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ABSTRACT 
In order to improve the accuracy and efficiency of wax deposition rate prediction of waxy crude oil in pipeline transportation, A GRA-IPSO-ELM 
model was established to predict wax deposition rate. Using Grey Relational Analysis (GRA) to calculate the correlation degree between various factors 
and wax deposition rate, determine the input variables of the prediction model, and establish the Extreme Learning Machine (ELM) prediction model, 
improved particle swarm optimization (IPSO) is used to optimize the parameters of ELM model. Taking the experimental data of wax deposition in 
Huachi operation area as an example, the prediction performance of the model is evaluated by modeling and simulation, and compared with other 
models. The results show that the Mean Relative Error (MRE) and the Root Mean Square Error (RMSE) of the GRA-IPSO-ELM model are 0.351% 
and 0.049 respectively. Compared with other models, the GRA-IPSO-ELM model has better prediction performance. 
Keywords: Waxy crude oil, Wax deposition rate; Grey Relational Analysis (GRA); Improved Particle Swarm Optimization (IPSO); Extreme Learning 
Machine (ELM) 

 
1.INTRODUCTION 

Crude oil pipeline transportation is the most commonly used crude oil 
transportation mode at present because of its advantages of large 
transportation capacity, economy, environmental protection and easy 
management. Most domestic crude oil has the characteristics of high pour 
point, high viscosity and high wax content. During the pipeline 
transportation of waxy crude oils, with the change of pipeline pressure 
and temperature conditions, heavy components such as wax, colloid and 
asphaltene in crude oils are easy to precipitate in solid form, and wax 
deposits are formed on the pipeline wall (Quan et al., 2015; Liu et al., 
2021). Wax deposition will reduce the effective flow area of the pipeline, 
increase the flow resistance, reduce the transportation capacity, and even 
block the pipeline in severe cases, and the pig is prone to jam and other 
faults during pigging operation (Zhang et al., 2019). In order to reduce 
the wax deposition rate, different scholars theoretically clarify the wax 
deposition mechanism of multiphase waxy crude oil, a new high 
efficiency polymer pour point depressant for waxy crude oil was 
developed in practice (Li et al., 2021; Li et al., 2021). However, some 
wax is still deposited on the pipe wall, which still needs to be removed 
mechanically by pigging operation. In order to provide theoretical 
guidance for pipeline pigging, it is very important to establish wax 
deposition model to predict wax deposition in actual pipeline. According 
to different research emphases, wax deposition prediction models can be 
divided into thermodynamic model, kinetic model and computer training 
model. Among them, thermodynamic models mostly use the theory of 
phase equilibrium and phase transition to predict the wax precipitation 
point and wax precipitation from crude oil. Common thermodynamic 
models of wax deposition include regular solution model, polymer 
solution model and equation of state model. The wax deposition kinetics 
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model is mostly based on Fick diffusion law. By analyzing the specific 
wax deposition mechanism and influencing factors in the pipeline 
transportation process, the wax deposition rate equation is established, 
and the parameters in the equation are determined by indoor simulation 
test, and finally the wax deposition kinetics model is obtained. There are 
many kinetic models about wax deposition at home and abroad, among 
which the representative models are Burger model, Hsu model, 
Hernandez model and Huang Qi-yu model. The computer training model 
trains and predicts wax deposition data through intelligent algorithm, and 
then obtains wax deposition rate. 

