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ABSTRACT

In this paper, we study the characteristics of laminar boundary-layer flow of a viscous incompressible fluid over a moving wedge. The transformed
boundary-layer equation given by the Falkner-Skan equation is solved by an efficient easy-to-use approximate method based on uniform Haar
wavelets in conjunction with quasilinearization and collocation approach. The residual and error estimates are computed to confirm the validity of the
obtained results. A meaningful comparison between the present solutions with existing numerical results in the literature is carried out to highlight the
benefits and efficiency of proposed method. Furthermore, the influence of variable pressure gradient and the wedge velocity parameter are discussed
and illustrated through graphs. The Haar wavelet approach discovers a rich structure of multiple solutions for various range of physical parameters.

Keywords: Boundary-layer; Moving wedge; Nonlinear boundary value problem; Multiple solutions; Haar wavelets.

1. INTRODUCTION

The two-dimensional laminar boundary-layer flows of a viscous and in-
compressible fluid over a wedge surface are fundamental for the under-
standing of aerodynamical properties of the fluid flow, and have appli-
cations in engineering and technology such as aerodynamic extrusion of
plastic sheets, cooling of a metallic plate in a cooling bath, fibre process-
ing, magnetic tape production, etc. When the mainstream fluid with a
large Reynolds number (will be defined later) flows over a wedge sur-
face, the effects of viscosity are confined to a thin layer near the wedge
surface. In many situations, the wedge is considered to move along or
opposite (Riley and Weidman (1989), Sachdev et al. (2008), etc.) to
the mainstream flow or in a still fluid (the mainstream is held constant).
The velocity field develops downstream (former case) and upstream (lat-
ter case) in the boundary-layer. In the above applications, for example,
the plastic sheets or polymer sheets act as a moving wedge with a non-
uniform velocity in a still fluid (Wang (1984), Ariel (1994, 2007), Takhar
et al. (2001)). Such a flow phenomenon is more practical in understand-
ing the properties of the flow.

It is shown in Sachdev et al. (2008) that the mainstream flow is
approximated in the form xn (defined later) which is connected to the
pressure gradient since the pressure gradient throughout the flow field is
assumed uniform. Then the boundary-layer flow problem given by the
Falkner-Skan equation admit a class of self-similar solutions which in-
volve the accelerated and decelerated flows along with the Blasius flow.
It is also further assumed that the wedge movement is approximated in
the form of power-law manner. Thus, numerical treatment of the Falkner-
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Skan problem in which the wedge is considered to move opposite to the
mainstream flow is given in Riley and Weidman (1989). They found nu-
merically that the multiple solutions are possible for some extreme val-
ues of power-law parameter. Liao (1999) obtained an accurate solution
in terms of uniformly valid convergent series solution namely homotopy
analysis method (wedge is at rest). Sachdev et al. (2008) made an anal-
ysis to the Falkner-Skan problem along with wedge moving and gave an
exact solution to all values of power-law parameter. The various aspects
of the Falkner-Skan equation have been solved using Chebyshev pseudo
spectral method (Srinivasacharya and Jagadeeshwar (2017)), the Differ-
ential transform method (Rashidi and Erfani (2011)), Keller-box method
(Ishak et al. (2007)), Homotopy analysis method (Abdelmeguid (2017)),
Finite difference method (Govindaraj et al. (2020)) etc. In fact, the anal-
ysis of boundary-layer flow of Newtonian/non-Newtonian fluid models
associated with heat transfer, porous stretching medium, thermal radia-
tion etc., has been addressed extensively in the recent literature due to
its important impacts on the behaviours of the fluid flow (Bhattacharyya
(2012); Kumaresan and Kumar (2017); Ganapathirao et al. (2019))

Wavelet analysis is a new branch of applied mathematics which is
widely applied in signal analysis, image processing, numerical analysis,
etc. These methods have been proved to be robust and elegant tool for
most of the mathematical problems. Wavelets allow us to represent a
function in the form of a set of bases function which are localised. In this
case, Daubechies wavelets (Daubechies (1992)) are used quite often in the
solution of non-linear problems. The Daubechies wavelets are orthogo-
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nal and sufficiently smooth, but cannot be expressed in terms of explicit
function that makes the differentiation and integration quite complicated.
Thus, Alfred Haar introduced a concept of Haar wavelet which has an an-
alytic expression and is made up of pairs of piecewise functions, can be
integrated any number of times (Daubechies (1992)). In the recent past,
the Haar wavelets are proved to be playing an important role in the so-
lution of mathematical problems, particularly the nonlinear ones, (Lepik
(2006); Mansoori and Nazemi (2016); Erfanian et al. (2017); Mittal and
Pandit (2017); Majak et al. (2018); Ratas et al. (2021a,b); Sorrenti et al.
(2021); Mehrparvar et al. (2022)).

