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ABSTRACT 
In this paper, we study the behavior of heat transfer of Casson fluid at the magnetohydrodynamic stagnation point with thermal radiation over a 
continuous moving sheet. The appropriate similarity transfer is used to transfer the governing differential equations into the ordinary differential 
equation and then solved by the collocation method based on spline function. The obtained results are investigated with the existing literature by direct 
comparison. We found that an increment in the value of the shrinking parameter, magnetic parameter, and Casson fluid parameter enhances the velocity 
distribution and depreciate the temperature profile both Casson and Newtonian fluids. Furthermore, the thermal distribution depreciates with increasing 
the value of Prandtl number and radiation parameter for Casson and Newtonian fluids. Finally, the impact of the emerged physical parameters on the 
velocity and temperature distributions are illustrated via tables and illustrative graphs. 
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1. INTRODUCTION
Convection boundary layer flow on a continuous moving sheet is utilized 
in different industrial processes, including the manufacturing electrolyte 
paper, thinning and annealing of conductive material, and the drawing 
thermoplastic. The boundary layer flow over a shrinking\stretching 
surface is widely used in different industrial processes, including the 
manufacturing electrolyte paper, thinning and annealing of conductive 
material, and polymer processing. Hiemenz (1911) was the first to 
investigate the conventional two-dimensional unsteady flow on a flat 
sheet. Sakiadis (1961) initiated an investigation on the flow through a 
continuous moving surface. The concept of a stretching surface of 
boundary layer flow of viscous fluid initiated via Crane (1970). 
Following that, many scholars continued to detect the flow over a 
continuous moving surface from different perspectives (Gupta and 
Gupta, 1977; Ganesh and Sridhar, 2021; Al-Sawalmeh, 2022; Murad and 
Hamasalh, 2022). However, the non-Newtonian flow is found in a variety 
of large-scale industrial process such as blood flow models, polymer, 
thinning and annealing of conductive material, and ice flows. Several 
fluids are considered as non-Newtonian fluid like Williamson fluid, and 
power law fluid flow. A shear-thinning Casson fluid that generates the 
yield of shear stresses is also a non-Newtonian fluid. Due to its 
rheological properties, the Casson fluid has been classified as the most 
popular non-Newtonian fluid. The yield shear stress behaves like a solid 
when it is greater than the shear stress while the liquid starts to move 
when the yield shear stress is less than the shear stress, such as human 
blood, fruit juice, and tomato sauce. The Casson fluid has major 
applications in different aspects of real life like in cancer homeo-therapy 
and fibrinogen. Due to these significant advantages, it has been an area 
of interest to many researchers. The Casson fluid was first introduced by 
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Casson (1959). The analysis of Casson fluid over various geometries are 
presented in (Malik et al., 2014; Babu et al., 2017; El-Aziz and Afify, 
2016; Rani et al., 2021). Magnetohydrodynamic is the physical 
characteristic that explains the behavior of a highly conducting fluid in 
the presence of a magnetic field. The conductive fluids produce an 
electrical current due to the liquid flow, and generated force increases the 
mechanical behaviors of the liquid. The electrically conducting 
peristaltic flow has considerable implementation in the biological fluids: 
such as blood flows, peristalsis flows, and nano fluid see (Mekheimer, 
2008; Hayat et al., 2010; Sandeep et al., 2013). Over a continuously 
stretched sheet the effects of magnetic field and thermal transfer on the 
Casson fluid boundary layer flow is studied by Dhange et al. (2022). In 
the existence of mass transfer and heat transfer, the Casson fluid flow of 
an optically thick fluid along a vertically inclined surface analyzed by 
Raju et al. (2017). A three-dimensional Casson fluid through a thin 
linearly stretched plate with convection constrain is studied in Mahanta 
and Shaw (2015). 3D MHD stagnation point flow of an incompressible 
Casson fluid in the porous material is studied by Shahzad et al. (2015). 
3D Casson-Carreau fluid in an unsteady stretched sheet is investigated 
by Raju and Sandeep (2016). The Casson fluid flow over a vertical 
porous sheet electronically conducting considering the impact of the 
generated magnetic field is studied by Goswami and Sarma (2021). The 
dual solutions for a Casson fluid's thermal properties and heat transfer 
enhancement over a porous continuous moving surface are analyzed in 
Khan et al. (2021). Aziz and Afify (2019) studied the 
magnetohydrodynamic Casson fluid flow across stretching surface with 
viscous dissipation estimation and Hall effects.     
    This paper aims to extend the analysis of MHD stagnation points flow 
of Casson fluid over a continuous moving surface electrically conducting 
in the presence of thermal radiation and transverse magnetic field with 
the effect of Caputo derivative. The Maple 2020 program is employed to 
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solve the converted mathematical problem using the collocation method 
based on spline function (CMSF) and the Runge Kutta method (rkf45). 
Numerical and graphical representations of the effect of emerging 
physical parameters on velocity and thermal distribution are provided.  
 

