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ABSTRACT 

The present paper investigates the impacts of heat transfer and magnetic field on the boundary layer flow of Casson fluid over a linearly stretching 

sheet. The researchers have introduced analytical and numerical solutions for the momentum and energy equations by transforming the equations into 

the system of ordinary differential equations with the aid of the similarity transformations technique. The velocity and temperature profiles for pertinent 

constraints like Casson fluid constraint, Chandrasekhar number, Prandtl number, and thermal conductivity are presented through graphs. The influence 

of the wall shear stress and the Prandtl number increases while the boundary layer thickness decreases. Further, the effects of the Casson fluid constraint 

on the local skin friction and thermal gradient are studied and the outcomes are presented in tabular form. It is also observed that increase in Casson 

fluid constraint and Chandrasekhar number the local skin friction coefficient also rises at the wall but decreases in the temperature at the wall. The 

outcomes revealed that the analytical method had a good agreement with the numerical solutions obtained through MATHEMATICA software. The 

current study has applications in the processing of magnetic materials and the extraction of crude petroleum from oil-based products. 

Keywords: Boundary layer flow, linear-stretching sheet, Casson fluid, Chandrasekhar number, magnetohydrodynamics 

 

1. INTRODUCTION 

Most of the researchers are investigating in the direction of a steady flow 

of non-Newtonian fluid over a continuous linear/exponential stretching 

sheet, it has an extensive variety of applications in industrial processes 

such as resolidifying metallic products in freezing bath process, ejection 

of plastic films, to form polymer ply with the desired cross-section by 

forcing it through a dye. In the course of deposition of such polymer ply, 

the slit forms the blend that is subsequently stretched to give attentive 

thickness, and the sheet will solidify when it is moved through the 

cooling system to form well-graded output. It appears that the peculiarity 

of ply is the command by heat and mass transfer enclosed by the ply and 

fluid. The stretching sheet combines with the medium fluid thermally and 

mechanically during manufacture. Casson liquid is the most well-known 

non-Newtonian fluid that has a few applications in food handling, metal 

infection, boring tasks, and bio-designing activities. Sakiadis (1961) 

initiated an introduction of boundary layer flow over a continuous solid 

slab flowing at a constant rate. Crane (1970) has worked on a solution 

for two-dimensional incompressible boundary layer flow of adhesive 

fluid formed due to stretching plate. 

Magyari and Keller (1999) solved the boundary layer flow 

problem over an exponentially stretching surface with ascending 

temperature diffusion analytically and numerically. Sajid and Hayat 

(2008) have worked on the analytic solution of boundary layer flow about 

Jeffrey fluid upon an exponential stretching plate. The model of MHD 

three-dimensional Casson liquid past a porous linearly stretched sheet 

was researched by Nadeem et al. (2012). Bhattacharya et al. (2013) 

elaborated on the effects of MHD boundary layer flow of Casson fluid 

overstretching and shrinking sheet with wall mass transfer through an 
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analytical solution. Mahanta and Shaw (2015) investigated three-

dimensional Casson fluid flows via a porous linearly stretched sheet with 

convective boundary conditions using the Spectral Relaxation Method. 

The magneto-hydrodynamic stream across an exponentially 

overextended surface was studied by Emam and Elmaboud (2017). Pal 

and Mandal (2017) investigated nanofluid heat and mass transfer over a 

nonlinear stretching/shrinking sheet with viscous dissipation and thermal 

radiation using a double-diffusive magnetohydrodynamic heat and mass 

transfer model. The MHD flow and heat transfer characteristics of 

Williamson nanofluid due to a stretched sheet with variable thickness and 

thermal conductivity were investigated by Reddy et al. (2017). Sankad 

and Dhange (2017) explored the effect of wall features on the dispersion 

of a solute in the peristaltic motion of the Newtonian fluid. Aleng et al. 

