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ABSTRACT 
The aim is to study the asymptotic behavior of the temperature field for the laminar forced convection of a Herschel-Bulkley fluid flowing in a circular 
duct considering both viscous dissipation and axial heat conduction. The asymptotic bulk and mixing Nusselt numbers and the asymptotic bulk and 
mixing temperature distribution are evaluated analytically in the cases of uniform wall temperature and convection with an external isothermal fluid. 
In particular, it has been proved that the fully developed value of Nusselt number for convective boundary conditions is independent of the Biot number 
and is equal to the value of fully developed Nusselt number for uniform wall temperature. The analytical results obtained in the fairly general case of 
Herschel-Bulkley fluid, which considers both the existence of a yield shear-stress as well as a variable viscosity as a function of shear, are compared 
with solutions available for the simpler cases of Newtonian fluid and some non-Newtonian fluids with viscous dissipation and/or axial heat conduction 
taken into account. 
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1. INTRODUCTION 
The main goal of this study is to characterize the heat transfer in the 
case of flow in a cylindrical pipe of fluids whose rheological behavior 
can be modeled by Herschel-Bulkley law and by considering both the 
viscous dissipation and the axial heat conduction and this with 
boundary conditions fixing either a constant temperature at the wall or 
the value of an exchange coefficient with an external fluid. This type 
of behavior, which includes the effect of yield stress, corresponds in 
practice, to an important class of products treated by foods, 
pharmaceutical, cosmetics, polymers and chemical processing 
industries (Coussot 2014, Vijaya et al. 2020, Revathi et al. 2020 and 
2021). These products require various heat treatments (heating, 
cooling) during their processing or their use. The heat treatment often 
involves heat exchangers with fluid dependent design. The situation 
considered in this work is that of a laminar flow in horizontal pipe for 
boundary conditions cases of uniform wall temperature or for a wall 
heat exchanges by convection with an external fluid for a constant 
exchange coefficient ℎ!. This type of geometry corresponds to shell 
and tube heat exchangers, which makes it very useful. 

The problem of heat transfer in cylindrical ducts in case for 
Newtonian or non-Newtonian fluids has been the subject of abundant 
literature (see Khatyr and Khalid Naciri 2020). For Newtonian fluids, 
the cases of constant temperature at the wall or convection with an 
external fluid with a constant exchange coefficient ℎ! have been widely 
studied for various situations with or without viscous dissipation and 
with or without axial heat conduction, a review is presented by 
(Goldstein et al. 2003). Magyari and Barletta (2007) solved the 

 
* Corresponding author. Email: khatyrrabha@gmail.com  

governing equations analytically by using power series method for 
laminar forced convection flow of a liquid in the fully developed region 
of a circular duct with isothermal wall and variable viscosity. Kundu et 
al. (2011) used the Integral Ritz and Variational methods of 
approximate analytical techniques to obtain a solution for the fully 
developed laminar Newtonian fluid flow through rectangular channels 
with constant wall temperature. The Nusselt numbers obtained by 
different approximate methods are shown as a function of aspect ratio. 
Astaraki et al. (2013) present an analytical solution for fully developed 
laminar forced convection of Newtonian fluid flowing in a circular duct 
while neglecting both axial heat conduction and viscous dissipation. 
The duct walls have a finite width, and the external wall temperature is 
a sinusoidal function of axial direction. They found that the mean 
Nusselt number is an increasing monotonic function of Peclet number 
and a dimensionless frequency. 