 
Fig. 1 The skitch of the present model. 

2. MATHEMATICAL MODEL 
The Consider 2D magnetohydrodynamic stagnation point flow of an 
incompressible viscous Casson fluid flow electrically conducting 
impinging normally over a heated continuous moving surface. Assume 
that the magnetic Renolds number is represented by small Shercliff 
(1965) and the velocity field  and the uniform stationary magnetic 
field of strength  are perpendicular. Here, the produced magnetic field 
is disregarded as compared to the imposed field. The electric field is zero, 
no polarization voltage is supplied. In addition, the boundary layer and 
Boussinesq approximations are assumed to be valid. The equations of 
motion of steady 2D magnetohydrodynamic incompressible viscous 
boundary layer Casson fluid flow are given as follows   

,                                                                                       (1) 

.          (2) 

The electric conductivity of the fluid is , the pressure represented by
 and  represents the free stream velocity of the fluid. In the absence 

of the viscous dissipation the thermal allocation equation for our 
boundary value problem is as follows:  
 

,                                                      (3) 

when is the given thermal ability at fixed pressure of the fluid, is the 
temperature, represents the heat conductivity constant, and is the 
radiative heat flux. The radiative thermal flow using Resseland 
approximation Raptis et al. (2004) is simplified as follows  
 

,                                                                                  (4) 

when represents the mean absorption coefficient and represents the 

Stefan-Boltzmann number. is the temperature fluctuation inside the 

flow which is considered as a linear function of temperature. Appling the 
Taylor series about for expanding . 

.                                                                            (5) 

Taking Eqs.  (4) and (5), The Eq.  (3) is reduced to  

.                                             (6) 

The above equation depicts that the enhance of thermal conductivity is 

due to the impact of radiation. Assume that is the radiation 

parameter. Thus, Eq.  (6) becomes  
 

                                                                     (7) 

where . 

Consider the following boundary conditions of the present problem 

                              (8) 

Here, represents the shrinking ratio,  represents the thermal sheet 
and the temperature of the liquid outside represented by . Now, 
solving governing Eq.  (1), Eq. (2) and Eq.  (6) with the given boundary 
conditions (8) gives the velocity and temperature fields for the proposed 
model. Hence, the following similarity transform is given 

                               (9) 

when  represents the similarity parameter, and are the strength 
of stagnation point and the stagnation pressure respectively. Satisfying 
the Eq. (9) in Eq. (1) and Eq. (2), the continuity Eq. (1) is satisfied and 
the possible fluid motion is represented by velocity field, and then putting 
Eq. (9) in Eq. (3) with some simple calculations, we obtain  

.                             (10) 

Putting Eq.  (9) in Eq.  (7), we obtain  

.                                                                        (11) 

Now, is magnetic field parameter or (Hartmann number) 

and    Prandtl number. Also,   where  
is radiation parameter.  
The considered boundary conditions in Eq. (8) with taking the 
dimensionless parameters in consideration, we obtain the following 
boundary conditions: 
 

                                       (12) 

where and  are real constant, and is shrinking parameter.
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3. COLLOCATION SPLINE METHOD 
In this section, the spline interpolations (De Boor and De Boor, 1978; 
Schumaker, 2015) are proposed to solve the boundary value problems 
presented in Eq. (9) and Eq. (10) to gather with the boundary conditions 
(11). First, we present the cubic spline approach which is used by Bickley 
over two-point boundary value problem Bickley (1968), and then used 
by Izyan et al. (2017) to investigate free motion of layered truncated 
conical shells filled with quiescent fluid. The Bickley cubic spline is 
given by 

.             (13) 

 
To solve third order boundary value problem, we need to have a spline 
approach of higher degree. Hence, consider the following quartic spline 

 

                                                                                                            (14) 
Here, we define the power function as follows: 

 

Consider the equally spaced knots of partition  

on . Assume that is the space of quartic polynomials on
which is continuously differentiable piecewise.  
Consider the following third order boundary value problem of fractional 
order: 

 (15) 
associated with the following boundary conditions:  

                                                                (16) 

where   represents the Caputo derivative (Malo et al., 2021; 
Murad, 2022) of and the functions  are 

continuous functions in .  
Now, we substitute  of quartic spline (13) into 
the boundary value problem (15), we obtain  

 

From boundary conditions (16), we obtain 

 

 

 

 

 
Fig. 2 The impact of shrinking parameter on the velocity profile 

. 

 
Fig. 3 The impact of shrinking parameter on the temperature profile       

. 