The Haar wavelet method in conjunction with quasilinearization pro-
cedure has acquired a lot of credence in tackling the non-linear boundary
value problems, as the nonlinear nature of these problems impedes its
exact solution in most cases. Kaur et al. (2011) proposed a modified
Haar wavelet method by introducing the quasilinearization approach to
overcome the difficulties in solving the nonlinear boundary value prob-
lems. Followed by this, Saeed and Rehman (2013) and Kaur et al. (2014)
have successfully used the Haar wavelet with quasilinearization technique
mainly for the solution of nonlinear fractional differential and oscilla-
tor equations respectively. Later, Jiwari (2015) applied this approach for
the approximate solution of time dependent non-linear Burgers’ equa-
tion. Most of them have, however, considered only the problem of finite
domain. We endeavour to extend this method to examine the results for
higher order non-linear boundary value problems with semi-infinite or
infinite domains and thus making the method more useful in real-world
applications.

The main idea of the Haar wavelets is to convert the differential
equation into a set of algebraic equations which are solved by inversion
technique. In the process of conversion, all boundary conditions (even
derivative conditions) are enforced directly into the system (Lepik (2005,
2008)). We note here that the two-dimensional boundary-layer flow over
a moving wedge is defined on an infinite domain. But Haar wavelet is
defined on [0, 1). Therefore, to overcome this difficulty of infinite do-
main, we simplify the problem by coordinate transformation and chang-
ing of variables and new variables are now defined on [0, 1). For details,
see Section 4. This gives a good deal of mathematical simplification in
which the variable domain [0,∞) becomes fixed interval [0, 1). We will
continue to study the Falkner-Skan flow problem using the uniform Haar
wavelet approach.

Organization of the paper is as follows: formulation of the two-
dimensional boundary-layer flow over a moving wedge is given in Sec-
tion 2. Section 3 devotes to give the details of Haar wavelets along with
application of Haar wavelet to the problem in question. In Section 4, we
illustrate the important findings in terms the velocity profiles, the wall
shear stresses and effects of pressure gradient parameter on the flow. We
summarize the important results of the work in Section 5. In the last
Section 6 concluding remarks of the paper is reported.

2. FORMULATION

We consider a laminar boundary-layer flow of a viscous fluid over a mov-
ing wedge. The wedge is considered to be moving with velocity Uw(x)
opposite to the mainstream flow U(x) (cf. Fig. 1). The cartesian coordi-
nate system is employed in which x-axis measured along the direction of
the mainstream flow (along the wedge surface) and y-axis is along normal
to the flow; the flow occupies in the half space y > 0.

The fluid of a constant viscosity µ and density ρ is driven over a
moving wedge with a large Reynolds number, Re = UL

ν
, where L is

characteristic length of the wedge surface and ν is the kinematic viscosity.
The large Reynolds number flow clearly divides the fluid into near-field
and far-field regions. In the near-field region, the viscosity effects are
considered to be significant. Once the boundary-layer is formed and if
δ is the thickness of the boundary-layer, then we have δ � L and the
thickness grows downstream of the wedge surface. As a consequence,
we have ∂u

∂x
� ∂u

∂y
and ∂p

∂y
� ∂p

∂x
. Accordingly, the pressure in the

y

x

v

u

Fig. 1 Schematic diagram demonstrating the boundary-layer formation
over a moving wegde.

boundary-layer has the same value as in the mainstream region. Thus,
in the far-field region, the pressure is given by the Bernoulli’s equation
− 1
ρ
dp
dx

= U dU
dx

. Therefore, the Prandtl’s boundary-layer equations which
govern the laminar boundary-layer flow over a wedge are given by