In recent years, with the development of computer technology, 
various models based on neural network, particle swarm optimization 
and other intelligent algorithms to simulate training and then predict wax 
deposition have been applied and popularized (Su et al., 2016). Using 
this method, there is no need to explore the specific mechanism of wax 
deposition in detail. By adopting a suitable machine learning algorithm, 
based on the input original data, the relationship between simulated wax 
deposition rate and various influencing factors is trained, and then the 
wax deposition amount in other running states is determined, thus 
predicting the wax deposition situation. Zhou S. D. et al. took the lead in 
constructing Back Propagation (BP) Neural Networks, but only 
considered the effects of dynamic viscosity of crude oil, shear stress at 
pipe wall, temperature gradient at pipe wall and wax molecular 
concentration gradient at pipe wall on wax deposition rate, which proved 
the feasibility of this method (Zhou et al., 2004). On this basis, Tian Z et 
al. comprehensively considered the effects of oil temperature, wall 
temperature, dynamic viscosity of crude oil, shear stress at pipe wall, 
flow velocity, temperature gradient at pipe wall and concentration 
gradient of wax molecule at pipe wall on wax deposition rate, a 7-10-1 
three-layer BPNN model is established to predict wax deposition rate 
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(Tian et al., 2014). However, due to the inherent defects of BPNN model, 
the prediction accuracy is relatively low. Xie and Xu established Radial 
Basis Function (RBF) Neural Network to predict wax deposition rate, 
and obtained that the relative error of this model is 1.5% (Xie and Xu, 
2016). Wang et al. established a support vector machine model to predict 
wax deposition rate, which proved that this method is effective in 
predicting wax deposition (Wang et al., 2015). Zhang Y et al. by 
comparing the wax deposition rate predicted by RBF neural network and 
support vector machine, it is concluded that the prediction accuracy of 
support vector machine model is relatively high (Zhang et al., 2021). 
Xiao R. G. et al. optimized BP neural network through whale algorithm, 
which greatly improved the prediction accuracy of wax deposition rate 
(Xiao et al., 2022). The predictive values of the prediction models 
established in the above research are consistent with the real values, but 
the machine learning algorithms such as BP neural network and support 
vector machine, have the problems of large computation and low training 
efficiency under the condition of large samples.  

Extreme learning machine is a single-layer feedforward neural 
network algorithm proposed by HUANG (Huang et al., 2006). It 
randomly selects the number of hidden layer nodes. Compared with the 
traditional machine learning method, this method has fast learning speed 
and strong generalization ability, but it also has some shortcomings. The 
weights and thresholds of randomly generated hidden layer nodes may 
lead to invalid hidden layer nodes, resulting in insufficient generalization 
ability and poor prediction effect (Zhao et al., 2022). Therefore, this 
paper proposes a wax deposition rate prediction model GRA-IPSO-ELM 
based on grey relational analysis (GRA), improved particle swarm 
optimization (IPSO) algorithm and extreme learning machine (ELM). 
Using GRA to calculate the correlation degree between various factors 
and wax deposition rate, and determine the input layer number of the 
model. IPSO algorithm is used to optimize the weight and threshold of 
ELM, and then the optimized model is used to predict wax deposition 
rate. Taking wax deposition experimental data in Huachi operation area 
as an example, the model is trained and simulated, and the prediction 
performance of the combined model is verified by index evaluation and 
model comparison. 

2. THEORETICAL BASIS  

2.1 Grey Relational Analysis (GRA) 
Grey relational analysis method is a method to measure the degree of 
correlation between factors according to the similarity or dissimilarity of 
development trends among factors (Deng. 1990). It divides the 
relationships among multiple factors in complex systems by comparing 
the geometric relationships among statistical sets. The specific steps are 
as follows: 
(1) Determine the reference sequence and the comparison sequence 

Reference series refers to the data series that reflect the behavior 
characteristics of the system, while comparison series refers to the data 
series composed of factors that affect the behavior of the system. The 
sequence of wax deposition rate is taken as reference sequence Y0, and 
the sequence of other influencing factors is comparative sequence Xi (i 
takes 1 ~ m), as shown in Formula 1. 

            (1) 
(2) Dimensionless 

In order to eliminate the influence of different units of data on the 
results, the reference series and comparison series are dimensionless. 
Among them, dimensionless includes mean value method, initial value 
method, etc. This time, the initial value method is used for dimensionless 
treatment, as shown in Formula 2. 

               (2) 
(3) Calculate grey correlation coefficient 

The difference sequence Δi(k), two-order minimum m, two-order 
maximum M and correlation coefficient γ are calculated respectively 
according to Formula 3~6. 