(2018) analyzed a steady two-dimensional boundary layer flow of a 

nanofluid and heat transfer over a stretching/shrinking sheet. The 

Newtonian heating and convective boundary condition on MHD 

stagnation point flow past a stretching sheet with viscous dissipation and 

Joule heating were explored by  Chaudhary et al. (2018). The influence 

of changing characteristics on the flow over an exponentially stretched 

sheet with convective heat conditions was studied by Srinivasacharya 

and Jagadeeshwar (2018). Irfan et al. (2019) analyzed the 

magnetohydrodynamic free stream and heat transfer of nanofluid flow 

over an exponentially radiating stretching sheet with variable fluid 

properties. Singh et al. (2019) studied mass transpiration in nonlinear 

MHD flow due to porous stretching sheets. Wakif (2020) has utilized a 

novel mathematical technique for MHD convective flows of Casson fluid 

over a nonlinear elastic sheet with temperature-dependent viscosity and 

thermal conductivity. Gangadhar et al. (2020) invent the fluid situations 

of boundary layer flow of Casson fluid over a nonlinearly stretching sheet 

with viscous dissipation. Haritha et al. (2020) presented an analytical 
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solution for convective heat and mass transport of a rotating nano-fluid 

in a vertical conduit, which is bordered by extending and stationary walls. 

Ibrahim and Negera (2020) investigated the influence of thermal 

radiation and chemical reaction on the viscous dissipation of Williamson 

nanofluid over a stretching/shrinking wedge. Khan et al. (2020) took into 

account variable diffusion and conductivity changes in a 3D rotating 

Williamson fluid flow, as well as the magnetic field and activation 

energy. Reddy et al. (2020) reported the effect of heat absorption/ 

generation on MHD Cu-water nanofluid stream above a non-linear 

shrinking/ stretching sheet. The influence of magnetized variable thermal 

conductivity on the flow and heat transfer characteristics of an unstable 

Williamson fluid was studied by Shankar et al. (2020). Shateyi and 

Muzara (2020) studied the unsteady MHD Blasius and Sakiadis flows 

with variable thermal conductivity in the presence of thermal radiation 

and viscous dissipation. The research of the MHD flow of Casson 

nanofluid across an infinite exponential porous surface in a rotating 

frame in the presence of slip velocity was explored by VeerKrishna et al. 

(2021). Ganesh and Sridhar (2021) explored the heat and mass transfer 

of an MHD Casson fluid under radiation with chemical reaction and Hall 

effects numerically using an exponentially permeable stretching sheet. 

Megahed et al. (2021) looked at the magnetohydrodynamic fluid flow 

caused by an unstable stretched sheet, thermal radiation, a porous 

material, and changing heat flux. Following these studies, a group of 

researchers looked into the boundary layer movement and stretching 

surface of a Casson fluid in a range of conditions involving convective 

heat and mass transfer flow  (see Mukhopadhyay and Vajravelu (2013), 

Pramanik (2014), Ramesh and Devakar (2015), Animasaun et al. (2016), 

Maboob et al. (2017), Sampathkumar et al. (2021), Flilihi et al. (2021), 

Goswami and Sarma (2021), Su et al. (2022), Yadhav and Choudhary 

(2022)). 

With the above inspiration, in this manuscript, the Casson fluid 

boundary layer flow across a linearly stretched sheet is examined with 

the effects of heat transfer and magnetic field. The analytical and 

numerical solutions are provided the issues by transforming the 

momentum and energy equations into a system of ordinary differential 

equations using the similarity transformations technique. The effects of 

various diverse constraints on velocity and temperature profiles are 

deliberated briefly as well as displayed in terms of figures and tables. 