∂u

∂x
+
∂v

∂y
= 0 (1)

u
∂u

∂x
+ v

∂u

∂y
= U

dU

dx
+ ν

∂2u

∂y2
(2)

where u and v are velocity components in x and y directions. The relevant
boundary conditions are

at y = 0 : u = Uw(x), v = 0

y →∞ : u = U(x).
(3)

From the boundary conditions, it is clear that, the velocity of the fluid
varies from the velocity of the wedge on the surface to the velocity of
the mainstream flow far-away from the surface. Further, both mainstream
flow U(x) and the wedge surface velocity Uw(x) are approximated by
the power of distance downstream of the boundary-layer, i.e.,

U(x) = U∞x
n and Uw(x) = U0x

n (4)

where U∞ and U0 are non-negative constants and n is a constant that as-
sociates with the mainstream forcing on the boundary-layer. To solve the
system (1)-(4), it is appropriate to use suitable similarity transformations
on the assumption that the similar velocity profiles exist in the boundary-
layer in x-direction. Introducing

ψ =

√
2νxU

1 + n
f(η), η =

√
(1 + n)U

2νx
y (5)

where the stream-function ψ is given by

(u, v) =
(∂ψ
∂y

,−∂ψ
∂x

)
(6)

which satisfies the continuity Eq. (1) identically, into the momentum
boundary-layer Eq. (2), we get

f ′′′(η) + f(η)f ′′(η) + β
(

1− (f ′(η))2
)

= 0 (7)

and the boundary conditions Eq. (3) becomes

f(0) = 0, f ′(0) = −λ, f ′(+∞) = 1. (8)
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Here β = 2n
n+1

in Eq. (7) represents the variable pressure gradient with
β > 0, the flow is accelerated and β < 0, the flow is decelerated. For
β = 0, the Blasius flow can be recovered. The parameter λ = − U0

U∞
is

the wedge velocity with λ = 0, the classical Falkner-Skan equation can
be recovered. Although the system (7) and (8) is given in Sachdev et al.
(2008), but it rederived here because complete details are not given. The
Falkner-Skan Eqs. (7) and (8) is mathematically quite interesting because
of nonlinearity and infinite domain and hence does not admit analytical
solutions. Hartree (1937) gave numerical solution of the Falkner-Skan
equation for λ = 0. Again for λ = 0, Weyl (1942) derived existence
and uniqueness of the system (7) and (8). Later, Coppel (1960) proved
the existence and uniqueness of the solutions on the basis that for non-
zero f(0) or f ′(0), f ′′(η) is positive, zero or negative in the entire flow
domain according to f ′(0) is less than, equal or greater than unity. In this
paper, we follow quite different approach namely Haar wavelet analysis
for the solution of non-linear differential equation given in Eqs. (7)-(8).
Various properties, domain conversion, etc. are discussed with respect to
the system (7)-(8). Various details of the Haar wavelet are given in the
following section. We use two different Haar wavelet approaches with
and without quasilinearization technique. This is followed by the residual
and error estimates in both cases.

3. HAAR WAVELETS

Several fine properties of Haar wavelets would certainly lead to an effi-
cient numerical method for differential equations. The Haar wavelets are
most simple among different wavelet families with explicit expression for
scaling and wavelet functions. In 1910, Alfred Haar introduced the Haar
function as a group of square waves with magnitude ±1 in some finite
intervals and vanishes outside of the interval, which are orthonormal and
locally supported. These properties minimize the calculation process and
simplifies the solution procedure. The wavelet bases are generally con-
structed by means of multiresolution analysis (Daubechies (1992)). For
the purpose of the current problem, it will suffice to say that the Haar
scaling function h1(t) is defined by

h1(t) =

{
1, t ∈ [0, 1)

0, elsewhere.

The Haar mother wavelet is obtained as the linear combination of the
Haar scaling function:

h2(t) = h1(2t)− h1(2t− 1). (9)

All the other subsequent wavelets are generated from dilations and trans-
lations of mother wavelet. This can be expressed in a more compact form
as follows:

hi(t) = h2(2jt− k)

=


1, t ∈ [a, b)

−1, t ∈ [b, c)

0, elsewhere
(10)

where

a =
k

m
, b =

k + 0.5

m
, c =

k + 1

m
.