                 (3) 

                 (4) 

                 (5) 

                 (6) 
Where: ρ is the resolution coefficient, and the value range is (0, 1), 

usually 0.5. 
(4) Calculate grey relational degree 

The correlation degree is the average of the above grey correlation 
coefficients, as in Formula 7. 

                (7) 

2.2 Extreme Learning Machine (ELM) 
Extreme Learning Machine (ELM) is a machine learning method 
developed on the basis of feedforward neural network. The model 
consists of three layers, namely input layer, hidden layer and output layer. 
The network structure of ELM model is shown in Figure 1. In the training 
and fitting process, the ELM model will randomly generate the 
connection weights between the input layer and the hidden layer and the 
threshold of the hidden layer neurons, and the unique optimal solution 
can be obtained only by defining the number of hidden layer neurons 
without adding subjective will. Compared with the traditional neural 
network, this model has the advantages of strong generalization ability, 
fast training speed and simple parameter setting, etc. At present, it has 
been widely used in many fields and achieved good results. 

 
Fig. 1 Network structure of extreme learning machine 
 

For the prediction of wax deposition rate, it is assumed that there 
are N arbitrary samples (Xi, Yi), where: 

            (8) 
Then the output of the single hidden layer feedforward neural 

network is: 

                 (9) 
Where: K represents the number of nodes set by the hidden layer, 

g(x) is the excitation function of hidden layer, Wi=[wi,1,wi,2,wi,3,···,wi,n]T 
is the connection weight vector between the input layer and the hidden 
layer, βi=[βi,1, βi,2, βi,3,···, βi,n]T is the connection weight vector between 
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the output layer and the hidden layer, Bi is the offset value of the i-th node 
in the hidden layer neuron nodes, Wi·Xj represents the inner product of 
Wi and Xj.  

Single-layer neural network learning minimizes the output error by 
approaching the zero error of sample N, which can be expressed as: 

                 (10) 
That is, there are βi, Wi and Bi, so that: 

              (11) 
Formula 11 can be expressed by a matrix as Hβ=T. Where, H is the 

output matrix of the hidden layer, β is the output weight, and T is the 
expected output. When the hidden layer excitation function g(x) selected 
in the model is infinitely differentiable, the input weight w and hidden 
layer bias B can be initialized randomly, and the output weight β can be 
obtained by the Formula 12. 

                    (12) 
Where, H+ is the generalized inverse of Moore-Penrose of matrix H. 

2.3 Particle Swarm Optimization (PSO)  
Particle swarm optimization (PSO) is an optimization algorithm 
proposed by KENNEDY et al. in 1995(Kennedy and Eberhart. 1995). 
The core idea of this algorithm comes from the study of bird predation 
behavior. After continuous exploration and improvement in the later 
period, it has become a very important part in the field of intelligent 
algorithms. Each particle represents a possible solution vector. The 
quality of the particle is judged according to the fitness function value. 
By learning from the global and individual optimal solutions, the particle 
position and speed are continuously updated, and finally the purpose of 
global optimization is realized. 

Assuming that there is a particle population of size n in the D-
dimensional search space, the position and velocity of each particle are 
updated according to the following formula: 

 (13) 

               (14) 
Where: t is the number of iterations, Pid(t) is the individual optimal 

solution of the particle for the t-th iteration, Pgd(t) is the global optimal 
solution of the particle for the t-th iteration, w is inertia weight, c1 and c2 
are learning factors, r1 and r2 are uniformly distributed random numbers 
between [0 1]. 

2.4 Improved Particle Swarm Optimization (IPSO) 
Aiming at the shortcomings of standard particle swarm optimization 
algorithm in high-dimensional multi-objective function, such as easy to 
fall into local optimal trap, low search accuracy and easy to cause 
premature phenomenon (Chen and Zou. 2022), an improved optimized 
particle swarm optimization algorithm is proposed. 