For non-Newtonian fluids, the effect of viscous dissipation is 
investigated by Sayed-Ahmed (2000), Sayed-Ahmed and Kishk 
(2008), Mondal and Mukherjee (2012), Labsi and Benkahla (2016) 
Chaudhuri and Das (2018), Kiyasatfar and Pourmahmoud (2016) and 
Kamisli (2020). Sayed-Ahmed (2000) and Sayed-Ahmed and Kishk 
(2008) presented a numerical solution for laminar heat transfer of 
Herschel-Bulkley fluids in the thermal entrance region of a square 
section pipe, assuming the velocity profile established, and by 
considering the cases of isothermal wall or constant wall heat flux. 
Mondal and Mukherjee (2012) studied analytically the effect of viscous 
dissipation on the heat transfer for a shear driven flow for varying 
degree of asymmetry in the wall heating. Labsi and Benkahla (2016) 
studied numerically the effect of viscous dissipation on the Herschel-
Bulkley fluid with constant physical and rheological properties, flow 
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within a pipe of circular cross section, submitted at constant wall 
temperature. They found that heat transfer is significantly 
underestimated, when viscous dissipation is neglected, particularly for 
shear-thinning fluids and for high values of the Hershel-Bulkley 
number. Chaudhuri and Das (2018) give a semi-analytical solution of 
the heat transfer including viscous dissipation in the steady flow of a 
Sisko fluid in cylindrical tubes for constant wall heat flux (heating or 
cooling) cases. They concluded, in the case of heating, heat transfer 
coefficient (𝑁𝑢) decreases with the increase in Brinkman number, but 
for cooling, 𝑁𝑢 increases asymptotically with the increase in the 
Brinkman number. 

Kiyasatfar and Pourmahmoud (2016) studied convective heat 
transfer for fully developed flows of conducting power-law fluids in 
square microchannels with presence of transverse magnetic field 
considering effects of viscous dissipation and joule heating. They 
found that the effect of Joule heating parameter on Nusselt number is 
significantly affected by Brinkman number. Kamisli (2020) analyzed 
the fully developed Herschel-Bulkley fluid flow in planar and circular 
microducts with constant heat flux considering slip boundary condition 
and including viscous dissipation. It showed that, at larger value of the 
Brinkman number and the flow behavior index (n), the influences of 
viscous dissipation and slip coefficient on irreversibility distribution 
ratio, entropy generation and Nusselt number are significant. 
Consequently, they should be considered for the designing of 
microfluidic heat exchangers when non-Newtonian fluids are used. 

Alves et al. (2015) using a semi-analytical method, (Cruz et al. 
2012, Baptista et al. 2014), calculated the values of heat transfer 
coefficients for laminar flow of non-Newtonian fluids (Herschel-
Bulkley, Bingham, Casson, Carreau-Yasuda) in pipes with constant 
wall temperature while neglecting axial heat conduction. Comparing 
with accurate numerical results, the estimated errors are below 7,4	% 
for Herschel-Bulkly fluids (𝑛 ≤ 1,5), and 3,5	% for the cases 
analyzed. Mendes et al. (2018) used the same method in the case of 
fully developed flow between parallel plates subject to constant wall 
heat flux and constant temperature. The error was found to be small, 
below 3,4%, except for the fluids with yield stress for which the 
maximum error increased to 8,4 % for the cases analyzed. 

More Recently, Coelho and Poole (2021) analyzed analytically 
the effect of viscous dissipation on the heat transfer in laminar fully 
developed flow of a Herschel-Bulkley fluid between parallel plates in 
the cases constant and asymmetric wall heat fluxes. They show that the 
effect of variables power-law index and stress ratio on the Nusselt 
number is greater as the Brinkman number decreases. 

The boundary condition of convective heat transfer with an 
external fluid is analyzed analytically by Lin et al. (1983) for 
Newtonian fluid and experimentally and numerically by Javaherdeh 
and Devienne (1999) for Herschel-Bulkley fluids. Lin et al. (1983) 
used the eigenfunction series expansion technique to determine the 
effect of viscous dissipation on thermal entrance heat transfer in 
laminar pipe flows. They showed that the effects of viscous dissipation 
for convective boundary condition are similar to those for uniform wall 
boundary condition for large outside Nusselt number (𝑁𝑢" = 𝑈𝑅/𝑘, 
with 𝑈 is the outside heat transfer coefficient, 𝑅 the pipe radius and 𝑘 
is the thermal conductivity of the fluid in pipe). Javaherdeh and 
Devienne (1999) studied the heat transfer for Herschel-Bulkley fluids 
with thermally depending consistency flowing in a horizontal 
cylindrical duct submitted to a wall cooling by an external counter 
current flow with constant exchange coefficient ℎ!. They concluded, 
for the tested fluids, that the thermodependence of the apparent 
viscosity only slightly modifies the temperature field. However, one 
can observe a measurable deformation of the dynamic field linked to 
an increase in consistency near the cold wall. 

