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ABSTRACT 

The paper introduces the flow equations for the fluid flows in a cylindrical tube respectively on the macroscale, multiscale and nanoscale, especially 

recently developed ones. It manifests that when these equations should be used in calculating the transferred mass and what should be taken into 

consideration when the tube inner radius is reduced to very small values. It gives an important indication on how to treat the mass transfer calculation 

for the tube flow on different size scales. 
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1. INTRODUCTION 

It is well known that the Hagen-Poiseuille equation can handle the flow 

problem in the cylindrical tube with macro size. However, when the 

inner radius of the tube was reduced to the scales of 1nm or 10nm, it was 

found that the flow rate through the tube is much less or much greater 

than the classical Hagen-Poiseuille equation prediction (Calabrò et al., 

2013; Myers, 2011; Sofos et al., 2015; Takaba et al., 2007); the former 

was attributed to the strong fluid-tube wall interaction, which results in 

the formation of the solidified layer on the tube wall (Sofos et al., 2015; 

Takaba et al., 2007) and the strong non-continuum effect of the fluid 

(Zhang, 2015); the latter was attributed to the weak fluid-tube wall 

interaction which results in the interfacial slippage on the tube wall 

(Calabrò et al., 2013; Myers, 2011). When the inner radius of the tube is 

on the scales of 10nm or 100nm, the multiscale flow may occur in the 

tube, and it consists of the nanoscale non-continuum adsorbed layer flow 

and the intermediate continuum fluid flow (Chan and Horn, 1985); the 

surface property of the tube wall and the fluid-tube wall interaction have 

a significant influence on this multiscale flow, and the Hagen-Poiseuille 

equation fails for this flow. Chan and Horn (1985) experimentally 

observed the anomalous hydrodynamic lubrication behavior in a 

concentrated contact deviating from the classical Reynolds lubrication 

theory when the surface separation was below 50nm; They suggested the 

equivalent solid layer on the contact surface for satisfactorily explaining 

the anomalous phenomena. It is very possible that their observation be 

due to the multiscale hydrodynamic lubrication effect with the formation 

of the adsorbed layer on the contact surface, as they found that the 

hydrodynamic behavior still followed the classical Reynolds lubrication 

equation when the surface separation was over 50nm.  

We have no difficulty in calculating the mass flow rate through the 

conventional cylindrical tube by using the classical hydrodynamic flow 

theories. But we often faced the difficulty in calculating the flow rate 

through the cylindrical tube with very small inner radii where the 
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multiscale flow or even the nanoscale non-continuum flow occur; the 

popular dints for these calculations are to use molecular dynamics 

simulation (MDS) (Atkas and Aluru, 2002; Borg et al., 2013; Dang and 

Chang, 1997; Liu et al., 2007; Nie et al., 2004; Sun et al., 2010; Yang 

and Zheng, 2010; Yen et al. 2007). However, for engineering flows with 

large ratios of the tube axial length to the tube inner radius, the costs of 

computational time and computer storage are normally unaffordable 

with the use of MDS. We face the task to develop new calculation models 

for the mass transfer in the very small cylindrical tube with the multiscale 

or nanoscale flows. 

This paper reviews the recent emerging theoretical models and 

calculation equations for the multiscale and nanoscale flows in the 

cylindrical tube. The validity of these equations is discussed. The 

borderlines among the calculation equations are shown. The paper 

emphasizes the effect of the adsorbed layer on the tube wall which should 

be taken into consideration when facing the flow problem in the 

cylindrical tube the inner radius of which is less than one hundred times 

of the thickness of the adsorbed layer. 