Firstly, asynchronous learning factor is introduced. The 
researchshows that giving a large value of C1 and a small value of C2 at 
the initial iteration of standard particle swarm optimization can make the 
"population" tend to learn by itself, which is beneficial to improve the 
global search ability of the algorithm; In the later iteration process, 
keeping C1 decreasing linearly and C2 increasing linearly can effectively 
avoid the population individual falling into the local optimal range and 
greatly improve the convergence speed of the algorithm(Teng et al., 
2017). In this paper, asynchronous learning factor is introduced and 
defined as follows: 

            (15) 

             (16) 
Where: Cstart1 and Ccend1 represent the initial and final values of self-

learning factors, which are taken as 2.5 and 0.75 respectively in this paper, 
Cstart2 and Ccend2 represent the initial and final values of social learning 
factors, which are taken as 0.5 and 2.25 respectively in this paper, T is 
the maximum number of iterations; t is the current number of iterations. 

Adaptive inertia weight is introduced. In the standard particle 
swarm optimization algorithm, because the inertia weight affects the 
current velocity, the constant inertia weight is not conducive to the 
optimization ability of particle swarm optimization, and may lead to the 
local optimal trap in the process of particle search, which may lead to 
premature convergence. Excessive inertia weight is beneficial to improve 
the global search ability of the algorithm; However, when the inertia 
weight is small, it is beneficial to improve the local search ability of the 
algorithm. 

In this paper, the new inertia weight of nonlinear change is used for 
reference proposed by Chen (Chen and Zou. 2022). The scheme has a 
good balance between global search ability and local search ability. The 
larger inertia coefficient in the early stage is beneficial to search the 
global optimal solution, the turning transformation of inertia coefficient 
in the middle stage expands the search range, and the smaller inertia 
coefficient in the later stage is beneficial to search the local optimal 
solution. The inertia weight is updated according to the following 
formula. 

     (17) 
Where: wmax is the maximum inertia weight, which is 0.8 in this 

paper, wmin is the minimum inertia weight, and this paper takes 0, T is the 
maximum number of iterations; t is the current number of iterations. 

3. MODEL BUILDING AND VALIDATION  

3.1 Model Building Process 
Because the number of input nodes in the ELM model will affect the 
complexity of the network structure, the input weights and hidden layer 
thresholds are randomly generated, which will lead to the instability of 
the ELM network performance and the inability to guarantee the 
prediction accuracy. In order to solve the above problems, grey relational 
analysis is used to calculate the relational degree between various factors 
and wax deposition rate, and the number of input layers of ELM model 
is determined. The IPSO algorithm was used to optimize the initial 
weights and thresholds of the ELM model, and IPSO-ELM models for 
predicting wax deposition rate of waxy crude oil are constructed. The 
specific model construction process is shown in Figure 2. 

The steps of improving particle swarm optimization (IPSO) 
algorithm to optimize extreme learning machine are as follows: 

Step1: Establish a data set according to the wax deposition 
experimental data in Huachi operation area, randomly sample 80% of the 
data set data as the training set of IPSO algorithm to optimize ELM 
model, and the remaining 20% as the test set of IPSO algorithm to 
optimize ELM model; 

Step2: Given the initial parameters of the improved particle swarm 
optimization, the iteration times, the population size, the specified 
position and velocity constraint range, the problem dimension, the 
adaptive inertia weight value range, and the initial and final values of the 
learning factor; 

Step3: Random initial particle position and velocity, calculate the 
fitness value of each particle according to the objective function, and 
initialize the individual optimal value and global optimal value of 
population particles; 
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Step4: Using the optimized velocity and position update formula, 
the particle velocity and position are updated through iterative 
optimization; 

Step5: Judge the constraint conditions and calculate the fitness of 
each individual position of the new population, calculate the individual 
optimal value obtained each time through iterative updating of the 
position, compare with the historical individual optimal value, select the 
optimal value as the individual optimal value, update it to the global 
optimal solution, and update the global optimal value asynchronously 
with the continuous iteration of particles; 

Step6: Judge whether the algorithm termination condition is met 
through the given maximum iteration times constraint. If the termination 
condition is not met, go to Step4 to continue execution, and calculate the 
global optimal solution within the specified iteration times. 