The case of exchange by convection with an external isothermal 
fluid has not yet been analyzed analytically. However, note that this 
case is a special case of variable flux at the wall. The interest of the 
analytical solution is given by Letelier et al. (2017) “Given the 

difficulties still plaguing numerical methods to determine the flow and 
thermal fields of non-Newtonian fluids analytical solutions provide 
valuable guidance to the behavior of complex fluids.” 

In this context, the solution presented in this paper is, to the best 
of our knowledge, an original analytical solution of the fully developed 
forced convection of Herschel-Bulkley fluid flowing in circular duct 
with boundary conditions fixing either a constant temperature at the 
wall or the value of an exchange coefficient with an external fluid and 
by taking into account viscous dissipation and axial heat conduction. It 
will be shown that the values of 𝑁𝑢#∗  and 𝑁𝑢# obtained in previous 
work (Khatyr and Khalid Naciri 2020), for particular values of 𝐵𝑟#, 
coincide with those obtained when the wall temperature is constant or 
with those obtained when the wall exchanges heat by convection with 
an external fluid. 

The organization of this article is as follows: section two is 
devoted to the mathematical analysis. The third section presents the 
results in the cases uniform wall temperature and convective boundary 
conditions. 

2. ANALYSIS 
Let us consider a Herschel-Bulkley fluid of constant physical 
properties flowing in a circular duct of radius 𝑟", submitted to a uniform 
temperature or to heat exchanges by convection with an external 
isothermal fluid. The flow is supposed to be steady, laminar, fully 
developed and axisymmetric. 

The fully developed velocity profile for a laminar pipe flow of a 
Herschel-Bulkley fluid is given as follows (Nouar et al. 1994) 
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is the dimensionless radius of the plug flow region (with 0 ≤ 𝑎 ≤ 1), 
𝜏, the yield shear stress, 𝜏3 the wall shear stress, 𝑟 the radial 
coordinate, 𝑟, the yield radius and 𝑢* the mean velocity value. 

The energy equation is given by (Bejan 1984, Nouar et al. 1995) 
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            (2) 

where 𝜌, 𝜆, 𝐾 and 𝑐4 are the density of fluid, thermal conductivity, the 
consistency index, and the specific heat at constant pressure, 
respectively and 𝑥 is the axial coordinate. 

It should be noted that in Eq. (2), viscous dissipation only occurs 
in the part	𝑟, ≤ 𝑟 ≤ 𝑟" for which the radial velocity gradient is non-
zero. However, this equation remains valid throughout the section as 
far as for 0 ≤ 𝑟 < 𝑟, the velocity gradient is zero and therefore the 
dissipation term vanishes. 

The boundary conditions associated to Eq. (2) of course relates 
to the values of temperature imposed on the walls or for the heat 
exchange coefficient with the external fluid, but they must also specify 
the thermally established flow situation to be considered, which is not 
obvious for the considered cases. 

Note that the condition that leads to an asymptotic thermally 
developed region in the case of the forced convection problem 
considered above is defined (Bejan 1984, Barletta and Zanchini 1995) 
as follow 
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where 𝑇3(𝑥), 𝑇>(𝑥) and 𝑇*(𝑥) are the wall temperature, the bulk 
temperature and the mixing temperature, respectively,                         
𝑃𝑒 = 2𝑟"𝑢*𝜌𝑐4/𝜆 is the Peclet number, Θ#(𝑟/𝑟") and Θ#∗ (𝑟/𝑟") are 
the asymptotic dimensionless temperature which are continuous and 
differentiable functions of r. 

The bulk value of temperature field is defined as 

𝑇>(𝑥) =
/

%!2#$
∫ 𝑇(𝑟, 𝑥)𝑢(𝑟)𝑟𝑑𝑟2#
"               (5) 

The mixing value of temperature field is defined as 

𝑇*(𝑥) =
/
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where α is the thermal diffusivity of the fluid. 
Thus, the boundary conditions can be fixed by giving the values 

of temperature or coefficient of exchanges at the wall to which one 
adds the relations (3) and (4).  