2. DIFFERENT FLOW REGIMES IN THE 

CYLINDRICAL TUBES WITH DIFFERENT 

TUBE INNER RADII  

The cylindrical tubes with different inner radii have applications in 

different areas. Their sizes are varied in wide ranges. In animals, the 

blood vessels including the capillary vessels should belong to the 

cylindrical tubes with macroscale sizes, where the blood flow is 

described by the continuum flow theory (Taylor et al., 1998). In 

conventional cooling and heating systems, the cylindrical tubes where 

the liquid media flows also belong to those with macroscale size. It is 

well recognized that the Hagen-Poiseuille equation can handle the flow 

in this sort of cylindrical tube. Figure 1(a) shows the cylindrical tube with 

the geometrical size 𝑅0/ℎ𝑏𝑓 ≥ 100, where 𝑅0 is the tube inner radius 
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and ℎ𝑏𝑓 is the thickness of the adsorbed layer on the tube wall; actually, 

for the liquid flow in this type of cylindrical tube the continuum flow 

theory is valid (Li and Zhang, 2021).  

In micro/nano porous filtration membranes, the pore inner radius 

can be on the scales of 1𝜇𝑚, 100nm and 10nm. In micro cooling and 

heating systems, the inner radius of the cylindrical tube can also be on 

such scales. In this type of cylindrical tube, the thickness ℎ𝑏𝑓 of the 

adsorbed layer on the tube wall becomes comparable to the tube inner 

radius 𝑅0; the flowing media in such a tube is actually as Fig.1(b) shows; 

there may be several annular molecular layers physically adsorbed to the 

tube wall, while surrounded by the adsorbed layer is the continuum liquid. 

It was found that for 1 < 𝑅0/ℎ𝑏𝑓 < 100, the flow in the cylindrical tube 

should be treated as multiscale by incorporating both the flow of the 

adsorbed layer and the flow of the continuum liquid (Li and Zhang, 

2021). 

In a super filtration membrane, the radius 𝑅0 of the filtration pore 

can be on the scale of 1nm and no more than the thickness ℎ𝑏𝑓 of the 

potentially formed adsorbed layer on the tube wall. In this case, the 

continuum liquid flow vanishes and the non-continuum flow occurs in 

the whole pore. The flow through the cell membrane in an animal may 

be also like this case. The non-continuum flow equation should solve this 

flow problem.  

The wall slippage not only occurs in the macroscopic cylindrical 

tube as like Fig.1(a) shows but also easily occurs in the microscopic and 

nanoscopic cylindrical tubes as like Figs.1(b) and (c) show. It can 

improve the flow rate through the nanotube with two orders higher than 

the classical Hagen-Poiseuille equation prediction (Majumder et al., 

2005; Mattia and Calabro, 2012; Li and Zhang, 2021). It was attributed 

to the hydrophobic tube wall and the weak fluid-tube wall interaction 

(Majumder et al., 2005; Mattia and Calabro, 2012). 

 

             
(a)  𝑅0/ℎ𝑏𝑓 ≥ 100     (b) 1 < 𝑅0/ℎ𝑏𝑓 < 100 

 

      
     (c)  𝑅0/ℎ𝑏𝑓 ≤ 1       (d) Coordinate along the axial  

                         direction of the tube 

 

Fig．1 Cylindrical tubes with different flow regimes. (a) Continuum flow; 

(b) Multiscale flow; (c) Nanoscale non-continuum flow; (d) Axial profile 

of the cylindrical tube with the used coordinate. 

3. FLOW EQUATIONS FOR THE THREE FLOW 

REGIMES  

3.1 For the continuum flow 

In the cylindrical tube shown by Fig.1(a), the thickness ℎ𝑏𝑓  of the 

adsorbed layer on the tube wall is far less than the tube inner radius 𝑅0 

and the effect of the adsorbed layer is negligible. Based on the 

assumptions of the Newtonian liquid and the laminar, isothermal and 

steady flow, accounting for the wall slippage, the continuum equation 

for calculating the mass flow rate 𝑞𝑚  (in kg/s) through the tube in 

Fig.1(a) is:  

𝑞𝑚 = 𝜋𝜌𝑢ത𝑅0
2 −

𝜋𝜌𝑅0
4

4𝜂

𝜕𝑝

𝜕𝑥 
 ,                                 for    𝑅0/ℎ𝑏𝑓 ≥ 100    (1) 

where 𝑢ത  is the slipping velocity of the liquid adjacent to the tube wall, 

𝜌  and 𝜂  are respectively the bulk density and bulk viscosity of the 

liquid, p is the pressure driving the flow, and x is the coordinate along 

the axial direction. 