The translation parameter k = 0, 1, . . . ,m − 1 (m = 2j) determines
location of wavelet, j = 0, 1, . . . , J ; the dilation parameter which mea-
sures degree of compression, J is the level of resolution and i = m+k+1
is the wavelet number. Notice that all the Haar wavelets are orthogonal to
each other. That is,∫ 1

0

hr(t)hs(t)dt =

{
2−j , r = s

0, r 6= s.
(11)

Evidently,
{
hi(t)

}
defined in Eq. (10) form an orthogonal wavelet bases

for L2[0, 1). Thus, any function g(t) ∈ L2[0, 1) can be decomposed as

g(t) =

∞∑
i=1

aihi(t), t ∈ [0, 1) (12)

where ai are the Haar wavelet coefficients and are calculated as ai =
〈hi(t), g(t)〉. Furthermore, if g(t) is a piecewise constant or possibly
approximated as piecewise constants, then the series expansion of g(t)
in Eq. (12) will be terminated after finite terms. Integration of the Haar
functions in Eq. (10) can be expressed as

p1,i(t) =

∫ t

0

hi(x)dx (13)

and subsequent integration can be recursively defined as

pα,i(t) =

∫ t

0

pα−1,i(x)dx, α = 2, 3, . . .

=


0 for t ∈ [0, a),
1
α!

[t− a]α for t ∈ [a, b),
1
α!
{[t− a]α − 2[t− b]α} for t ∈ [b, c),

1
α!
{[t− a]α − 2[t− b]α + [t− c]α} for t ∈ [c, 1)

(14)

where i = 2, 3, . . . , 2J+1. For i = 1, we have

pα,1(t) =
tα

α!
, α = 1, 2, 3, . . . (15)

The sparsity pattern of Haar matrix hi(t) and its first integral p1,i(t)
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Fig. 2 Nonzero structure of Haar matrix hi(t) and its first integral p1,i(t).

are shown in Fig. 2 for J = 5 and J = 6 respectively. We notice that
as the size of the matrices increases (i.e., J increases), the sparsity of the
matrices also increases which is very convenient for computer implemen-
tations.
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4. METHOD OF SOLUTION

We convert the semi-infinite interval of Eq. (7) with relevant boundary
conditions Eq. (8) to Haar wavelet environment by replacing the third
boundary condition in Eq. (8) with the condition

f ′(η∞) = 1 (16)

for some ‘sufficiently large’ value η∞ of η which varies with β and λ and
is determined by introducing an asymptotic condition

f ′′(η∞) = 0. (17)

Normalizing the Eqs. (7)-(8) by the coordinate transformation ξ = η/η∞
and the change of variable F (ξ) = f(η)/η∞, ensuring that all the bound-
ary conditions Eq. (8) are satisfied. This reduces Eq. (7) to the form

F ′′′(ξ) + η2∞F (ξ)F ′′(ξ) + η2∞β
(

1− (F ′(ξ))2
)

= 0. (18)

Accordingly, the conditions Eq. (8) are transformed to

F (0) = 0, F ′(0) = −λ, F ′(1) = 1. (19)

The boundary value problem Eqs. (7) and (8) defined over an infinite
domain is now converted into [0,1) (cf. Eqs. (8) and (19)).

4.1. Haar wavelet quasilinearization method (HWQLM)

In this method, we apply the concept of quasilinearization technique in-
troduced by Bellman and Kalaba (1965), which is a generalization of the
Newton-Raphson method in function space, to linearize the non-linear
terms F (ξ)F ′′(ξ) and (F ′(ξ))2 in Eq. (18). It converges quadratically
to the exact solution (Mandelzweig and Tabakin (2001)) and the conver-
gence rate depends on the initial guess of the solution. The linearized
form of Eq. (18) is

F ′′′r+1(ξ) + η2∞Fr(ξ)F
′′
r+1(ξ)− 2η2∞βF

′
r(ξ)F

′
r+1(ξ)

+η2∞F
′′
r (ξ)Fr+1(ξ) = η2∞Fr(ξ)F

′′
r (ξ)

−η2∞β
(
F ′r(ξ)

)2
− η2∞β (20)

with corresponding boundary conditions

Fr+1(0) = 0, F ′r+1(0) = −λ, F ′r+1(1) = 1. (21)

