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ABSTRACT   

In this paper, heat and mass transfer of MHD Casson fluid under radiation over an exponentially permeable stretching sheet with chemical reaction 
and Hall Effect investigated numerically. Suitable similarity transformations are used to convert the governing partial differential equations to 
nonlinear ordinary differential equations. Using a numerical technique named Keller box method the equations are then solved. Study of various 
effects such as chemical reaction, hall effect, suction /injection on magneto hydrodynamic Casson fluid along with radiation the heat source 
parameter, chemical reaction parameter, Schmidt number are tabulated for various parameters. Also local parameters are calculated and compared 
with previous literature the results are found to be in good agreement. The velocity, temperature, concentration visual representations are plotted for 
various parameters using matlab. Skin friction coefficient, Nusselt number and Sherwood number are calculated in both cases of Newtonian  and 
non-Newtonian it is observed that the friction factor and the heat and mass transfer rates reduces for increase in magnetic parameter. Also for 
progressive values of radiation parameter, thermal grashof number, concentration grashof number and hall parameter, skin friction coefficient, heat 
and mass transfer rates increases where as they decreases for chemical reaction parameter, Schmidt number. 
 Keywords: MHD, Casson fluid, Chemical reaction, radiation, Hall Effect.   

1. INTRODUCTION 

Experience shows that due to several industrial applications of Non 
Newtonian fluids such as polymer industry and mining industry attracted 
many researchers to study about non Newtonian fluids. Also fluid flow 
over a stretching sheet is extensively used in manufacturing process 
because there is an association between stretching sheet and fluid that 
flows on it.   
        Dutta et.al. (1985) analyzed fluid flow on a stretching sheet with 
uniform heat flux and observed that with increase in Prandtl number first 
wall temperature increases quickly and then decreases gradually.  
Masahide and Tadashi (1988) proved that with the non-Newtonian 
property of blood, flow speed decreases along the stenosis. James and 
Milivoje (1990a) provided theoretical and practical study of heat transfer 
effects in both the cases of Newtonian and Non Newtonian fluid. Lai 
(1990b) derived a closed form of solutions for a special case of Lewis 
number. Lin and Wu (1995) studied boundary layer flow in case of a 
vertical plate and the effects of buoyancy ratio and Lewis number on Heat 
and mass transfer are observed. Magyari and Keller (1999) observed that 
boundary layer thickness increases on enhancing the value of wall 
temperature distribution by fixing Prandtl number also by keeping wall 
temperature fixed and enhancing Prandtl number. Swathi Mukhopadhyay 
et al. (2005) observed that by expanding the length of the stretching sheet 
velocity of the fluid decreases by reducing thickness of the fluid. Later, 
Subhas et al. (2010) analyzed non Newtonian fluid flow through a porous 
medium along with the effect of suction concluded that wall temperature 
will be decreased with the effect of viscous dissipation. Vedavathi et.al 
(2015) used Runge-Kutta fourth order and concluded that suction effect 
maintains fixed growth of the thermal, concentration, hydrodynamic 
boundary layers. After that Vedavathi et.al (2017) concluded that on 
increasing radiation absorption parameter velocity profiles will be 
enhanced and increasing Prandtl number skin friction number decreases.  

