate is stated   Sitamahalakshmi et al.  (2019). 
Effects of thermal radiation on MHD chemically reactive flow past an 
oscillating vertical porous plate with variable surface conditions and 

viscous dissipation is expressed by Prabhakar Reddy et al. (2019). FDM 
and FEM correlative approach on unsteady heat and mass transfer flow 
through a porous medium is conveyed by Shankar Goud et al. (2020). 
Saddam Atteyia Mohammad (2020) is analyzed effects of variable 
viscosity on heat and mass transfer by MHD mixed convection flow 
along a vertical cylinder embedded in a non-darcy porous medium. Anil 
Kumar et al. (2020) described thermal radiation effect on MHD heat 
transfer natural convective nanofluid flow over an impulsively started 

vertical plate. Anil Kumar et al. (2021) investigated effects of Soret, 
Dufour, Hall current and rotation on MHD natural convective heat and 
mass transfer flow past an accelerated vertical plate through a porous 
medium. Mateo et al. (2020) studied unsteady MHD radiating and 
reacting mixed convection past an impulsively started oscillating plate.  
     Keeping in mind the work done by previous researchers, we attempted 
to analyze heat source and viscous dissipation effects on unsteady 
magneto hydrodynamic mixed convective heat and mass transfer flow of 

a fluid past an oscillating plate embedded in a porous medium in the 
presence of constant wall temperature and concentration. The novelty of 
this work is the consideration of heat source/sink and viscous dissipation 
in conservation of energy. We have extended the work of Matao et al. 
(2020) by including the presence of above-mentioned flow parameters. 
This is not a simple extension of the previous work. It varies several 
aspects from that such as the presence of mass transfer in the momentum 
equation, radiation absorption inclusion in the energy equation and the 

addition of species diffusion equation. Apart from the modification of set 
of governing equations, we also changed the method of solution due to 
the existence of nonlinear-coupled partial differential equations, which 
are solved, by Galerkin finite element method, with its computational 
cost efficiency, has been employed for obtaining the solutions. The 
consequent changes and comportment of diverse aspects such as the 
concentration, velocity, temperature, and engineering parameters have 
been comprehensively focused on observing the possible changes in the 
behavior of the fluid. 

2. MATHEMATICAL ANALYSIS 

 
             
 
                Fig. 1 Coordinate system and physical configuration 
 
Consider the unsteady MHD flow of viscous incompressible electrically 
conducting, radiating and reacting fluid pastan impulsively started 
oscillating infinite vertical plate taking into an account viscous 
dissipation with variable temperature and constant mass diffusion 

presence of heat source. A uniform magnetic field 𝐵
→

 of strength 𝐵0 is 

applied in the direction perpendicular to the fluid flow. In the Cartesian 

co-ordinate system, the 𝑥 ′-axis is taken along the plate in the vertically 

upward direction, the 𝑦′-axis perpendicular to the direction of the plate 

and the 𝑧′-axis is normal to the 𝑥 ′𝑦′-plane. The physical model of the 

problem is shown in Fig.1. Initially, at time 𝑡 ′ ≤ 0 the temperature of the 

fluid and the plate is 𝑇∞
′ and the concentration of the fluid is 𝐶∞

′ . 

Subsequently, at time 𝑡 ′ > 0, the plate starts oscillating in its own plane 

with frequency 𝜔′, the temperature of the plate and the concentration of 

the fluid, respectively are raised to 𝑇𝑤
′ and𝐶𝑤

′ . It is assumed that the 

radiation heat flux in the 𝑥 ′- direction is negligible as compared to that in 

𝑦′- direction. As the plate is of infinite extent and electrically non-
conducting, all the physical quantities, except the pressure, are functions 

of 𝑦′and 𝑡 ′. 
The generalized Ohm's law on taking Hall current into account Cowling 
(1957) is given by 
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Where 𝑞
→

, 𝐵
→

, 𝐸
→

, 𝐽
→

, 𝜎, 𝜔𝑒and 𝜏𝑒 are respectively,velocity vector, magnetic 
field vector, electric field vector, current density vector, electric 
conductively, cyclotron frequency and electron collision time. 