2. METHODOLOGY 

We consider the two-dimensional flow of an incompressible, steady non-

Newtonian fluid caused by a stretching sheet. It coincides at 𝑦 = 0, and 

the flow region refers to   𝑦 > 0. The flow and heat transfer with 

radiation impacts are represented by the accompanying dimensional form 

of equations as (Abel et al. 2009, Mukhopadhyay and Vajravelu, 2013),  

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0,       (1) 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜐 (1 +

1

𝛽
)
𝜕2𝑢

𝜕𝑦2
−
𝜎𝐵∘

2𝑢

𝜌
,              (2) 

 

𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝐾

𝐶𝑝

𝜕2𝑇

𝜕𝑦2 
 ,    (3) 

 

where 𝑢 and 𝑣 are the velocity components along 𝑥 and 𝑦 directions 

respectively, 𝑇 is the temperature of the fluid, 𝜌 is the density, 𝜎 is the 

electrical conductivity of the fluid, 𝐶𝑝is the specific heat at constant 

pressure, 𝐾 is the thermal conductivity is assumed to vary linearly with 

temperature. 

 

The associated boundary conditions for the present issue are: 

 

i. the velocity boundary conditions i.e. prescribed surface 

temperature (PST) are given by 

𝑢 = 𝑎0𝑥, 𝑣 = 0 , 

𝑇 = 𝑇𝑤 = 𝑇∞+A (
𝑥

𝑙
)
𝜆

,   when   𝑦 = 0,               (4a)  

                

ii. the temperature boundary conditions at an infinite distance 

away from  the sheet is 

                𝑢 → 0,   𝑇 → 𝑇∞    as        𝑦 → ∞.       (4b)                                                                             

𝑙  is the sheets characteristic length,  𝑇𝑤 is the temperature of the wall, 

𝑇∞ is the liquid temperature at an unlimited distance from the membrane, 

𝐴 is the constant of a dimensional wall, 𝑎0(> 0) is the stretching rate. 

Assumed that the convinced magnetic inclusion is negligibly small so 

that charge gained during the course is expanded on the ejection.  To 

solve Eqs. (1)-(3), the similarity transformation is introduced as follows: 

𝑢 = 𝑎0𝑥𝑓
′(𝜂), 𝑣 = −√𝑎0𝜐𝑓(𝜂), 𝜂 = √

𝑎0

𝜐
𝑦, 𝜃 =

𝑇−𝑇∞

𝑇𝑤−𝑇∞
 .             (5)                              

Equations (1)-(3) and the boundary conditions (4a) and (4b) take the 

following form: 

(1 +
1

𝛽
) 𝑓‴(𝜂) = [𝑓′(𝜂)]2 + 𝑞𝑓′(𝜂) − 𝑓(𝜂)𝑓″(𝜂),           (6)                                                      

(1+∈ 𝜃)𝜃′′ + 𝑃𝑟𝑓(𝜂)𝜃
′ − 𝜆𝑃𝑟𝜃𝑓

′(𝜂)+∈ (𝜃′)2 = 0,                    (7)                                                   
𝑓(𝜂) = 0,   𝑓′(𝜂) = 1, 𝜃(𝜂) = 1   at   𝜂 = 0

               𝑓′(𝜂) → 0,    𝜃(𝜂) → ∞   as   𝜂 → ∞
},                  (8)                                                    

 

where   𝛽  is the Casson fluid constraint,     𝑞 =
𝜎𝐵∘

2

𝜌𝑎0
  is Chandrasekhar 

number,   𝑃𝑟 =
𝜇𝐶𝑝

𝑘∞
 is Prandtl number 𝑘 = 𝑘∞(1+∈ 𝜃) is the thermal 

conductivity and  ∈=
𝑘𝑤−𝑘∞

𝑘𝑤
  is variable thermal conductivity coefficient, 

and 𝜆  is the temperature constant. 

 

On solving Eqs. (6) and (7) by condition (8), we obtain a closed-form 

solution for the momentum as:     

𝑓(𝜂) =
1−𝑒−𝛼𝜂

𝛼
 ,   where  𝛼 =

√(𝛽(1+𝑞))

√𝛽+1
.               (9)                                                

 

The local skin friction coefficient is 𝑓′′(0) = −𝛼   and it is determined 

for distinct values of the penetrating parameters. 