 
Talla, Kumari and Sridhar (2018a) studied MHD Casson fluid flow over a 
exponentially stretching surface and observed that with increase in 
Casson parameter velocity reduces and concentration increases. Reddy 
and Krishna (2018b) observed that as the Soret number increases velocity 
boundary layer, thermal boundary layer, concentration boundary layer 
diminishes. Chandra Sekhar (2018c) observed that temperature increases 
with increase of chemical reaction parameter. Konda Reddy et al. (2018d) 
studied MHD mixed convection flow of a Casson Nano fluid over a 
nonlinear stretching sheet temperature, concentration enhanced and 
velocity diminished with increase in Casson parameter. Charan Kumar et 
al. (2018e) used RK- Fehlberg method to study the effects of joule 
heating and chemical reaction effects on fluid flow over a stretching sheet 
along with radiation and porous medium.  Anki Reddy and Suneetha 
(2018f) concluded that temperature of the fluid and thermal relaxation 
time are oppositely related.  Ghiasi and Saleh (2018g) witnessed that 
casson fluid along with suction effect reduces heat, mass transfer rates. 
Flilihi et al. (2019a) concluded that fluid temperature raises with increase 
in dissipation parameter. Dharmaiah et al. (2019b) used perturbation 
method and observed that chemical reaction parameter dominates the 
concentration profiles. Sampath and Pai (2019c) found that enhancing 
magnetic parameter skin friction decreases. Nagaraju et al.(2019d) used 
HAM technique and concluded that raise in magnetic parameter enhances 
velocity also energy dissipation step ups causing increase in temperature, 
later Huang pin et al.(2019e) used Keller box method and observed that  
suction increases the Nusselt number and Sherwood number. Blowing 
reduces them. Ganapathirao et al. (2019f) found that skin friction and 
coefficient of heat transfer raises with enhancing buoyancy parameter. 
Ibrahim et al. (2019g) observed that velocity increases with increasing 
buoyancy parameter. Raghunandana Sai and Ramana Murthy (2019h) 
studied the impact of various parameters on velocity and temperature 
profiles and observed that with increase in Prandtl number and time 
temperature increases. Ravi Kumar et al. (2019i) noticed that with 
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increase in slip parameter, Grashof’s number velocity increases. Kavitha 
and Naikoti (2019j) used quasi-linearization technique to study the power 
law fluid flow under the influence of radiation. Swamy et al. (2019k) 
studied MHD flow in a porous channel with suction and observed that as 
the intensity of the magnetic field increases fluid velocity reduces. Vijaya 
and Reddy (2019l) analyzed the MHD Casson fluid flow on a vertical 
porous plate using Perturbation technique method. Manjula and Chandra 
Sekhar (2019m) observed Soret and heat generation effects on Casson 
fluid flow concluded that raise in Soret number values increases 
buoyancy force hence velocity increases. Sivaiah et al. (2019n) concluded 
that due to thermal radiation parameter, temperature decreases and with 
the presence of Eckert number temperature increases. Dharmaiah. et al. 
(2019o) implemented perturbation technique and noticed that 
concentration of the fluid reduces with the presence of chemical reaction. 
Balamurugan et al. (2020a) concluded that entropy generation increases 
for higher values of magnetic parameter or thermal radiation parameter. 
Later Vijaya et al. (2020b) used bvp4c technique and noted that for 
increasing values of magnetic parameter velocity of fluid improved. 
Dharmaiah. et al. (2020c) studied the influence of hall and ion slip on a 
Nano fluid and concluded that skin friction coefficient raises with 
magnetic parameter.Nagalaksmi and vijaya(2020d) used Runge Kutta 
method and observes for progressive values of Prandtl number thermal 
boundary layer thickness diminishes. Ibrahim.et al. (2020e) used 
Homotopy analysis method to study the influence of various parameters 
like radiation, chemical reaction of MHD casson fluid flow over a 
stretching sheet. 
     The study of flow above an exponentially stretching sheet has 
significant applications in various industries and technological 
processes for example fluid film condensation process, cooling process 
of metallic sheets, design of chemical processing equipment, polymer 
industries. Also the radiation effect on MHD boundary layer flow has 
various applications in manufacturing industries like glass-fiber produ-
ction, paper production etc. Hall effect has some industrial applications 
like automotive safety, fluid monitoring, building automation, personal 
electronics like disk drives, power supply protectors .with this interest 
in the present paper, Keller Box method was implemented to study the 
influence of hall effect in presence of radiation and chemical reaction of 
MHD Casson fluid flow on an exponentially permeable stretching 
sheet. 

2. FORMULATION OF THE PROBLEM 

In this study a steady, two dimensional, incompressible, radiative, 
MHD Casson fluid flow over an exponentially permeable stretching 
sheet under the influence of Hall Effect is considered. u, v represents 
velocity components in x and y directions. The exponentially stretching 
sheet is assumed to be at y=0. Also flow is assumed to be above x-axis 
only. Magnetic field is applied externally normal to stretching sheet. 
The magnetic Reynolds number is very small because of the magnetic 
field. Here we used external heat source, Hall Effect, chemical reaction. 