The subscript r denotes the known quantity which is used to obtain the
unknown quantities denoted by subscript r+ 1 through iterative process.
We shall develop the highest derivative in Eq. (20) into the Haar wavelet
series (see Chen and Hsiao (1997)) and on successively integrating, the
derivatives of lower order and the solution functions are evaluated as fol-
lows:

F ′′′r+1(ξ) =

2J+1∑
i=1

aihi(ξ) (22)

F ′′r+1(ξ) =
2J+1∑
i=1

ai
[
p1,i(ξ)− Ci

]
+ 1 + λ (23)

F ′r+1(ξ) =

2J+1∑
i=1

ai
[
p2,i(ξ)− ξCi

]
− λ+ ξ(1 + λ) (24)

Fr+1(ξ) =

2J+1∑
i=1

ai

[
p3,i(ξ)−

ξ2

2
Ci

]
− λξ +

ξ2

2

(
1 + λ

)
(25)

where

Ci =

∫ 1

0

p1,i(t)dt. (26)

Substituting Eqs. (22)-(25) in Eq. (20), we attain a system of 2J+1 num-
ber of algebraic equations with 2J+1 unknown wavelet coefficients ai.

We use collocation method for calculating ai. The collocation points are
defined as

ξl =
1

2J+1

(
l − 1

2

)
, l = 1, 2, . . . , 2J+1. (27)

Consequently, the discrete form of Eq. (20) after replacing it into Eqs.
(22)-(25) is

2J+1∑
i=1

ai

[
H(i, l) + η2∞Fr(ξl)P1(i, l)− η2∞Fr(ξl)C

−2η2∞βF
′
r(ξl)P2(i, l) + 2η2∞βξlF

′
r(ξl)C + η2∞F

′′
r (ξl)P3(i, l)

−η
2
∞

2
ξ2l F

′′
r (ξl)C

]
= η2∞Fr(ξl)F

′′
r (ξl)− η2∞β(F ′r(ξl))

2

−η2∞β − η2∞Fr(ξl)− λη2∞Fr(ξl)
−2η2∞βλF

′
r(ξl) + 2η2∞βξlF

′
r(ξl)

+2η2∞βλξlF
′
r(ξl) + η2∞λξlF

′′
r (ξl)

−η2∞
ξ2l
2
F ′′r (ξl)− η2∞λ

ξ2l
2
F ′′r (ξl) (28)

or more conveniently in compact form

AX = B (29)

where A = (ai) is a 2J+1 dimensional row vector, H(i, l) = hi(ξl) is
the element of a 2J+1 × 2J+1 matrix, Pr(i, l) = pr,i(ξl), r = 1, 2, 3
are integral matrices defined as in Section 3, C = (Ci) is a 2J+1 dimen-
sional column vector given by Eq. (26), X and B are respectively the
expressions inside the square bracket and right side of Eq. (28). With
a suitable initial approximation, the system Eq. (29) is solved for Haar
coefficients. The computations were accomplished with the aid of the
MATLAB programs, which is very efficient in matrix representation.

4.2. Haar wavelet method (HWM)

The non-linear differential equation Eq. (18) with pertinent boundary
conditions Eq. (19) is also solved directly using Haar wavelets with col-
location method without quasilinearization. In this method, we seek the
Haar wavelet approximation of F ′′′(ξ) in Eq. (18) in the form Eq. (22)
and apply the Haar wavelet method described in Section 4.1. Accord-
ingly, Eq. (18) simplifies to a system of 2J+1 nonlinear equations, which
is put into discrete form by making use of collocation points Eq. (27) as

Fl(ξl,A) = 0. (30)

That is,

2J+1∑
i=1

aiH(i, l) + η2∞

[
2J+1∑
i=1

aiP3(i, l) +
ξ2l
2

(
1 + λ

)

−ξ
2
l

2

2J+1∑
i=1

aiC − λξl

][
2J+1∑
i=1

aiP1(i, l) + 1 + λ−
2J+1∑
i=1

aiC

]

+η2∞β

[
1−

( 2J+1∑
i=1

aiP2(i, l) + ξl
(
1 + λ

)
− ξl

2J+1∑
i=1

aiC − λ
)2
]

= 0.