In addition, if condition (3) and (4) holds, the asymptotic values 
of the Nusselt number Nu# and Nu#∗  exists (Bejan 1984, Barletta and 
Zanchini 1995) and are given by 
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Introducing the dimensionless quantities (Barletta 1997) 
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Eq. (2) can be rewritten in the dimensionless form 
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Integrating Eq. (10) over the interval 0 ≤ 𝑅 ≤ 1 and by using the 
condition at 𝑅 = 0 D5E

5DQDB"
= 0F yields 
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where 𝜃*(𝑋) is the mixing value of the dimensionless temperature 
𝜃(𝑅, 𝑋) and 𝐵𝑟(𝑋) is a local Brinkman number defined as 

𝐵𝑟(𝑋) = C%!-./

(/2#)-J&(G)
             (12) 

with 𝑞3(𝑋) is the wall heat flux given by, when taking into account 
Eq. (9) 

𝑞3(𝑋) = 𝜆 56
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            (13) 

Finally, Eqs. (10), (11) and (13) are used in the following to 
determine analytically the asymptotic temperature field while Eqs. (7) 
and (8) enables to evaluate values of the asymptotic Nusselt numbers 
𝑁𝑢# and 𝑁𝑢#∗  in both cases of uniform wall temperature and 
convection with an external isothermal fluid. 

3. THERMAL ASYMPTOTIC BEHAVIOR 
In this section, the behavior of the established laminar forced 
convection is determined, for both cases of uniform wall temperature 
𝑇3 = 𝑐𝑡𝑒 and of convection, through the pipe wall, with external fluid 
at a reference temperature 𝑇K and a constant convection coefficient ℎ!. 

3.1 Case of Constant Wall Temperature 
To evaluate the asymptotic bulk and mixing temperature distribution 
(Θ#, Θ#∗ ) and the asymptotic bulk and mixing Nusselt numbers    
(Nu#, Nu#∗ ) in the case of uniform wall temperature 𝑇3 = 𝑐𝑡𝑒 we 
express, by taking into account Eq. (8), the wall heat flux 𝑞3 in the 
fully developed region as follow 

𝑞3 = 𝜆 56
52Q2B2#

= 8LM∗

/2#
(𝑇3 − 𝑇*)            (14a) 

By inserting Eq. (9) into Eq. (14a) we obtain 
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By substituting the Eq. (12) in the Eq. (11) we have 
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Using Eq. (14b), the Eq. (15) becomes 
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In the case of constant wall temperature 𝜃3 = 𝑐𝑡𝑒, we can express the 
Eq. (16) in the following form 

9(E&'E!)
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           (17) 

For a fully developed temperature field Nu∗ = Nu#∗ , and by integration 
of the Eq. (17) we obtain 

𝜃3 − 𝜃*(X) = C) 𝑒𝑥𝑝(−4Nu#∗ 𝑋) −
/

LM+∗
)

()'()-./
D*+)

&
F
:

           (18) 

Where C) is an integration constant, determined by setting 𝑋 = 𝐿K9 in 
Eq. (18) such as 

C) = 𝜃3 − 𝜃*h𝑋 = 𝐿K9i +
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where 𝑋 = 𝐿K9 is any given position for which the value of the 
dimensionless mixing temperature is known and where the thermally 
established flow hypothesis can be assumed to be valid. Generally, 𝐿K9 
could be defined as a section where a matching is made between the 
solution at the end of the thermal entry region and that at the beginning 
of the thermally established flow zone (Hsu 1971). 
Hence the Eq. (18) is written 
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Substituting Eq. (20) into Eq. (14b), 𝑞3 is expressed in the fully 
developed region by 
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Taking into account Eq. (19), Eq. (12) is written 
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It is easily checked that the condition lim
G→+#

𝐵𝑟(𝑋) = 𝐵𝑟# (See Khatyr 
and Khalid Naciri in 2020) is satisfied with the non-vanishing values 
of 𝐵𝑟# such as 
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However, Θ#∗ (𝑅), Θ#(𝑅), 𝑁𝑢#∗  and 𝑁𝑢# are given by Khatyr and 
Khalid Naciri 2020, with 𝐵𝑟# expressed by the Eq. (23) 
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where 𝑓(1) is the expression of 𝑓(𝑅) at the wall 𝑅 = 1 obtained 
analytically and given in Appendix. 