 

 
 

 
Fig. 1 Flow model of the problem 

  
     
 
 

 The rheological equation of Casson fluid is  
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Where B is plastic dynamic viscosity, yP is yield stress,  is (i, j) th 

component of deformation rate, c  is critical value of this product. 

Supporting to the above assumptions the guiding partial differential 
equations are taken as below. 
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Boundary conditions are  
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By observing the equations here we introduce the similarity 
transformations, 
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The partial differential equations are transformed to  
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Boundary conditions transformed to  
Sf  , 1f                    at 0  

1 , 1                                                                     (10) 

0f                                at      

0 , 0  

3. NUMERICAL PROCEDURE 
The moderate implicit finite difference method called Keller Box 
method to convert equations (7)-(9) into first order. By using this 
method, the resultant equations are linearized and then converted into 
matrix form by introducing Newton’s method. Finally, the tri-diagonal 
elimination method is applied to solve the linear system of equations 
Cebeci et al. (1988). 
Introducing qppf  ,  

                    tgg  ,                                            (11) 
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Using finite differences 
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We linearize the system of equations given in (15) Using Newton’s 
method for that we introduce  
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  Where j= 1, 2, 3, n-1. 
 The resultant linear equations are solved by LU decomposition 

method, the process of calculation should be terminated until it satisfies 

convergence criteria. The calculations are   terminated for 
   ig0  

where 000001.0 .  
 4. RESULTS AND DISCUSSION 
 
Graphs are plotted for various parameters like Hartman’s number, 
exponential parameter, Thermal Grashof’s number, concentration 
Grashof’s number, radiation parameter, Prandtl number,  heat source 
parameter, Eckert number, Schmidt number, chemical reaction 
parameter, Suction parameter, Hall parameter using MATLAB.  

 
Fig. 2 Effect of Ha on Velocity 

 
 

Fig. 3 Effect of Ha on Temperature 
 
 

 
Fig. 4 Effect of Ha on concentration 

 

 
Fig. 5 Effect of N on Velocity 
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Fig. 6 Effect of N on Temperature 
 

 
 

Fig. 7 Effect of N on Concentration 
 

 
Fig. 8 Effect of Gr on Velocity 

 
 

Fig. 9 Effect of Gr on temperature 
 
 

 
Fig. 10 Effect of Gc on velociy 

 

 
Fig. 11 Effect of Gc on Concentration 
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Fig. 12 Effect of R on temperature 

 
Fig. 13 Effect of Pr on Temperature 

 
 

 
 

Fig. 14 Effect of Q on temperature 

 
 

 
 

Fig. 15 Effect of Ec on Temperature 

 
Fig. 16 Effect of Sc on concentration 

 

 
 

Fig. 17 Effect of  on concentration 
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Fig. 18 Effect of m on velocity 

 

 
 

Fig. 19 Effect of m on Concentration 
 

 
Fig. 20 Effect of S on velocity 

 

 

 
Fig. 21 Effect of S on temperature 

 
 

 
Fig. 22 Effect of S on Concentration 

 
Fig. 2, 3, 4 respectively indicates that with increase in the 

Hartmann number velocity decreases and temperature, concentration 
profiles increases due to an opposing force called Lorentz force. It is 
noticed that temperature plots rise adequately in case of Casson fluid 
when compared with Newtonian fluid. Fig. 5, 6, 7 respectively indicates 
that with increase in exponential parameter velocity, temperature and 
concentration profiles decreases because rise in exponential parameter 
causes reduction in momentum, thermal and concentration boundary 
layers. Fig. 8, 9 respectively indicates that with increase in thermal 
Grashof’s number, raise in velocity profiles and decreasing tendency 
observed in temperature because developing buoyancy force suppress 
the value of contaminant concentration within the boundary layer 
regime normal to the barrier. Fig. 10, 11 indicates that with increase in 
concentration Grashof’s number, raise in velocity profiles and fall in 
concentration profiles is observed. With increase in concentration 
Grashof’s number momentum boundary layer thickness increases 
concentration boundary layer thickness decreases. Fig. 12 indicates that 
increase in Radiation parameter temperature enhancement is observed 
for both fluids. This happens due to the reason that raise in radiation 
heat energy with that effect temperature increases. Fig. 13 indicates that 
increase in Prandtl number temperature decreases for both fluids. For 
Large values of Prandtl number heat spreads slowly from surface when 
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compared to smaller values of Prandtl number. Fig. 14 indicates that 
increase in heat source parameter temperature diminishes for both the 
fluids due to decrease in thermal boundary layer thickness. Fig. 15 
indicates that enhancement in Eckert number (Ec) raise in thermal 
conductivity of the fluid is observed so temperature of fluid increases. 
Fig.16 indicates that with increase in Schmidt number mass transfer 
increases so concentration profiles decreases. Fig. 17 indicates that 
increase in chemical reaction parameter, concentration profiles 
decreases. Fig. 18, 19 indicates that with increase in hall parameter, 
velocity increases and reverse trend is observed for temperature. Fig.20, 
21, 22 indicates that increase in S fluid will come nearer to the surface 
which causes reduction in thermal, momentum and concentration 
boundary layer thickness diminishes so velocity and concentration 
profiles decreases. 