(31)

Newton’s method is applied for solving Eq. (31) to compute the wavelet
coefficients:

A← A + ∆A (32)

where ∆A satisfies the equation

S(i, l)∆A = −Fl (33)

and
S(i, l) =

∂Fl
∂ai

. (34)
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This process is repeated recursively until the difference between two con-
secutive iterates is less than or equal to 10−12. The shear stress at the wall
is evaluated as

f ′′(0) =
1

η∞

[
(1 + λ)D −AC

]
(35)

where D is a 2J+1 row vector of ones. Our MATLAB program is de-
veloped to find the wavelet solution. The computer simulations are per-
formed for numerous values of β and λ, and the results will be discussed
later.

4.3. Residual and Error Estimates

It is observed that for Haar wavelet approximation, the error is inversely
proportional to the level of resolution. The convergence rate for the Haar
wavelet series is O

[
( 1
2J+1 )2

]
, since it belongs to the set of piecewise

constant functions (Majak et al. (2015)). However, we measure the de-
gree of exactness of the Haar approximations to the governing problem
Eq. (7) by evaluating the residual and error estimation, which are given
by the following respective relations: the residual of Eq. (7) defined as

σres = ||ε(ηl)||/2J+1 (36)

where

ε(ηl) = f ′′′(ηl) + f(ηl)f
′′(ηl) + β

(
1− (f ′(ηl))

2
)
. (37)

The solution error of Eq. (7) defined as

σerr = ||∆J(ηl)||/2J+1 (38)

where
∆J(ηl) = fJ(ηl)− fJ+1(ηl) (39)

and fJ(η) and fJ+1(η) are solutions of Eq. (7) for resolution levels J
and J + 1 respectively, ηl, l = 1, 2, . . . , 2J+1 are the collocation points
at resolution level J .

5. RESULTS AND DISCUSSION

Haar wavelet and Haar wavelet quasilinearization methods have been
developed for the two-dimensional boundary-layer flow over a moving
wedge modelled by the Falkner-Skan equation. These methods depend
on the different resolution levels J in which for large J both error and
residual tend to zero. However, for given J , we use collocation method
to determine 2J+1 unknown wavelet coefficients in the system. In both
cases, matrix inversion is required for which the MATLAB is used. To
this end, the profiles and the wall-shear stresses have been computed for
various values of physical parameters β and λ. Once the required solu-
tions are obtained in [0, 1), we revert back to η (defined over [0,∞)) from
ξ. The physical characteristics are discussed in terms of η. Haar wavelet
simulations for both accelerated and decelerated flows are obtained.

Table 1 Error estimates for Eq. (7) using HWQLM for β = 0.5, 1.5 and
different resolution level J .

J
σerr for β = 0.5 σerr for β = 1.5

λ = −1.1 λ = −1.5 λ = −1.1 λ = −1.5

4 6.9249E-06 4.0939E-05 6.8590E-06 4.0817E-05
5 1.2208E-06 7.2134E-06 1.2169E-06 7.2592E-06
6 2.1567E-07 1.2741E-06 2.1531E-07 1.2852E-06
7 3.8118E-08 2.2519E-07 3.8071E-08 2.2728E-07
8 6.7382E-09 3.9806E-08 6.7304E-09 4.0182E-08
9 1.1911E-09 7.0367E-09 1.1898E-09 7.1034E-09

Before starting any physical aspect, we discuss robustness and effi-
ciency of the HWQLM and HWM in terms of estimation of errors and
residual. These are estimated for two sets of λ and for β = 0.5 and

0 5 10 15 20 25 30
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1

1.5

2

0 10 20 30 40 50 60

0
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1.5

2

Fig. 3 Haar wavelet coefficients.

1.5 for different resolution levels. Table 1 clearly addresses that the er-
ror estimate σerr decreases gradually for increasing J . In this case, the
determinant |X| increases exponentially for increasing J which provides
a favourable situation for accurate calculation of the Haar coefficients ai
(i.e. |X| for β = 1.5 and λ = 1.1 at various resolution levels J = 4, 5, 6,
7, 8 are respectively 4.94E+ 11, 2.65E+ 21, 5.53E+ 40, 2.00E+ 79,
2.40E + 156). Some of these Haar wavelet coefficients ai presented
in Fig. 3 for β = 0.5 and for two different resolution levels. It is no-
ticed that, increase in the wavelet number i results in fast decrease of
the wavelet coefficients ai . This ability to accurately represent solution
functions with a small number of adaptively chosen wavelet coefficients
makes one of the main attractive features of our proposed method. The
same trend is preserved even for β = 2.5 in the same figure. Furthermore,
the variation of the residual estimate σres as a function of J is depicted in
Fig. 4 for λ = −1.1,−1.5 and for β = 0.5. We observe that there is
a direct relation between solution error and residual. Note that the error
decreases as residual becomes smaller and smaller, and the residual σres