In Eq (1), for no wall slippage, put 𝑢ത = 0; for the wall slippage 

occurrence, put 𝜕𝑝/𝜕𝑥 = −𝜏𝑠,𝑓−𝑤/𝑅0, where 𝜏𝑠,𝑓−𝑤 is the interfacial 

shear strength on the fluid-tube wall interface, and the interfacial slipping 

velocity 𝑢ത  is determined by the power loss on the whole tube. 

3.2 For the multiscale flow 

In the cylindrical tube shown by Fig.1(b), the molecules within the 

adsorbed layer are orientated (Pu and Liu, 1999) and the local density 

and local viscosity within the layer are varied (Bitsanis et al., 1987) due 

to the fluid-tube wall interaction. Both the effective viscosity and the 

average density of the layer are increased compared to the fluid bulk 

values (Meyer et al., 1998). Also, the combined effect of the 

discontinuity and inhomogeneity across the layer thickness should be 

considered (Zhang, 2006). The flow of the adsorbed layer should be 

described by the nanoscale non-continuum flow equation, and that of the 

continuum liquid should be described by the continuum flow equation. 

The flow in the tube is actually multiscale.  

Calculating this multiscale flow is really challenging. We may use 

molecular dynamics simulation to calculate the flow rate of the adsorbed 

layer and use the continuum fluid model to calculate the flow rate of the 

continuum liquid (Atkas and Aluru, 2002; Borg et al., 2013; Dang and 

Chang, 1997; Liu et al., 2007; Nie et al., 2004; Sun et al., 2010; Yang 

and Zheng, 2010; Yen et al. 2007). This multiscale approach is hard to 

be implemented for an engineering multiscale flow, where the tube axial 

length, the tube thickness, and the circumferential length of the adsorbed 

layer area are often out of the range that MDS can model; The 

computational time and computer storage cost by MDS for the 

engineering multiscale flow is too large to be affordable.  

3.2.1 For the case of the adsorbed layer-tube wall interfacial 

slippage 

Based on the assumptions of the Newtonian continuum liquid and the 

laminar, isothermal and steady flow on the ensemble average, Zhang 

(2020a) developed a distinct multiscale approach for the multiscale flow 

in the tube in Fig.1(b), by using the equivalent continuum model to 

describe the adsorbed layer flow with incorporation of the above 

mentioned properties of the adsorbed layer. According to his approach, 

for the interfacial slippage on the adsorbed layer-tube wall interface, 

which may be due to the hydrophobic tube wall, the total mass flow rate 

through the tube in Fig.1(b) is calculated by the following equation 

(Zhang, 2020a): 

𝑞𝑚 = 2𝜋𝑅𝑒,0𝑢തℎ𝑏𝑓𝜌𝑏𝑓,1
𝑒𝑓𝑓

+ 𝜋𝑢ത(𝑅0 − ℎ𝑏𝑓)
2

𝜌 

+2𝜋𝑅𝑒,0 [
𝐹1ℎ𝑏𝑓

3

12𝜂𝑏𝑓,1
𝑒𝑓𝑓

𝜕𝑝

𝜕𝑥
−

ℎ𝑏𝑓
3

2𝜂𝑏𝑓,1
𝑒𝑓𝑓

𝜕𝑝

𝜕𝑥
 

⋅ (1 +
1

2𝜆𝑏𝑓,0
−

𝑞0 − 𝑞0
𝑛

𝑞0
𝑛−1 − 𝑞0

𝑛

∆𝑛−2

ℎ𝑏𝑓
)

𝜀

1 +
𝛥𝑥
𝐷

] 𝜌𝑏𝑓,1
𝑒𝑓𝑓

 