By using the regular perturbation method, we have solved Eqs. (7) and 

(8). Let us assume that the exact solution of Eq. (7) in the form 

 

𝜃(𝜂) = 𝜃0(𝜂)+∈ 𝜃1(𝜂) +∈
2 𝜃2(𝜂) +∈

3 𝜃3(𝜂) + ⋯,                             
                           (10) 

 

where  𝜃0(𝜂), 𝜃1(𝜂), 𝜃2(𝜂), 𝜃3(𝜂), …  are obtained as first, second, 

third, and so on order boundary value problems. The above sequence of 

BVP will be generated by using Eq. (10) in Eqs. (7) and (8) and then 

equating like powers of  ∈ on both sides. 

 

2.1 Zeroth order solution 
 

The zeroth-order differential equation is 

𝜀𝜃∘
″ + {1 −

𝑃𝑟

𝛼2
− 𝜀} 𝜃∘

′ + 2𝜃∘ = 0. 
                                 (11)                                                                              

The boundary conditions are 

𝜃∘(𝜀∘) = 1 as  𝜀∘ = −
𝑃𝑟

𝛼2

𝜃∘(𝜀∘) → 0 as 𝜀∘ → ∞.
, }                                (12) 

On transforming Eq. (11) into the confluent hypergeometric equation 

through suitable substitution and the solution in terms of Kummer's 

function as follows: 

𝜃∘(𝜂) = 𝑏∘(𝜀)
𝑃𝑟
𝛼2𝛭{

𝑃𝑟

𝛼2
− 2,

𝑃𝑟

𝛼2
+ 1, 𝜀} ,                  (13) 

where 𝜀 = −(
𝑃𝑟

𝛼2
) 𝑒−𝛼𝜂, M is Kummer’s function,  and 
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 𝑏∘ =
1

(𝜀)
𝑃𝑟
𝛼2𝛭[

𝑃𝑟
𝛼2
−2 ,

𝑃𝑟
𝛼2
+1,

−𝑃𝑟
𝛼2
]

   

 
2.2 First-order solution 

The first-order differential equation is 

            𝜀𝜃1
″ + {1 −

𝑃𝑟

𝛼2
− 𝜀} 𝜃1

′ + 2𝜃1 =    −{𝜀𝜃𝑜𝜃𝑜
″ + 𝜃𝑜𝜃𝑜

′ + 𝜀(𝜃𝑜
′ )2},                                                       

(14) 

 

The boundary conditions are 

𝜃1(𝜀) = 0   as 𝜀1 = −
𝑃𝑟

𝛼2

𝜃1(𝜀) → 0   as 𝜀1 → ∞
}.                             (15)                                              

The solution of Eq. (14) with aid of border condition (15) is  

 

𝜃1 = 𝜃11 + 𝜃12 ,                                             (16) 

                                                                                                                         

 where   

𝜃11 = 𝑐𝑜(𝜀)
𝑃𝑟
𝛼2  𝛭 {

𝑃𝑟
𝛼2
− 2,

𝑃𝑟
𝛼2
+ 1, 𝜀} ,

𝑐𝑜 =
−∑𝑑𝑟(𝜀)

𝑟+2

(𝜀)
𝑃𝑟
𝛼2𝛭 [

𝑃𝑟
𝛼2
− 2,

𝑃𝑟
𝛼2
+ 1,

−𝑃𝑟
𝛼2

]

,

}
 
 

 
 

                       (17) 

    

  𝜃12 = ∑𝑑𝑟𝜀
𝑟+2.                                                               (18)      

    

Since, ∈ is a however small quantity, after neglecting terms containing 

second and higher power in ∈. The energy equation's primitive is in the 

form 

𝜃(𝜂) = 𝜃𝑜(𝜂)+∈ 𝜃1(𝜂).                                               (19) 

 

The numerical solutions for the present study have also been completed 

by using MATHEMATICA software. The analytical and numerical 

solutions are presented in Table 1. 