decreases for increasing J .
Table 2 compares the present HWQLM and HWM results for the ve-

locity profiles f ′(η) at various η values with those produced by Sachdev
et al. (2008) for two sets of β and for λ = −1.4. It is clearly observed that
our present solutions are in excellent agreement up to desired accuracy.
To compute these results the resolution level J was set to 10 where the
error estimate is very much small. We intentionally simulated the same
results for λ = −1.1,−1.3, etc., (though not shown in Table 2), but there
is no change in the accuracy. Our computational code always begins at
the resolution level J = 1 and depends on the tolerance which is set to
10−12 in all the simulations.

On the other hand, we now turn our attention to discuss the vari-
ous solutions such as f(η), f ′(η) and f ′′(η) that are obtained from both
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Table 2 Comparison of Haar wavelet solutions f ′(η) of Eq. (7) with those obtained by HWQLM and exact solutions for λ = −1.4 (J = 10).

η
β = 0 β = 1.0

HWQLM HWM Sachdev et al. (2008) HWQLM HWM Sachdev et al. (2008)
0.00 1.4 1.4 1.4 1.4 1.4 1.4
0.25 1.31193175 1.31193175 1.31193075 1.25571272 1.25571272 1.25571373
0.50 1.23093573 1.23093573 1.23093380 1.15748961 1.15748961 1.15749169
0.75 1.16210173 1.16210173 1.16209902 1.09322033 1.09322033 1.09322362
1.00 1.10779722 1.10779722 1.10779390 1.05291736 1.05291736 1.05292200
1.25 1.06787539 1.06787539 1.06787159 1.02875319 1.02875319 1.02875938
1.50 1.04044746 1.04044746 1.04044332 1.01492908 1.01492908 1.01493703
1.75 1.02279959 1.02279959 1.02279520 1.00739558 1.00739558 1.00740543
2.00 1.01215034 1.01215034 1.01214562 1.00349057 1.00349057 1.00350180
2.25 1.00611838 1.00611838 1.00611267 1.00156760 1.00156760 1.00157495
2.50 1.00290960 1.00290960 1.00290023 1.00066896 1.00066896 1.00064411
2.75 1.00130602 1.00130602 1.00128485 1.00027079 1.00027079 1.00011411
3.00 1.00055306 1.00055306 1.00049991 1.00010364 1.00010364 1.00005186
3.25 1.00022084 1.00022084 1.00009325 1.00003717 1.00003717 1.00000617
3.50 1.00008311 1.00008311 - 1.00001211 1.00001211 -
3.75 1.00002944 1.00002944 - 1.00000312 1.00000312 -
4.00 1.00000980 1.00000980 - 1.00000000 1.00000000 -

4 5 6 7 8 9

0

0.5

1

1.5

2
10

-15

Fig. 4 Estimation of residual, σres versus level of resolution.

methods discussed above. Figure 5 discusses various solutions for two
values of λ. The solution f(η) approaches to infinity as η →∞ whereas
f ′(η) tends to its asymptotic value unity as η → ∞ (cf. Eq. (8)). Also
f ′′(η) approaches zero from below. Thus, these solutions confirm an ex-
act fluid dynamics of the problem, for example, the last derivative bound-
ary condition f ′(η) → 1 as η → ∞ suggests that f(η) → η → η0,
as η → ∞, where η0 is an integration constant (however η0 = 0, in the
present problem). This shows the accuracy and efficiency of the proposed
scheme. The similar trends are observed for any choice of λ and β though
not shown here. Also, we particularly plot the velocity profiles as a func-
tions of η in Fig. 6 for various accelerated pressure gradient parameter
β. Nevertheless, the effects of pressure gradients on the boundary-layer
flow are given in Fig. 6. Note that thickness of the boundary-layer de-
creases as β increases, and profiles approach the mainstream flow rapidly
for strong accelerated flows. Figure 6 shows the variation of the veloc-
ity profiles f ′(η) with η for various values of λ for two sets of β. It is
clearly noticed that profiles approach the mainstream flow almost in the
same speed. These profiles have been drawn using the HWQLM since
both approaches give the same solutions.