4. QUASI LINEARIZATION TECHNIQUE (QLT) 
To approximate a non-linear Ordinary differential equation to a linear 
Ordinary differential equation the QLT algorithm is used. The technique 
depends on Newton-Raphson technique which was found by 
Mandelzweig and Tabakin (2001). The QLT is widely utilized in 
different fields of science like applied mathematics and astronomy 
Parand et al. (2009). The approximate linear ODE driven by QLT cannot 
be solved analytically, thus the collocation method based on B-spline 
function is presented to solve the proposed problem numerically. Here, 
we apply the QLT to the present problem the approximate linear 
differential equation at the   iteration given by: 
 

                                              (17) 

                                                                      (18) 
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Fig. 4 The impact of magnetic field parameter on the velocity profile 
. 

  

Fig. 5 The impact of magnetic field parameter on the temperature 
profile . 
Using Eq. (9), we obtain 

 (19) 

                                     (20) 
To solve Eq. (10) and Eq. (11) employing spline collocation approach, it 
requires to transfer nonlinear problem into linear form. Thus, by using 
quasi-linearization technique Eq. (10) and Eq. (11) convert to the 
following linear forms. The QLT formula is defined as follows: 

      (21) 

(22) 

Now, applying QLT on Eq. (10) and Eq. (11), we obtain  
 

(23) 

                                              (24) 
Here, we can convert Eq. (23) to a third order differential equation of 
fractional order as follows  

 (25) 

                                                                   
                                       (26) 

with the following boundary conditions: 

                                         (27) 

where represents the Caputo derivative of . The system of 
the collocation equations using Eq. (26) and Eq. (27) for have the 
following form  

 

                                                                                                           (28) 
and the system of collocation equations for the temperature has the 
following form  

 

                                                                                                           (29) 
and the boundary conditions (27) becomes  

 

    The boundary conditions at zero are satisfied by the following initial 
curves and . Hence, the value of 

 and their derivatives are obtained from the initial curves. To 
acquire the complete solution of Eq. (25) and Eq. (26), we need to solve 
Eq. (28) and Eq. (29) to gather with the boundary conditions using Eq. 
(13) and Eq. (14) in order to find the values of the following unknowns 

.  

 
Fig. 6 The impact of Casson fluid parameter  on the velocity profile 

. 
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Fig. 7 The impact of Casson fluid parameter  on the temperature 
profile . 

5. RESULTS AND DISCUSSION  
The In this section, the obtained approximate solutions using collocation 
method based on spline functions for Eq. (13) and Eq. (14) are analyzed. 
The condition  is used instead of the condition for 

some sufficiently large . The obtained solutions of the proposed 
problem are investigated to illustrate the properties of Casson fluid flow 
in the presence of magnetic field. The non-dimensional parameters are 
considered as and  in the numerical 
results except the variations. In the illustrative graphs, the gold color 
profiles and red color profiles are represented the flow of non-Newtonian 
Casson fluid and the flow of Newtonian fluid, respectively. Fig. 2 and 
Fig. 3 illustrate the influence of the shrinking parameter on the velocity 
profile and temperature profile, respectively, for both Casson and 
Newtonian fluids. The velocity profiles decreases with decreasing 

the magnitude of shrinking parameter while the temperature profile 
increases with decreasing the value of shrinking parameter. Fig. 4 and 
Fig. 5 show the influence of on the velocity profile and temperature 
profile, respectively. We detect that the velocity profile is 

enhanced with increasing values of the magnetic field parameter
whereas the temperature profiles and thermal boundary layer thickness 
decrease with increasing values of magnetic field parameter . Fig. 6 
depicts the effect of the dimensionless Casson fluid parameter on the 
velocity profile for both Casson and Newtonian fluids. It is observed that 
a hike in the value of enhances the velocity profiles whereas one can 
observe depreciation in the temperature profiles in Fig. 7 due to rising 
the values of for both Casson and Newtonian fluids. 

     Fig. 8 and Fig. 9 elucidate the strength of the Prandtl number and 
thermal radiation parameter on the temperature profiles, respectively. 
It reveals that the thermal boundary layer thickness is depreciate with 
increasing the values of the Prandtl number and the radiation 
parameter . From Fig. 8 and Fig. 9 one can observe that with the 
reduction of the Prandtl number and the radiation parameter the 
thermal boundary layer thickness experiences an increasing trend. 
Hence, for bigger Prandtl number the liquid has a low temperature 
conductivity, that decline the correspondent thermal boundary layer 
thickness. Thus, the heat transfer rate is increased at the surface with 
improving Prandtl number . In addition, for higher radiation parameter

the thinning of the thermal boundary thickness is occurred. Here, one 

can utilize the radiative mode of heat transfer to increase the sheet heat 
loss. Finally, Fig. 10 and Fig. 11 illustrate the influence of on the 
velocity profile and temperature profile, respectively. From Fig. 10 and 
Fig. 11 we conclude that depreciation in the values of cause reduction 
in the velocity profile and thermal boundary thickness.  
Table 1 The effect of shrinking parameter on  and . 