3.2 Model Validation Indicators 
In order to verify the prediction effect of the model, the Mean Relative 
Error (MRE), Root Mean Square Error (RMSE) and Coefficient of 
determination (R2) are selected as evaluation indexes. Among them, the 
smaller the MRE, the smaller the RMSE and the larger the R2, the higher 

the fitting degree of the model. The specific calculation formula is shown 
in Formula 17-19 (Ling et al., 2021). 

             (17) 

             (18) 

        (19) 

Where: yi is the actual value of wax deposition rate, is the 
predicted value of wax deposition rate, N is the total number of test 
samples. 

 

Fig. 2 IPSO-ELM algorithm flow 

4. EXAMPLE APPLICATION 

4.1 Data preparation
There are many factors affecting wax deposition rate, and there is a 

very complex nonlinear relationship among these factors. Through the 
wax deposition experiment in Huachi operation area, the wax deposition 
rate X8 under different oil temperature X1, wall temperature X2, crude oil 
viscosity X3, shear stress at pipe wall X4, flow velocity X5, temperature 
gradient at pipe wall X6 and wax molecular concentration gradient at pipe 
wall X7 was obtained. The specific wax deposition experimental data are 
shown in Table 1 (Wang. 2010). In the training process of sample data, 
the dimensions of input variables and output variables are not the same, 
it is necessary to normalize the sample data before training. The variables 
are converted to numbers between [0, 1] by Formula 20. 

                  (20) 
Where: xi

* represents the sample data after processing, xi represents 
the data before processing. 
4.2 Grey Relational Analysis and Processing 

Using the grey relational analysis method, the grey relational 
analysis of each influencing factor is carried out, and the relational degree 
between each influencing factor and wax deposition rate is shown in 
Table 2. It can be seen from Table 2 that various influencing factors have 
different influences on wax deposition rate. The relational degree is 
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arranged in order of size, and the results are as follows: crude oil 
viscosity > wax molecular concentration gradient at pipe wall > oil 
temperature > wall temperature > shear stress at pipe wall > temperature 
gradient at pipe wall > flow velocity. In this paper, the relational degree 
of 7 factors to wax deposition rate is greater than 0.6945. Except for 4 
factors (shear stress at pipe wall, temperature gradient at pipe wall, wax 
crystal solubility coefficient at pipe wall and crude oil viscosity), the 
other 3 factors (wall temperature, oil temperature and flow velocity) can 
not be ignored. Therefore, the seven factors should be used as the input 
of ELM model, that is, the number of input layers of ELM model is 7. 
Table 2 Grey relational degree between each influencing factor and wax 
deposition rate 

Variable Grey relational degree 
X1 0.7663 
X2 0.7622 
X3 0.8655 
X4 0.7537 
X5 0.6945 
X6 0.6946 
X7 0.8101 

4.3 Result Analysis and Model Comparison 
Randomly select training set and test set from 38 groups of original data, 
among which 30 groups of training set data and 8 groups of test set data 
are substituted into ELM model for training according to the steps set 
above. The number of hidden layer nodes is optimized by trial-and-error 
method. When the initial number of hidden layer nodes is 30, the mean 
square error of the model is the smallest. Therefore, the number of nodes 
in the hidden layer of the extreme learning machine is determined to be 
30, and the network structure of the extreme learning machine is 
determined to be 7-30-1. 

In order to compare the effectiveness and efficiency of each 
algorithm model, ELM, PSO-ELM and IPSO-ELM algorithm models are 
selected for comparison. In this example, the mathematical models are 
solved and analyzed by Matlab 2020a software under the conditions of 
AMD Ryzen 7 4800U CPU @ 1.80 GHz, memory 16.0 GB and windows 
10 operating system. Among them, the parameters of PSO algorithm are 
set as follows: the maximum iteration times is 150 times, the population 
size is 30; learning factors C1 and C2 are all 1.5. The learning factor C1 
of IPSO is calculated by Formula 15, the learning factor C2 of IPSO is 
calculated by Formula 16; The inertia weight W of IPSO is calculated by 
Formula 17, and other parameters are unchanged. The mean square error 
of each iteration is recorded and compared by drawing. As can be seen 
from Figure 3, compared with PSO-ELM model, IPSO-ELM model has 
more ideal optimization effect. 