The equation of continuity  𝛻. 𝑞
→

= 0 gives 𝜈′ = 0  everywhere in the flow 

since there is no variation of the flow in 𝑦 ′ direction, where 𝑞
→

=
(𝑢′, 𝑣 ′, 𝑤 ′) and 𝑢′, 𝑣 ′, 𝑤 ′ are respectively, velocity components along the 
coordinate axes.  
     The magnetic Reynolds number is so small that the induced magnetic 
field produced by the fluid motion is neglected. The solenoid relation 

𝛻. 𝐵
→

= 0 for the magnetic field 𝐵
→

= (𝐵𝑥 ′ , 𝐵𝑦′
′, 𝐵𝑧 ′) gives 𝐵𝑦′= constant 

say𝐵0. i.e.,𝐵
→

= (0, 𝐵0 , 0)everywhere in the flow. The conservation of 

electric current 𝛻. 𝐽
→

= 0 yields 𝑗𝑦′
′ = constant, where𝐽

→

= (𝑗𝑥′ , 𝑗𝑦′
′, 𝑗𝑧 ′). 

This constant is zero since 𝑗𝑦′
′ = 0at the plate which is electrically non-

conducting. Hence,𝑗𝑦′
′ = 0 everywhere in the flow. In view of the above 

assumption, Equation (1) yields  
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Where 𝑚(= 𝜔𝑒𝜏𝑒) is the Hall parameter which represents the ratio of 
electron-cyclotron frequency and the electron-atom collision frequency. 

Since the induced magnetic field is neglected, Maxwell equation 𝛻 ×

𝐸
→

=
𝜕𝐻

→

𝜕𝑡
 becomes 𝛻 × 𝐸

→

= 0 which gives 
𝜕𝐸

𝑥′

𝜕𝑦′
= 0 and 

𝜕𝐸
𝑧′

𝜕𝑦′
= 0. This 

implies that 𝐸𝑥 ′ =constant and𝐸𝑧 ′ = constant everywhere in the flow and 

choose this constant equal to zero, i.e., 𝐸𝑥 ′ = 𝐸𝑧 ′ =0. Solving for 

𝑗𝑥 ′and𝑗𝑧 ′ from Equations (2)and(3), on using 𝐸𝑥′ = 𝐸𝑧 ′ =0, 
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Taking into consideration the assumptions made above, under the 

Boussinesq’s approximation, and using Equations (4)and(5), the basic 
governing equations of the flow are derived as: 

2.1 GOVERING EQUATIONS: 

The description of the physical problem closely follows that of Rajput et 

al. (2016). This introduces unsteadiness in the flow field. The physical 
model and the coordinate system are shown Fig.1. 
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Continuity Equation: 
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Momentum Equation: 
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Energy Equation:                                                                          
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Concentration Equation:                
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The initial and boundary conditions for the problem are: 
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The radiation heat flux r q under the Roseland approximationMagyari 
and Pantokratoras (2011) expressed by 
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Where  is the Stefan-Boltzmann constant and k  is the mean 

absorption coefficient.  It is assumed that temperature difference within 

the flow are sufficiently small, then Equation )11(  can be liberalized by 

expanding 4'T  into the Taylor series about '
T  which, after neglecting 

higher-order terms, takes the form: 
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In view of Equations )11( and )12( , Equation )8(  reduces to 
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Using Equation (14) and introducing the non-dimensional quantities: 
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into Equations )6( )7( )9( and )13(  the following are obtained in non-

dimensional form as follows 
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The initial and boundary conditions Equation (10), in non-dimensional 

form become: 
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3. SOLUTION OF THE PROBLEM 