3.2 Case of Convective Boundary Conditions 
In this case, the boundary conditions relate to heat exchange through 
the duct wall with an external fluid which is at a constant temperature 
𝑇K, and with a uniform convection coefficient ℎ!. This situation is in 
fact a special case of the general category of flows with spatially 
variable wall heat flux, but with the constraint that the heat exchange 
coefficient remains constant and that the temperature of the external 
fluid is kept constant. 
Introducing the Biot number, 𝐵𝑖 = Z;2#

8
, the wall heat flux is expressed 

as 

𝑞3 =
8H[
2#
h𝑇K − 𝑇3i              (27) 

By using Eq. (9), the Eq. (27) yields 
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Similarly, the Eq. (14-b) gives  
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The substitution of the Eq. (29) in the Eq. (28) gives 
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Taking into account Eqs. (12) and (30), the Brinkman number is given 
by 

𝐵𝑟(𝑋) = LM∗+/H[
/-LM∗H[QE2'E!S

             (31) 

By inserting the Eq. (31) into the Eq. (11) we have 
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But we have a uniform reference temperature, 𝜃K, so we can write  
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For a fully developed temperature field Nu∗ = Nu#∗ , and by integration 
of the Eq. (33) we obtain 
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Where C/ is an integration constant, determined by replacing 𝑋 = 𝐿K9 
in Eq. (34) such as 
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with 𝐿K9 is the duct length from the point of duct heating (𝑋 = 0) at 
which the temperature profile first becomes fully developed (see Shah 
and London 1978). 
Inserting the Eq. (35) into the Eq. (34) makes it possible to write 
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Substituting Eq. (36) into Eq. (30), 𝑞3 is expressed in the fully 
developed region by 

𝑞3 =
C%!-./

2#-
j LM+∗

LM+∗ +/H[
𝐵𝑖 N𝜃K − 𝜃*h𝐿K9i +

)
()'()-./

LM+∗ +/H[
LM+∗ H[

D*+)
&
F
:
O 𝑒𝑥𝑝 D− ILM+∗ H[

LM+∗ +/H[
𝑋F −

)
()'()-./

D*+)
&
F
:
k             (37) 

By employing Eqs. (37) and (12), one obtains 

𝐵𝑟(𝑋) = C%!-./

(/2#)-J&(G)
=

)

/-O 45+∗

45+∗ .$=>H[PE2'E!QR23S+
/

(/17)-./
45+∗ .$=>
45+∗ => T

!./
9 U

-
V !74\' <45+∗ =>

45+∗ .$=>G]'
/

(/17)-./T
!./
9 U

-
W
 

               (38) 

For large values of X, it is easy to check that 𝐵𝑟(𝑋) given by Eq. 
(38) is reduced to that given by Eq. (23) as in the case 𝑇3 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 
Consequently, Θ#∗ (𝑅), Θ#(𝑅), 𝑁𝑢#∗  and 𝑁𝑢# will be expressed 
respectively by Eqs. (24), (25) and (26) and do not depend on the value 
of 𝐵𝑖. This can be interpreted as convective boundary condition with 
𝐵𝑖 tends to infinity. By taking into account of Eq. (12), the Eq. (38) 
ensures that, when 𝐵𝑖 → ∞, the wall heat flux is a finite value. 
Therefore, on account of Eq. (27), 𝑇3 must tend to 𝑇K. 

3.3 Results and Discussion 

In the Newtonian fluid case (𝑎 = 0 and 𝑛 = 1), with uniform wall 
temperature or convection with an external isothermal fluid and if 
viscous dissipation is taken into account, one finds Nu# = 48/5 = 9.6 
for every nonzero value of the Brinkman number. This value coincides 
with the result reported in the literature (Lin et al. 1983). Let us recall 
that in the usual case of the Newtonian flow in a pipe with a circular 
cross-section, the Nusselt number Nu# = 3.665 when both the axial 
conduction and the viscous dissipation are neglected and that this 
number varies slightly when the axial conduction is considered, while 
the dissipation viscous is neglected. 