 
Fig. 3 Iterating 150 times for different models 
 

In order to test the prediction accuracy of IPSO-ELM model, GA-
ELM, PSO-ELM and ELM are selected to compare with them. The 

results are shown in Figure 4 and Table 3. As can be seen from Figure 4, 
compared with ELM model, the difference between the predicted values 
and the actual values of GA-ELM, PSO-ELM and IPSO-ELM models is 
smaller, and the fitting effect is better. The mean relative error (MRE) of 
ELM, GA-ELM, PSO-ELM and IPSO-ELM are 5.164%, 3.765%, 0.544% 
and 0.351%, respectively. The MRE of IPSO-ELM are lower than those 
of other models, indicating that the prediction accuracy of this model is 
the highest. 

In order to evaluate the prediction performance of the model, the 
three statistical indicators mentioned above are used to evaluate the 
model, and the analysis results are shown in Table 4. From the mean 
relative error (MRE) index, IPSO-ELM decreased by 3.414%, 0.193% 
and 4.813% compared with GA-ELM, PSO-ELM and ELM respectively. 
From the Root Mean Square Error (RMSE), IPSO-ELM decreased by 
0.425, 0.008 and 0.842 compared with GA-ELM, PSO-ELM and ELM, 
respectively. And the determination coefficient (R2) of IPSO-ELM is 
0.99985, which is closest to 1, indicating that the fitting degree of IPSO-
ELM model is high and the prediction effect is good. 

 

 
Fig. 4 Comparison of relative errors 
 
Table 4 Comparison of model performance indicators 

Model MRE/% RMSE R2 
ELM 5.164 0.891 0.96444 

GA-ELM 3.765 0.474 0.98940 
PSO-ELM 0.544 0.057 0.99976 
IPSO-ELM 0.351 0.049 0.99985 

In order to further explore the stability of PSO and IPSO optimized 
ELM models, PSO-ELM model and IPSO-ELM model were used to 
predict wax deposition rate for 10 times, and the Mean Relative Error of 
each prediction result is shown in Table 5. It can be seen from Table 5 
that in the 10 prediction results, the Mean Relative Error varies in 
different degrees, and there is no obvious law. The Mean Relative Error 
of PSO-ELM model is approximately in the range of 0.5% ~ 0.6%, while 
that of IPSO-ELM model is approximately in the range of 0.2% ~ 0.4%, 
which indicates that PSO and IPSO optimized ELM model have good 
stability. 
Table 5 The Mean Relative Error of the 10 prediction results 
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1 0.620 0.119 6 0.506 0.188 
2 0.506 0.352 7 0.544 0.381 
3 0.544 0.318 8 0.650 0.119 
4 0.650 0.429 9 0.514 0.352 
5 0.620 0.354 10 0.521 0.318 
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5. CONCLUSIONS 
1) By using the grey relational analysis method, it is proved that the seven 
factors mentioned in this paper all have important influence on wax 
deposition rate. Therefore, when applying ELM model to predict wax 
deposition rate, it should be used as training dimension to predict wax 
deposition rate. 

2) Through training and forecasting the wax deposition 
experimental data in Huachi operation area, the Mean Relative Error 
(MRE) and Root Mean Square Error (RMSE) of GRA-PSO-ELM model 

for predicting wax deposition rate are 0.351% and 0.049, which proves 
that GRA-IPSO-ELM model has high reliability and good prediction 
performance, and can provide decision support for the flow guarantee of 
waxy crude oil in pipeline transportation. 

3) Using PSO-ELM model and IPSO-ELM to predict wax 
deposition rate for 10 times, the Mean Relative Error of PSO-ELM model 
to predict wax deposition rate is roughly in the range of 0.5% ~ 0.6%, the 
Mean Relative Error of IPSO-ELM model is roughly in the range of 0.2% 
~ 0.4%, indicating that PSO-ELM and IPSO-ELM models have good 
stability.  