The set of partial differential equations given (16)–(19) are highly non-
linear therefore cannot be solved analytically. Thus, for the solution of 
this problem, Galerkin finite element method by Bathe (1996) and Reddy 
(1985) has been implemented. The finite element method is a powerful 
technique for solving differential or partial differential equations as well 

as for integral equations. This method is so general that it can be applied 
even for integral equations including heat transfer fluid mechanics, 
chemical processing, solid mechanics, electrical systems and other fields 
also. The steps involved in the finite element analysis are as in follows 
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In equation )21( integrating the first term using by parts method and 

neglecting that term. After that, replace Galerkin finite element 

approximation over the two hugged linear variable  )'(' e of  the form ,
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by inter-element connectivity. 
The following difference strategy obtained when putting the row 
corresponding to the node i to zero. 
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The following system of equations is got after applying Crank-

Nicholson method on )16(
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Here Index i designates to space and j  for time. Theequations at every 

internal nodal point on a particular n-level constitute a tri-diagonal 
system of equations. They are solved by making use of the Thomas 
algorithm. A grid independent test is employed to get the solution with 

the least error. It is carried out by testing with various grid sizes.The 
equations at each internal nodal point on a particular n-level represent a 

tri-diagonal system of equations. So, in the equations )27(  to )30( , 

taking 𝑖 = 1(1) and using the boundary conditions )20( , the following tri-

diagonal system of equations are obtained. The tri-diagonal system is 
solved by making use of Thomas algorithm for which a numerical code 
is executed using MATLAB Program. To prove the convergence of the 
numerical scheme, the computation is carried out for small changed 

values of h and 𝑘 and the iterations performed until a tolerance 10−8 is 

achieved. No notable change is observed in the values of 𝑢, w , 𝜃𝑎𝑛𝑑

  . Thus, the Galerkin finite element method is convergent and stable. 
The dimensionless primary and secondary skin frictions are given by 

y

u
x




 at   y = 0    and   

y

w
z




  at y = 0. 

The dimensionless Nusselt and Sherwood numbers are given by 
 

y
Nu







 at y = 0    and    

y
Sh







at  y = 0. 

 

From table 1 it is clear that skin friction decreases due to an increase in 
Hartmann number.  it is noticed that the skin friction increases due to an 
increase in porous medium. 

From the table 2 it is clear that uN  increases with the increasing values 

of ,rP S  and decreases with the increasing values of R , cE . 

 From the table 3 it is clear that hS increases with increasing values of 

cS and decreases due to an increase in rK , t. 

4. RESULT AND DISCUSSIONS 

The parameters like rccrmr KSESPGGKmRM ,,,,,,,, ,,  are shown in 

graphs. 
 

𝐾𝑟 = 0.2, 𝐺𝑟 = 10, 𝐺𝑚 = 10, 𝑀 = 2, 
𝑚 = 0.5, 𝑅 = 2, 𝑡 = 2, 𝑃𝑟 = 7, 𝑆𝑐 = 2.01, 
𝑆 = 2, 𝐾 = 0.5, 𝐸𝑐 = 0. 1  

 

 
 
 

Table 1: Numerical values of Primary and Secondary Skin Frictions

  

Gr Gm M m K  
ωt 

Degrees 
R Pr Ec S Sc Kr t x  

 

10 10 1 0.5 1  30 1 0.71 0.001 10 0.22 0.5 0.2 -2.013825 -0.131652 

20 10 1 0.5 1  30 1 0.71 0.001 10 0.22 0.5 0.2 -2.366952 -0.134717 

10 20 1 0.5 1  30 1 0.71 0.001 10 0.22 0.5 0.2 -5.141829 -0.182711 

10 10 2 0.5 1  30 1 0.71 0.001 10 0.22 0.5 0.2 -1.752037 -0.248861 

10 10 1 1 1  30 1 0.71 0.001 10 0.22 0.5 0.2 -2.112821 -0.168109 

10 10 1 0.5 2  30 1 0.71 0.001 10 0.22 0.5 0.2 -2.181828 -0.136459 

10 10 1 0.5 1  45 1 0.71 0.001 10 0.62 0.5 0.2 -2.283051 -0.117425 

z
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Table 2. Numerical values of Nusselt number 