For the case of power-law fluid (𝑎 = 0) and while axial 
conduction is neglected, Table 1 represents the values of Nu# for 
different values of 𝑛 = 1/3, 1/2 (pseudoplastic fluids), 𝑛 = 1 
(Newtonian fluids) and 𝑛 = 3/2, 3 (dilatant fluids). This table shows 
that the obtained results are in agreement with those of Barletta (1997) 
and Jambal et al. (2005). Note that the axial heat conduction is 
neglected in the results of Barletta (1997) but taken into account for 
those of Jambal et al. (2005). Our results consider both the viscous 
dissipation and the axial heat conduction. 

These results show that the asymptotic Nusselt number is nearly 
independent of the Peclet number 𝑃𝑒. The inference is that in the case 
of a fluid with variable viscosity, and for the considered boundary 
conditions of uniform wall temperature or convection with an external 
isothermal fluid, the infinite Nusselt number Nu# is nearly 
independent of the axial conduction effect, which remains low in the 
thermally established zone, and is a decreasing function of the index of 
the fluid. The viscous dissipation acts in a similar way to that noted in 
the Newtonian case, i.e. the value of the infinite Nusselt number Nu# 
is more than doubled when the brinkman number is non-zero and the 
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effect of axial conduction on Nu# remains weak, and moreover this 
value of Nu# decreases as a function of the index of the fluid. 

 
Table 1 Values of Nu# for different values of 𝑛 compared with those 
of Barletta (1997) and Jambal et al. (2005) for power-law fluids 
(𝑎 = 0) 

𝑛 Barletta (1997) Jambal et al. (2005) Present study 
1/3 13.714228 ----- 13.71428 
1/2 ----- 11.67 11.6667 

1 9.6 9.6 9.6 
3/2 ------ 8.905 8.9032 
3 8.205129 ------ 8.205129 
 
For Herschel-Bulkley fluid, Eq. (23) indicates that                                    

𝐵𝑟# = − ()'()-./

/-
D &
*+)

F
:

 is a function of the structure index 𝑛 and of 
the ratio 𝑎 of yield shear stress to wall shear stress. 

The Eq. (26) shows that the asymptotic bulk Nusselt number 
Nu# and the asymptotic mixing Nusselt number Nu#∗  become equal 
when 𝑋 → +∞, thus highlighting the vanishing impact of the axial heat 
conduction at infinity on average temperature and bulk Nusselt number 
(see Barletta and Zanchini 1995) as underlined in the case of the power 
law fluid. 

Note that even if, as shown by equations (25) and (26), there is 
no explicit dependence of the asymptotic Nusselt number Nu# and the 
asymptotic temperature field Θ#(𝑅) on the brinkman number 𝐵𝑟#, 
there is an implicit dependence through the variations of the core radius 
𝑎 and the power-law exponent 𝑛. The effect of viscous dissipation 
remains important at infinity and varies if 𝑛 and 𝑎 change. 

The results of the analytical values of Nu# are represented in 
Tables 2 for 0 < 𝑛 < 1 and in Table 3 for 𝑛 ≥ 1. We also notice that 
for Herschel-Bulkley fluid when power-law exponent 𝑛 decreases the 
asymptotic Nusselt number Nu# increases (see Tables 2 and 3). This 
improvement is obviously linked to an increase in wall shear. 
Furthermore, Fig. 1 shows that the asymptotic Nusselt number Nu# is 
an increasing function of 𝑎 while it decreases as a function of 𝑛. 
 
Table 2 Values of Nu# for different values of 𝑛 (0 < 𝑛 < 1) 

𝑛 𝑎 = 0 𝑎 = 0.2 𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 
0.2 17.7778 21.0546 26.6709 38.1301 68.7401 
0.25 15.750 18.4896 23.2376 32.9991 62.1518 
0.3 14.3267 16.6819 20.8145 29.3821 54.7527 
0.4 12.6923 14.7225 18.0178 25.2142 46.8930 
0.5 11.6667 13.2733 16.2323 22.5597 42.2609 
0.6 10.9804 12.3829 15.0305 20.7769 38.3866 
0.7 10.4887 11.7404 14.1616 19.4907 35.9094 
0.8 10.1191 11.2542 13.5027 18.5174 34.0372 
0.9 9.8309 10.8730 12.9852 17.7544 32.5716 