3. OUTCOMES AND DISCUSSION 

To enlighten the importance of the present study, a set of numerical 

results for different parameters like the Casson fluid parameter (𝛽), 
Chandrasekhar number (𝑞), Prandtl number (𝑃𝑟), temperature constant 

 (𝜆) and the temperature variable coefficient (∈) on the flow, variables 

are plotted as shown in Figs. 1 - 6. 

Figures 1 and 2 visualize the decrease in the velocity profile 
concerning several ascending values of Casson fluid parameter and 
Chandrasekhar number. The Chandrasekhar number is a dimensionless 
number used in magnetic convection to calculate the Lorentz power to 
viscosity ratio. Because the Chandrasekhar number is a fraction of the 
magnetic field and is proportional to the square of a typical magnetic 
field in a system, the velocity of fluid drops as the Cason fluid constraint 
and Chandrasekhar number increase.  

The temperature profile for the distinct values of Chandrasekhar 
number, Prandtl number, temperature constant, and the temperature 
variable coefficient are shown in Figs. 3 - 6. Figure 3 displays the relation 
between the temperature and Chandrasekhar number, the emergent 
values of 𝑞 is in the range (0.5, 1), there will be less reduction in the 
temperature. Further 𝑞 increases from 1 to 2, and there is a rise in the 
temperature. The reason is that if 𝑞 < 1 there is low magnetic intensity 
and high magnetic intensity when 𝑞 > 1. 

Figure 4 depicts that there is a loss in temperature growth for the 
increasing values of the temperature constant because of the exchange of 
heat between the sheet and the fluid. When the Prandtl number increases 
then the temperature decreases, due to this there is an augmentation in 
the speed of boundary layer thickness of the fluid model, and loss of heat 
enlargement (see Fig. 5). Figure 6 shows the temperature profile for 
increasing the values of the thermal conductivity variable coefficient 
constant. There is an enhancement in the temperature profile because the 

constant coefficient of the thermal variable increases the magnitude of 
the temperature hence there will be growth in the heat flow.  

In addition, we have put forth an attempt to extract (cf. Tab.1.) 
the effect of the Casson fluid parameter on the local skin friction 
coefficient (−𝑓′′(0)) and the thermal gradient(−𝜃′(0)). From the table 
we induce that, for the progressive rising values of Casson fluid 
constraint and Chandrasekhar number, the local skin friction coefficient 
increases on the wall and there is a decline in the temperature gradient at 
the wall. Because the applied magnetic field creates a retarding force 
(Lorentz force) against the fluid's velocity, the drag is increased. The 
table shows the influence of the transverse magnetic field on heat transfer 
for the prescribed surface temperature (PST), and it can be seen that the 
transverse magnetic field adds to the thickening of the thermal boundary 
layer. The decrease in the temperature gradient is due to the resistance 
imposed by Lorentz's force on the flow of the Casson fluid. 

4. CONCLUSIONS 

The flow and heat transfer analysis of a two-dimensional unsteady 

hydromagnetic Casson fluid flow due to the linear stretching sheet is 

investigated. The heat flow is also discussed in the case of prescribed 

surface temperature (PST). The notable conclusions are as follows:  

 The boundary layer thickness minimizes as Casson fluid 

constraint and Chandrasekhar number increase due to applied 

magnetic force.  

 Ascends in the Casson fluid constraint lead to an increment in 

the local skin friction coefficient and a decrease in the 

temperature gradient.  

 The boundary layer thickness decreases by increasing the 

values of the Prandtl number.  

 As Casson fluid constraint assumes an infinity value, our 

results reduce to the case of a Newtonian fluid.  

 The thermal variable coefficient constant can be used to 

maintain the magnitude of temperature in the flow.  