To check the validity of the numerical method, results are 
compared with existing literature by calculating )0(f  for various 

values of magnetic field parameter (Hartmann number) by taking 
 




BGQEcSc

NRdSGcGr

,1.0,2.0,2.0,7.0

,7.0Pr,0.1,0.1,0.0  

Table1 Comparison of )0(f   

 

 

 

   By observing above table excellent correlation is observed with 
previous results for values of )0(f  . On increasing Hartman number, 

substantial resistance in flow which causes raise in skin friction values. 
The influence of various parameters on the skin friction coefficient, 
Nusselt number, and Sherwood number for the Newtonian and Casson 
fluids is shown in Tables 2 and 3. 
 
Table 2 Table of parameters skin friction coefficient, Nusselt number, 
Sherwood number in case of Newtonian fluid 

 

Table-3 Table of parameters skin friction coefficient, Nusselt number, 
Sherwood number in case of Casson fluid. 

 

5. CONCLUSIONS 

It is evident from the tables that 
1. Raise in the Hartman number reduces the friction factor and the heat 
and mass transfer rates. 
2. Increase in the radiation parameter, thermal Grashof number, and 
concentration Grashof number increases the skin friction coefficient and 
the heat and mass transfer rates. 
3. The skin friction coefficient declines and the Nusselt number and the 
Sherwood number grow with increasing suction parameter.  
4. As the Prandtl number and the heat source parameter increase, the 
heat transfer rate grows and the skin friction coefficient and mass 
transfer rate decrease. 
5. Increase in the Eckert number enhances the skin friction coefficient 
and the mass transfer rate but depreciates the heat transfer rate. 
6. As the chemical reaction parameter and Schmidt number rise, the 
mass transfer rate grows and the skin friction coefficient and the heat 
transfer rate decrease. 
7. Increase in hall parameter, skin friction, heat transfer rate, and mass 
transfer rate increases. 
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NOMENCLATURE 

Ha-  Hartman’s number 
N- Exponential Parameter 
Gr- Thermal Grashof number 
Gc- Concentration Grashof number 
R- Radiation parameter 
Pr- Prandtl number 

N Ha Gr Gc S Pr R Q Ec Sc J m

1.5 0 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -1.853711 1.56572 1.449699
0.3 -1.873202 1.558491 1.445596
0.8 -2.058748 1.477606 1.421723

1.5 0.5 0.2 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -1.816384 1.579024 1.461124
0.5 -1.565527 1.661807 1.515356

1 -1.197801 1.762485 1.573135
1.5 0.5 0.1 0.2 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -1.829514 1.582447 1.456583

0.5 -1.612301 1.662566 1.501623
1 -1.280476 1.753283 1.556699

1.5 0.5 0.1 0.1 0 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -1.543743 1.248192 1.336602
0.6 -1.990505 1.616101 1.460563
1.2 -2.56068 2.059417 1.610409

1.5 0.5 0.1 0.1 0.5 0.3 0.1 0.2 0.2 0.6 0.1 0 0 -1.903033 0.866205 1.439758
0.5 -1.905966 1.214185 1.438842

1 -1.908353 2.026923 1.438156
1.5 0.5 0.1 0.1 0.5 0.7 0 0.2 0.2 0.6 0.1 0 0 -1.907713 1.496123 1.438335