 
Table 3 Values of Nu# for different values of 𝑛 (𝑛 ≥ 1) 

𝑛 𝑎 = 0 𝑎 = 0.2 𝑎 = 0.4 𝑎 = 0.6 𝑎 = 0.8 
1 9.6 10.56573 12.56744 17.14062 31.7893 
1.25 9.1828 10.0061 11.8049 16.0206 29.2128 
1.3 9.1177 9.9181 11.6794 15.8367 28.9097 
1.35 9.0575 9.8365 11.5734 15.6877 28.5982 
1.4 9.0041 9.7641 11.4745 15.5371 28.3215 
1.45 8.9519 9.6931 11.3752 15.3954 28.0512 
1.5 8.9032 9.6298 11.2910 15.2629 27.8098 
3 8.205129 8.659926 9.960690 13.33702 24.10196 

The asymptotic behavior of the temperature profile Θ#(𝑅) is 
described in Fig. 2(a)-(c) and Fig. 3(a)-(c), respectively for                   
𝑛 = 1/3, 1, 3 and for 𝑎 = 0, 0.4, 0.8. These figures show that the 

gradient of Θ#(𝑅) increases in the vicinity of the wall (𝑅 = 1), for 𝑛 
fixed, when the core radius 𝑎 increases (see Fig. 2(a)-(c)) and for 𝑎 
fixed, when the power-law exponent 𝑛 decreases. 

 
Fig. 1 Evolution of the Nu# versus 𝑛 for various values of 𝑎. 

 

 
(a) : 𝑛 = 1/3 

 
(b) : 𝑛 = 1 

 
(c) : 𝑛 = 3 

Fig. 2 Evolution the Θ# versus 𝑅 for various values of 𝑎 :  
(a) : 𝑛 = 1/3, (b) : 𝑛 = 1, , (c) : 𝑛 = 3 

 

 
Fig. 2 : Evolution de Nu¥ versus n for various values of a 

 
 
 
 
 
 
4. Conclusion 

Forced laminar convection for a Herschel-Bulkley fluid in a circular tube with a fully developed 
velocity profile is studied with two types boundary conditions, namely : constant wall temperature 
and convection with an external isothermal fluid. The effects of viscous dissipation and the yield 
stress on the asymptotic temperature profile and the asymptotic Nusselt number are analysed. In 
particular, it was shown that the asymptotic value of the Nusselt number in the case of convective 
boundary conditions is independent of the Biot number. The comparison between our theoretical 
results and those of the literature in the Newtonian fluid case and non-Newtonian fluid case (power 
law fluid and Bingham fluid) shows good agreement. 
 
 
 
 
Nomenclature 
a Ratio of yield shear stress to wall shear stress 
Bi Biot number, h’r+/λ 
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Fig. 5.20 : Evolution de Nu¥ en fonction de n pour différentes valeurs de a
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(a): 𝑎 = 0 

 
(b): 𝑎 = 0.4 

 
(c): 𝑎 = 0.8 

Fig. 3 Evolution of the Θ# versus 𝑅 for various values of 𝑛 : 
(a) : 𝑎 = 0, (b) : 𝑎 = 0.4, (c) : 𝑎 = 0.8 

4. CONCLUSION 
Forced laminar convection for a Herschel-Bulkley fluid in a circular 
tube with a fully developed velocity profile is studied analytically by 
including both the viscous dissipation and the axial heat conduction 
with two types of boundary conditions, namely : constant wall 
temperature and convection with an external isothermal fluid. 

The results show that the asymptotic Nusselt number 𝑁𝑢# is 
almost independent of the Peclet number 𝑃𝑒 and is an increasing 
function of core radius 𝑎 while it decreases as a function of the index 
𝑛 of the fluid. It can be deduced that the effect of axial conduction is 
negligible in the thermally fully developed region. The effect of 
viscous dissipation remains important at infinity and varies if 𝑛 and 𝑎 
change. In particular, it was shown that the asymptotic value of the 
Nusselt number in the case of convective boundary conditions is 
independent of the Biot number. The comparison between our 
theoretical results and those of the literature in the Newtonian fluid case 
and non-Newtonian fluid case power law fluid shows good agreement. 