rP  R cE  S t 
uN  

0.71 1 0.001 10 0.2 0.470071 

7.00 1 0.001 10 0.2 1.480354 

0.71 2 0.001 10 0.2 0.383755 

0.71 1 0.002 10 0.2 0.469959 

0.71 1 0.001 15 0.2 0.538483 

0.71 1 0.001 10 0.3 0.659245 

 
Table 3. Numerical values of Sherwood number 

cS  rK  t hS  

0.22 0.5 0.2 0.651024 

0.62 0.5 0.2 1.093765 

0.22 1.0 0.2 0.707223 

0.22 0.5 0.3 0.554695 

 

 

Figure 2: Primary velocity distribution with respect to rG . 
Figure 2 depict the comparison of the present work’s velocity profile with 
the previous study done by Mateo et al. (2020). For fluid velocity, this 
figure shows excellent agreement (under some limiting conditions) 
between the current work and previously published work Mateo et al. 
(2020).  

It is seen from figure-3 that the primary velocity falls when M  increases. 

That is the primary fluid motion is retarded due to application of 
transverse magnetic field. This phenomenon clearly agrees with the fact 
that Lorentz force that appears due to interaction of the magnetic field 

and fluid velocity resists the fluid motion. 

 
Figure 3: Primary velocity for varying M . 

 

It can be observed from the figure 5 that rG  signifies the relative effect 

of the thermal buoyancy force to the viscous hydrodynamic force in the 

boundary layer. As expected, it is observed that there was a rise in the 

velocity due to the enhancement of thermal buoyancy force. Also, as rG

increases, the peak values of the velocity increase rapidly near the porous 

plate and then decays smoothly to the free stream velocity. 

 

Figure 4: Secondary velocity for varying M . 

The secondary velocity increases with increasing M , because of less 

kinetic viscosity.  

 

Figure 5: Primary velocity for varying rG . 

 

 
Figure 6: Secondary velocity distribution with respect to rG . 

rG signifies the relative effect of the thermal buoyancy force to the 

viscous hydrodynamic force in the boundary layer. As expected, it is 
observed that there was a rise in the velocity due to the enhancement of 

thermal buoyancy force. Also, as rG  increases, the peak values of the 
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velocity increase rapidly near the porous plate and then decays smoothly 
to the free stream velocity. 

 
 

Figure 7:  Primary velocity for varying mG . 

mG defines the ratio of the species buoyancy force to the viscous 

hydrodynamic force. As expected, the fluid velocity increases and the 

peak value is more distinctive due to increase in the species buoyancy 
force. The velocity distribution attains a distinctive maximum value in 
the vicinity of the plate and then decreases properly to approach the free 
stream value. It is noticed that the velocity increases with increasing 

values of mG . 

 

 
 

Figure 8:  Secondary velocity distribution with respect to mG . 

 

mG  defines the ratio of the species buoyancy force to the viscous 

hydrodynamic force. As expected, the fluid velocity increases and the 
peak value is more distinctive due to increase in the species buoyancy 
force. The velocity distribution attains a distinctive maximum value in 
the vicinity of the plate and then decreases properly to approach the free 
stream value. It is noticed that the velocity increases with increasing 

values of mG . 

 

From Figure 9 that primary velocity is increased due to increase in K . 

Physically, increase in K tends to decrease the resistance of the porous 

medium as a result increase the fluid velocity.  
 

 

Figure 9:  Primary velocity for varying K . 

 

 

 
Figure 10: Secondary velocity for varying K . 

Secondary velocity is increased due to increase in K .Physically, 

increase in K  tends to decrease the resistance of the porous medium as 

a result increase the fluid velocity.  