 Numerically the temperature parameter determines the 

direction of heat transfer in the prescribed surface temperature 

(PST). 
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Fig 1. Velocity profile for distinct values of  Casson fluid parameter 

𝛽 = 0.5, 0.6, 0.7, 0.8 with 𝑞 = 1 

 

 

 
 
Fig 2. Velocity profile for distinct values of  Chandrasekhar number 

𝑞 = 0.5, 1, 1.5, 2 with 𝛽 = 1 

 
 

 
 

Fig 3. Temperature profile for different values of Chandrashekhar 

number with 𝛽 = 1, 𝑃𝑟 = 6.2, ∈= 0.1, and  𝜆 = 2. 

 

 

 

 

 

 

 

 
 

Fig 4. Temperature profile for different values temperature 

constant 𝜆 = 1, 2, 3, 4 with 𝑃𝑟 = 6.2 , 𝑞 = 0.5, 𝛽 = 1. 

 

 

 
 

 

Fig 5. Temperature profile for different values of Prandtl number 

𝑃𝑟 = 1,3,5,11 with 𝑞 = 1, 𝛽 = 1 and 𝜆 = 2. 

 

                             

 
 
Fig 6. Temperature profile for different values thermal variable 

coefficient  ∈ = 0.2,0.4,0.6,0.8 with 𝑃𝑟 = 6.2, 𝑞 = 0.5, 𝛽 =1 and 

𝜆 = 2 
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Table 1. Nature of local skin coefficient (𝛼) and the temperature gradient (−𝜃′(0)) for distinct values of Casson parameter (𝛽) and Chandrasekhar 

number (𝑞) with  (𝑃𝑟 = 1,    ∈= 0.1,   𝜆 = 2) 
 

 

Q

𝑞 

 

 

𝛽 

Analytical 

solution 

𝛼 = −𝑓′′(0) 
 

 

Numerical 

solution  

𝛼 = −𝑓′′(0) 
 

Perturbation 

solution 

−𝜃′(0) 

Numerical 

solution 

−𝜃′(0) 

Q 

 

𝑞 

 

 

𝛽 

Analytical 

solution 

𝛼 = −𝑓′′(0) 
 

 

Numerical 

solution  

𝛼 = −𝑓′′(0) 
 

Perturbation 

solution 

−𝜃′(0) 

Numerical 

solution 

−𝜃′(0) 

 

 

 

 

1

1 

0.1 0.42640143 0.42640214 1.39450881 1.39450842  

 

 

 

2

2 

0.1 0.52223296 0.52223298 1.39450881 1.39450842 

0.2 0.57735025 0.57735027 1.35348185 1.35648105 0.2 0.70710678 0.70710677 1.35348185 1.35648105 

0.3 0.67936622 0.67936619 1.33023889 1.33023872 0.3 0.83205029 0.83205029 1.33023889 1.33023872 

0.4 0.75592894 0.75592892 1.31027914 1.31027911 0.4 0.92582009 0.92582009 1.31027914 1.31027911 

0.5 0.81649658 0.81649656 1.29432803 1.29432845 0.5 1.00000000 1.00000001 1.29432803 1.29432845 

0.6 0.86602540 0.86602540 1.28118347 1.28118363 0.6 1.06066017 1.06066017 1.28118347 1.28118363 

0.7 0.90748521 0.90748521 1.27011492 1.27011481 0.7 1.11143786 1.11143786 1.27011492 1.27011481 

0.8 0.94280904 0.94280904 1.26064049 1.26064056 0.8 1.15470053 1.15470053 1.26064049 1.26064056 

0.9 0.97332852 0.97332853 1.25242430 1.25242444 0.9 1.19207912 1.19207911 1.25242430 1.25242444 

1.0 1.00000000 1.00000000 1.24522263 1.24522290 1.0 1.22474487 1.22474487 1.24522263 1.24522290 
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