NOMENCLATURE 

𝑎 Ratio of yield shear stress to wall shear stress 
𝐵𝑖 Biot number, ℎ!𝑟"/𝜆 
𝐵𝑟(𝑋) Local Brinkman number, C%!-./

(/2#)$J&(G)
 

𝑐4 Specific heat at constant pressure 
𝑓 Function of R employed in Appendix 
ℎ! Convection coefficient with a fluid external to the tube wall 
𝐾 Consistency index 
𝑚 Inverse of power-law exponent, 1/𝑛 
𝑛 Power-law exponent 
Nu Bulk Nusselt number, 2𝑟"𝑞3/[𝜆(𝑇3 − 𝑇>)] 
Nu∗ Mixing Nusselt number, 2𝑟"𝑞3/[𝜆(𝑇3 − 𝑇*)] 
𝑃𝑒 Peclet number, 2𝑟"𝑢*𝜌𝑐4/𝜆 
𝑞3 Wall heat flux 
𝑟 Radial coordinate 
𝑟, Yield radius 
𝑟" Radius of the tube 
𝑅 Dimensionless radial coordinate, 𝑟/𝑟" 
𝑇 Temperature 
𝑇" Inlet temperature distribution 
𝑇K Reference temperature of a fluid external to the tube wall 
𝑢 Velocity component in the axial direction 
𝑢* Mean axial velocity 
𝑈 Dimensionless axial velocity, 𝑢/𝑢* 
𝑥 Axial coordinate 
𝑋 Dimensionless axial coordinate, 𝑥/(2𝑟"𝑃𝑒) 
 
Greeks Symbols  
𝜆 Thermal conductivity of fluid 
𝜔 Dimensionless parameter, 𝜔 = 1 − 2 N(()'()*+/

+ ()'()$

*+0 O 
𝜌 Fluid density 
𝜏, Yield shear stress 
𝜏3 Wall shear stress 
𝜃 Dimensionless temperature, 𝜆𝑟":')(𝑇 − 𝑇">)/𝐾𝑢*:+) 
𝜃K Dimensionless temperature, 𝜆𝑟":')h𝑇K − 𝑇">i/𝐾𝑢*:+) 
Θ Dimensionless bulk temperature, (𝑇3 − 𝑇)/(𝑇3 − 𝑇>) 
Θ∗ Dimensionless mixing temperature, (𝑇3 − 𝑇)/(𝑇3 − 𝑇*) 
 
Subscripts 
𝑏 Bulk quantity 
𝑚 Mixing quantity 
𝑤 Wall condition 
∞ Quantity evaluated for 𝑋 → +∞ 
𝑓𝑑 Fully developped 
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APPENDIX 
Where 
 
 If 𝒎 ∈ ℕ∗: 

𝑓(𝑅) = /01-
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()'()!./(*+/)(*+0) N∑
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*+/
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and 
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but 

If 𝒎 ∈ ℚ∗: 

𝑓(𝑅) = /01-

?&
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()'()!./(*+/)(*+0)
∑ =(*+0'_)('))?

_!(*+0'_)$
#
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        if     0 ≤ 𝑅 ≤ 𝑎 
and  

𝑓(𝑅) = )
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_!(*+0'_)$
𝑅*+0'_#

_B" FO + 𝐶?  if   𝑎 ≤ 𝑅 ≤ 1 
 
with 
𝐶0 =

)
/-&$(*+/)(*+0) j2(𝑚 + 1)(1 − 𝑎)/ N− ($
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+
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+ ((`(+/(*'/*'0)
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𝑓(1) = − )

/-./ N1 −
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&
+ ()'()$

&(*+/)(*+0)
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)
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=(*+0'_)('))?(?
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#
_B" FO + 𝐶0  

 
∀𝑚,							𝑖𝑓					𝑘 = 0					𝑡ℎ𝑒𝑛							𝑃(𝑚) = 𝑚																																																																	

𝑖𝑓					𝑘 ≥ 1					𝑡ℎ𝑒𝑛							𝑃(𝑚 − 𝑘) = (𝑚 − 𝑘)𝑃h𝑚 − (𝑘 − 1)i  

 
 
 

 