 
 

Figure 11:  Primary velocity for varying cE . 
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From Figure 11, cE expresses the relationship between the kinetic 

energy in the flow and the boundary layer enthalpy difference. It 
embodies the conversion of kinetic energy into internal energy by work 
done against the viscous fluid stresses. It is an important parameter for 
describing real working fluids in MHD energy generators and materials 

processing where dissipation effects are not trivial. Positive cE  

corresponds to cooling of the wall (plate) and therefore a transfer of heat 

from the plate to the micropolar fluid. Convection is enhanced and we 
observe in consistency with that the fluid is accelerated i.e. linear velocity 

is increased in the micropolar fluid. 

 

 
Figure 12: Secondary velocity for varying cE . 

cE expresses the relationship between the kinetic energy in the flow and 

the boundary layer enthalpy difference. It embodies the conversion of 
kinetic energy into internal energy by work done against the viscous fluid 
stresses. It is an important parameter for describing real working fluids 
in MHD energy generators and materials processing where dissipation 

effects are not trivial. Positive cE  corresponds to cooling of the wall 

(plate) and therefore a transfer of heat from the plate to the micropolar 
fluid. Convection is enhanced and we observe in consistency with that 
the fluid is accelerated i.e. linear velocity is increased in the micropolar 
fluid. 
Figure 13 shows that the primary fluid velocity is increased with the 
progression of time. Physically, buoyancy force gradually increases with 

time as a result fluid velocity enhances. 

 
Figure 13:  Primary velocity for varying t. 

 
 

 
Figure 14:  Secondary velocity for varying t. 
Figure 14 shows that the secondary fluid velocity is increased with the 
progression of time. Physically, buoyancy force gradually increases with 
time as a result fluid velocity enhances in both directions. 
 

 

 
                      
                            Figure 15: Temperature for varying Pr. 
It observed that there is a decrease in the temperature and temperature 
boundary layer as Pr increased. This is because the fluid is highly 
conductive for a small value of Pr.  Physically, if Pr increases, the 
thermal diffusivity decreases, and this phenomenon leads to the 
decreasing manner of the energy transfer ability that reduces the thermal 

boundary layer. 

 
Figure 16: Temperature for varying R. 
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It can be noticed from figure 16 that an increase in R causes improvement 
of the fluid temperature. 
 

 

Figure 17: Temperature for varying cE . 

 The cE  represents the interrelationship of the flow’s kinetic energy and 

enthalpy. This represents the energy transformation from kinetic to 
internal in terms of work done against the stress of the viscous fluid. This 
energy manifests in the form of heat during dissipation. Consequently, 
the dissipative heat triggers an increase in temperature. 

 

 
 

                              Figure 18: Temperature for varying S . 
 

Figure elucidates that the fluid temperature  decreases with increasing 

values of S .  When S  exists, thermal boundary layer is always starting 

to be thickened as result fluid temperature depreciate in the boundary 

layer. The temperature profile follows a trend that is quite similar to the 

one described in Sharma et al. (2022). 
 

Figure 19 shows that the fluid temperature  increase with the 
progression of time t. 
It is seen from figure 20that the increasing values of Sc leads to fall in 

the concentration distribution. Physically, increase of Sc means decrease 
of molecular diffusivity D, this results in a decrease of concentration 
boundary layer. Hence, the concentration of the species is higher for 
small values of Sc and lowers for large values of Sc. 
 

 
 

 

 

 
 

Figure 19: Temperature for varying t. 

 
 

Figure 20:  Concentration distribution for varying Sc. 
 

 
 

                Figure 21:  Concentration distribution for varying rK . 
Figure 21 shows a destructive type of chemical reaction because the 

concentration decreases for increasing rK  which indicates that the 

diffusion rates can be tremendously changed by rK .  
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This is due to the fact that an increase in rK  causes the concentration at 

the boundary layer to become thinner, which decreases the concentration 

of the diffusing species. This decrease in the concentration of the 
diffusing species diminishes the mass diffusion 
 

 
 
Figure 22:  Concentration distribution for varying t. 
Concentration increases with progression of time t.  Initially, species 
concentration takes the value 1 and afterward for large values of y it tends 
to zero with increase of t. 