0.5 -1.905735 1.726055 1.438911
1 -1.90387 1.931862 1.439489

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.1 0.2 0.6 0.1 0 0 -1.907028 1.497866 1.438517
0.5 -1.90814 1.682265 1.438249

1 -1.90951 1.906957 1.437917
1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0 0.6 0.1 0 0 -1.907395 1.636836 1.438447

1 -1.906956 1.174491 1.438462
2 -1.906517 0.712266 1.438477

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.4 0.1 0 0 -1.890318 1.555793 1.095974
0.8 -1.918081 1.540782 1.705889

1 -1.927983 1.536984 1.987027
1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0 0 0 -1.859435 1.543964 1.55865

0.5 -1.871946 1.537716 1.707068
1 -1.880958 1.534623 1.828975

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0.1 0 -1.86252 1.531867 1.591498
0.5 -1.862358 1.490644 1.591511

1 -1.862156 1.439112 1.591526
1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -1.897509 1.522063 1.584614

0.5 -1.879693 1.533472 1.588119
1 -1.852591 1.546542 1.593463

)0()
1

1( f 
 )0(

3

4
1 






 

R )0(

N Ha Gr Gc S Pr R Q Ec Sc J m

1.5 0 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -5.41424 1.853095 1.863675
0.3 -5.46146 1.849093 1.862614
0.8 -5.74174 1.824643 1.856298

1.5 0.5 0.2 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -5.45567 1.846769 1.862275
0.5 -5.19489 1.860468 1.866697

1 -4.77694 1.881268 1.873588
1.5 0.5 0.1 0.2 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -5.47823 1.844448 1.706777

0.5 -5.21797 1.858093 1.710093
0.8 -4.96048 1.871529 1.713391

1.5 0.5 0.1 0.1 0 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -5.21825 1.915135 1.549382
0.3 -5.63958 1.883 1.738069

1 -6.11114 2.328931 1.938162
1.5 0.5 0.1 0.1 0.5 0.3 0.1 0.2 0.2 0.6 0.1 0 0 -5.53606 1.169879 1.860854

0.5 -5.54173 1.525454 1.860779
1 -5.54661 2.284788 1.860725

1.5 0.5 0.1 0.1 0.5 0.7 0 0.2 0.2 0.6 0.1 0 0 -5.54527 1.749458 1.860739
0.5 -5.54127 2.184569 1.860784

1 -5.53765 2.565606 1.860832
1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.1 0.2 0.6 0.1 0 0 -5.54428 1.816144 1.86075

0.5 -5.5449 1.918948 1.860741
1 -5.54567 2.045509 1.86073

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0 0.6 0.1 0 0 -3.55831 1.909817 1.629662
1 -3.55758 1.187979 1.629666
2 -3.55684 0.466352 1.62967

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.4 0.1 0 0 -5.51808 1.843645 1.348453
0.8 -5.5492 1.841755 1.974509

1 -5.55976 1.841257 2.249723
1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0 0 0 -5.53637 1.842327 1.686497

0.5 -5.54139 1.842242 1.781922
1 -5.54552 1.842129 1.869108

1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0.1 0 -5.53733 1.823603 1.706317
0.5 -5.53674 1.748748 1.706326

1 -5.53601 1.655172 1.706338
1.5 0.5 0.1 0.1 0.5 0.7 0.1 0.2 0.2 0.6 0.1 0 0 -5.664728 1.831206 1.703408

0.5 -5.614168 1.835648 1.704563

1 -5.537475 1.842316 1.706314

 )0()
1

1( f 


)0(
3

4
1 






 

R )0(

)0( 

Ha  Present 
study 

Ibrahim.et.al   
(HAM) 
(2020) 

Kameswaran.et.al 
( RK Fehlberg) 
(2012) 

0.0 1.281814 1.281803 1.281809 
1.0 1.629147 1.629170 1.629178 
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Ec- Eckert number 
Q- Heat generation parameter 
Sc- Schmidt number 
m- hall parameter 
𝜌 – density of the fluid 
k- thermal conductivity of the fluid 
𝑘 - chemical reaction rate 
S- Suction parameter 
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