Table 1 Experimental results of crude oil wax deposition rate in Huachi operation area 
number X1 /℃ X2 /℃ X3 /(mPa.s) X4 /Pa X5 /(m.s-1) X6 /(℃.mm-1) X7 /(10-3·℃-1) X8 /(g·m-2·h-1) 

1 33 30 29.31 5.69 0.29 2.24 2.62 11.90 
2 35 32 25.84 1.51 0.09 1.23 2.10 11.63 
3 35 32 25.66 2.5 0.15 1.64 2.10 10.91 
4 35 32 25.49 4.96 0.29 2.24 2.10 10.13 
5 35 32 25.40 7.42 0.44 2.6 2.10 9.75 
6 35 32 25.35 9.87 0.58 2.87 2.10 9.50 
7 35 32 25.3 14.78 0.88 3.23 2.10 9.19 
8 37 34 22.34 4.36 0.29 2.24 1.52 7.51 
9 38 35 20.97 4.1 0.29 2.24 1.16 6.54 
10 40 37 18.79 1.1 0.09 1.23 0.63 6.40 
11 40 37 18.67 1.83 0.15 1.64 0.63 6.00 
12 40 37 18.56 3.64 0.29 2.24 0.63 5.57 
13 40 37 18.51 5.44 0.44 2.60 0.63 5.36 
14 40 37 18.48 7.24 0.59 2.87 0.63 5.22 
15 40 37 18.44 10.84 0.88 3.23 0.63 5.05 
16 44 41 14.81 2.91 0.30 2.24 0.34 6.20 
17 45 42 14.04 2.76 0.30 2.24 0.34 6.77 
18 46 43 13.33 2.63 0.30 2.24 0.37 7.20 
19 48 45 12.05 2.38 0.30 2.24 0.46 7.11 
20 49 46 11.47 2.27 0.30 2.24 0.52 5.95 
21 35 30 25.72 5.01 0.29 3.72 2.62 15.96 
22 37 32 23.03 1.35 0.09 2.08 2.10 14.42 
23 37 32 22.77 2.22 0.15 2.75 2.10 13.54 
24 37 32 22.53 4.40 0.29 3.72 2.10 12.59 
25 37 32 22.41 6.56 0.44 4.33 2.10 12.11 
26 37 32 22.35 8.72 0.59 4.76 2.10 11.81 
27 37 32 22.28 13.04 0.88 5.35 2.10 11.42 
28 40 35 18.71 3.66 0.29 3.72 0.88 9.60 
29 42 37 16.98 1.00 0.09 2.08 0.51 9.92 
30 42 37 16.82 1.65 0.15 2.75 0.51 9.31 
31 42 37 16.66 3.27 0.29 3.72 0.51 8.66 
32 42 37 16.58 4.88 0.44 4.33 0.51 8.33 
33 42 37 16.54 6.49 0.59 4.76 0.51 8.12 
34 42 37 16.50 9.71 0.88 5.35 0.51 7.86 
35 37 30 22.72 4.43 0.29 4.73 2.62 18.09 
36 42 35 16.78 3.29 0.29 7.44 0.77 11.30 
37 40 30 19.09 3.74 0.29 7.44 1.93 22.46 
38 45 35 14.39 2.83 0.30 7.44 0.64 16.43 
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Table 3 Analysis of relative error results 

NOMENCLATURE 
X1—Oil temperature, /℃ 
X2—Wall temperature, /℃ 
X3—Dynamic viscosity, /(mPa.s) 
X4—Shear stress at pipe wall, /Pa 
X5—Flow velocity, /(m.s-1) 
X6—Temperature gradient at pipe wall, /(℃.mm-1) 
X7—Wax molecular concentration gradient at pipe wall, /(10-3·℃-1) 
X8—Wax deposition rate, /(g·m-2·h-1) 
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