Surprisingly, the HWM for the Falkner-Skan equation predicts mul-
tiple solutions depending on the values of β and are shown in Fig. 8.
These results are shown in terms of the wall shear stress f ′′(0) in the fig-
ure. Note that for λ < 0, the method predicts only a single solution for

0 1 2 3 4 5

-1

0

1

2

3

4

5

6

Fig. 5 Haar wavelet solution for β = 0.5 and λ = −1.1,−1.5.
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Fig. 6 Variation of velocity f ′(η) with η for different values of β with
λ = −1.4.
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Fig. 7 Velocity profiles in the boundary layers under different values of β.
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Fig. 8 The wall shear stresses f ′′(0) versus λ for various β.

all β. At λ = −1, the wall shear stress vanishes for all β which means
that there is exact and trivial solution f(η) = η for Eqs. (7) and (8)
which satisfies all the boundary conditions (Sachdev et al. (2008)). Note
that for β ∈ (0, 0.5], only one solution is available for the Falkner-Skan
equation. In fact, there is unique solution for all λ . 0.9. There are dual
solutions for the system in the range β ∈ (0.5, 1] for λ > 1. In fact the
system also predicts the triple solutions for β > 1. Exceptionally, the
case β = 0 also predicts dual solutions. We note here that these multiple
solutions are obtained by setting η∞ value quite large (> 10) for every
other solution. Merchant and Davis (1989) have shown that no solution
is available for λ & 1.6.

In order to assess the nature of these multiple solutions, we inten-
tionally plot the velocity profiles for selected values of λ and β and are
shown in Fig. 9 for dual solutions and in Fig. 10 for triple solutions. As
shown in Figs. 6 and 7, every first solution in Figs. 9 and 10 approach the
end-boundary condition rapidly whereas the second and third solutions
take quite larger boundary-layer domain to the mainstream flows which
is seen in these figures.

6. CONCLUSION

In the present paper, the Falkner-Skan equation representing the boundary-
layer flow of a viscous fluid over a moving wedge is reinvestigated by
proposing two new composite numerical methods based on uniform Haar
wavelets combined with quasilinearization and collocation approach. The
main benefits of our proposed method are its simplicity, reliability, and
cost-effectiveness. Due to several inherent features of Haar wavelets,
such as sparsity of the transform matrix, small number of wavelet co-
efficients, etc., the proposed method provides excellent results for the in-
volved pertinent parameters. It is worth mentioning that the Haar wavelet
method effectively unfolds the existence and multiplicity of solutions of
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Fig. 9 Variation of velocity f ′(η) with η for dual solutions at (a) λ = 1.1
and (b) λ = 1.2.
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Fig. 10 Variation of velocity f ′(η) with η for triple solutions at (a) λ =
0.95 and (b) λ = 0.98.

the governed problems for different derived quantities and provides ac-
curate results with less computational cost. This method can be eas-
ily extended to solve many other nonlinear boundary value problems of
fluid mechanics and plays a convenient alternate over other numerical and
semi-analytical methods. Also, the proposed scheme is more suitable for
the numerical solution of boundary value problems defined on long inter-
vals.

NOMENCLATURE

x, y coordinates of Cartesian system of axes (m)
u, v flow velocities in the x and y directions respectively (m/s)
ν, ρ kinematic viscosity (m2/s) and the fluid density (kg/m3)

respectively
L length of the wegde surface (m)
δ thickness of the boundary-layer (m)
Re Reynolds number
Uw(x) wedge surface velocity (m/s)
U(x) mainstream flow velocity (m/s)
U∞, U0 non-negative constants associated with mainstream flow and

wedge surface flow respectively
β variable pressure gradient, dimensionless
ψ stream function (m2/s)
η non-dimensional variable
f(η) non-dimensional function related to the stream function
f ′′(0) wall shear stress
i wavelet number
j dilation parameter
k translation parameter
J resolution level
hi(t) Haar wavelet function
Pα,i(t) subsequent integration of Haar wavelet function
ai Haar coefficients, dimensionless
σres, σerr residual and solution error estimates respectively
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