 
 

CMSF
 

CMSF
 

FDD 
 

FDD 
 

RK4 
 

RK4 
 

0.0 1.495673 0.346041 1.495722 0.346172 1.49567 0.34603 

0.5 1.674182 0.356415 1.674222 0.356736 1.67418 0.35641 

1.0 2.120147 0.378352 2.120137 0.379832 2.12019 0.37834 

1.5 2.703645 0.400742 2.703497 0.405899 2.70376 0.40073 

   
    The comparison of values of skin friction and heat transfer rate at the 
sheet for shrinking parameter  with the presence of magnetic field is 
given in Table 1. The wall shear stress  enhances for 

 whereas a reverse trend can be observed for 
. The influence of applied magnetic field on the wall 

shear stress   and heat transfer rate  is illustrated in Table 2.  
It can be seen from Table 2. that the values of shear stresses
increases due to increment in the values of magnetic parameter while the 
heat transfer rate from the sheet experience depreciation with increment 
in the values of . Hence, the impinging flow is assisted by the 
transverse magnetic field and decreases the horizontal and vertical flow 
reversal as depicted in Fig. 4.  Finally, in Table 3. the comparison of 
values of shear stress is described. We found from tables that the 
present results using are in an excellent agreement with that of (Lok et 
al., 2006; Wang 2008;  Ashraf and Rashid, 2012), and Runge Kutta 
method.  
Table 2 The effect of magnetic field parameter on  and .       

 CMSF 
 

CMSF 
 

FDD 
 

FDD 
 

RK4 
 

RK4 
 

0.25 1.877458 0.411450 1.877455 0.412803 1.877460 0.41144 

0.50 2.120148 0.377394 2.120114 0.378822 2.120190 0.37739 

1.00 2.429951 0.300877 2.429972 0.302334 2.429962 0.30086 

1.25 2.476297 0.256815 2.476343 0.258227 2.476281 0.25680 

1.50 2.425857 0.207058 2.425917 0.208447 2.425803 0.20704 

2.00 1.805775 0.076266 1.805761 0.076282 1.805569 0.07624 

  
following are the common errors in formatting the paper and should be 
avoided: 

6. CONCLUSIONS 
This paper considers the two-dimensional MHD stagnation point Casson 
fluid flow over a continuous moving sheet and heat transfer of an 
electrically conducting fluid towards a heated shrinking surface. The 
quasi-linearization technique is used to convert the non-linear equations 
of the model to a system of linear equations and then solved by the 
collocation method based on the spline function. The comparison of the 
present results with the numerical results previously reported and the 
effect of the emerged physical parameters on the velocity profiles and 
temperature profiles   are shown through tables and illustrative graphs. 
This work has shown that:  
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    Fig. 8 The impact of Prandtl number on the temperature profile.  
 

 
Fig. 9 The impact of radiation parameter  on the temperature profile.  
 

i. The temperature profiles depreciate with improvement in the 
values of Prandtl number and thermal radiation for Casson and 
Newtonian fluids.  

ii. An increment in the value of dimensionless Casson fluid 
parameter, shrinking parameter, and magnetic field parameter 
decline the thermal distribution while it experiences an 
improvement with increasing the value of  for both Casson 
and Newtonian fluids. 

iii.  The skin friction  improves for  while 

a reverse trend is observed for . However, the 
heat transfer rate  increases with depreciation in the 
value of the shrinking parameter. 

iv. The magnetic field considerably effects the skin friction and 
the heat transfer rate. The skin friction enhances due to 
increment in the magnetic field parameter for Casson and 
Newtonian fluids while the rate of the heat transfer depreciates 
when the value of magnetic parameter improves.  

v. Finally, we conclude that the suggested method is a good tool 
and an efficient technique to solve boundary layer problems.     

 
Fig. 10 The impact of on the velocity profile . 

 
Fig. 11 The impact of on the temperature profile . 
Table 3 Comparison of values of skin-friction for two values of .       

 CMSF FDD  RK4 Wang(2008) Lok et 
al.(2006) 

0.2 1.05113 1.05112 1.05113 1.05113 1.05129 
0.5 0.71330 0.71328 0.71329 0.71330 0.71334 

NOMENCLATURE 

       real values 

         shrinking parameter 
         horizontal coordinate 
                  vertical coordinate 
                 free stream  
                 dimensionless stream function 
               velocity components 

                Prandtl number 
                radiation parameter 
     time  
     temperature of the fluid 
                  radiative heat flux 

                magnetic parameter 

Pr
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a
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                  Stefan-Boltzmann constant 
 
Greek Symbols  
    fractional order derivative  
                 similarity variable 
                 Casson fluid parameter 

               heat conductivity  

        dimensionless temperature 
                 absorption coefficient  
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