 

5. CONCLUSIONS 
 In this paper, the unsteady MHD mixed convective radiating and 
chemically reacting fluid flow past an impulsively started oscillating 
vertical plate with Hall current, viscous dissipation, heat source is 

provided, which is embedded in porous medium. The Galerkin finite 
element method has been applied to solve the dimensionless governing 
equations of the flow. It has been found that thermal and mass buoyancy 
force, Hall parameter, radiation parameter and time tends to accelerate 
both u and w whereas an increase in Prandtl number, Schmidt number, 
and chemical reaction rate tends to decelerate both u and w. Increase in 
the magnetic parameter depreciate u and reverse trend is noticed on w. 
These parameters have similar effect on both primary and secondary skin 

frictions.  
The fluid temperature enhanced with increment in radiation parameter 
and time whereas reverse trend is noticed when Prandtl number is 
increased and opposite effect is noticed on the Nusselt  number.  
The fluid concentration decline with increment in Schmidt number and 
chemical reaction rate whereas opposite trend is observed with 
progression of time and opposite effect is noticed on the Sherwood 
number. The value of the local skin-friction coefficient increases with 

increase in porous parameter.  
It is expected that the current study of the physics of flow over a vertical 
surface will serve as the foundation for many scientific and engineering 
applications involving the flow of electrically conducting fluids. The 
findings could be valuable in determining the flow of oil, gas, and water 
through an oil or gas field reservoir, as well as subsurface water 
migration and filtering and purification procedures. The results of this 
problem can be helpful in various devices subject to significant variations 

in gravitational force, its application on heat exchanger designs, wire and 
glass fiber drawing, and its application in nuclear engineering in 
connection with reactor cooling. 
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Nomenclature 
'u           Primary velocity component in 'x  - direction )( 1sm

 

u           Non-dimensional primary velocity )( 1sm
 

'w  Secondary velocity component in 'z  - direction )( 1sm
 

w  Non-dimensional secondary velocity )( 1sm
 

0B  uniform magnetic field(Tesla) 

  dimensionless concentration )( K  

'C  species concentration  

'  oscillation frequency  

  non-dimensional oscillation frequency
 

'
wC  wall concentration 

'
C

 
Concentration of the fluid far away from the plate )( 3mKg  

cG  mass Grashof’s number 

rG  thermal Grashof’s number 

g   Acceleration of gravity )( 2sm
 

rq
 

coefficient of Radiative heat transfer 

Re   Reynolds number 

rP  Prandtl number 

M  magnetic parameter 

m  Hall current 
'T  near the plate  temperature of the fluid 
'
wT  plate  temperature 

'
T  temperature of the fluid far away from the plate )( 3mKg  

t  dimensionless time 

v  kinematic viscosity )( 12 sm  

  viscosity coefficient 

rK  chemical reaction parameter  

D  mass diffusivity )( 2sm
 

pC
 

Specific heat at constant 

   density       )( 3mKg  

Ec  Ecerkt Number 

S  Heat Source 

cS  Schmidt number 

Sh   Sherwood number 

Nu   Nusselt number )( 1KKgJ 

 

x  Primary Skin Friction 

z  Secondary Skin Friction 

'y
 Co-ordinate axis normal to the plate )( m  

y  Dimensionless displacement )( m
 

'x  Coordinate axis along the plate )( m
 

0  
Magnetic Permeability ).( 2AN  

Greek Symbols: 

k    Thermal conductivity of the fluid  )( 11  KWm  

  Non-dimensional fluid temperature  )( K
 


 Volumetric coefficient of thermal expansion )( 1K
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    Volumetric Coefficient of thermal expansion with 

concentration )( 3 Kgm  

   Electric conductivity of the fluid )( 1ms  

    

Subscripts: 
             Free stream conditions 

p             Plate 

w   conditions on the wall  
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