+ {
4

𝜂𝑏𝑓,1
𝑒𝑓𝑓

[
𝐹2𝜆𝑏𝑓,0

2

6
−

𝜆𝑏𝑓,0

1 +
∆𝑥
𝐷

(
1

2
+ 𝜆𝑏𝑓,0 −

(𝑞0 − 𝑞0
𝑛)∆𝑛−2

2(𝑞0
𝑛−1 − 𝑞0

𝑛)(𝑅0 − ℎ𝑏𝑓)
)] 

−
1

4𝜂
} ⋅ 𝜋𝜌(𝑅0−ℎ𝑏𝑓)

4 𝜕𝑝

𝜕𝑥
  ,  

for  1 < 𝑅0/ℎ𝑏𝑓 < 100    (2) 

where 𝑢ത  is the interfacial slipping velocity on the adsorbed layer-tube 

wall interface, D is the diameter of the fluid molecule,  𝑅𝑒,0 = 𝑅0(1 −

𝜆𝑥/2) ,  𝜆𝑏𝑓,0 = 𝜆𝑥/[2(1 − 𝜆𝑥)] ,  𝜆𝑥 = ℎ𝑏𝑓/𝑅0 ,  𝜌𝑏𝑓,1
𝑒𝑓𝑓

 and 𝜂𝑏𝑓,1
𝑒𝑓𝑓

 are 

respectively the average density and the effective viscosity of the 
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adsorbed layer across the layer thickness, 𝜂𝑏𝑓,1
𝑒𝑓𝑓

= 𝐷ℎ𝑏𝑓/[(𝑛 − 1)(𝐷 +

∆𝑥)(∆𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)
𝑎𝑣𝑟,𝑛−1

), 𝑞0 = ∆𝑗+1/∆𝑗  and 𝑞0 is constant, ∆𝑥 is the 

separation between the neighboring liquid molecules in the flow 

direction in the adsorbed layer, 𝜀 = (2𝐷𝐼 + 𝐼𝐼)/[ℎ𝑏𝑓(𝑛 − 1)(∆𝑙/

𝜂𝑙𝑖𝑛𝑒,𝑙)𝑎𝑣𝑟,𝑛−1] , 𝐹1 = 𝜂𝑏𝑓
𝑒𝑓𝑓

(12𝐷2𝜓 + 6𝐷𝜙)/ℎ𝑏𝑓
3  , and 𝐹2 =

6𝜂𝑏𝑓
𝑒𝑓𝑓

𝐷(𝑛 − 1)(𝑙∆𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)
𝑎𝑣𝑟,𝑛−1

/ℎ𝑏𝑓
2 ; Here, I = ∑

𝑛−1

𝑖=1
𝑖(∆𝑙/

𝜂𝑙𝑖𝑛𝑒,𝑙)
𝑎𝑣𝑟,𝑖

, 𝐼𝐼 = ∑
𝑛−2

𝑖=0
[𝑖(∆𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)

𝑎𝑣𝑟,𝑖
+ (𝑖 + 1)(∆𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)

𝑎𝑣𝑟,𝑖+1
]∆𝑖 , 

𝜓 = ∑
𝑛−1

𝑖=1
𝑖(𝑙∆𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)

𝑎𝑣𝑟,𝑖
, 𝜙 = ∑

𝑛−2

𝑖=0
[𝑖(𝑙∆𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)

𝑎𝑣𝑟,𝑖
+

(𝑖 + 1)(𝑙∆𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)
𝑎𝑣𝑟,𝑖+1

]∆𝑖  , 𝑖(∆𝑙/𝜂𝑙𝑖𝑛𝑒,𝑙)
𝑎𝑣𝑟,𝑖

= ∑
𝑖

𝑗=1
∆𝑗−1/

𝜂𝑙𝑖𝑛𝑒,𝑗−1 , 𝑖(𝑙∆𝑙−1/𝜂𝑙𝑖𝑛𝑒,𝑙−1)
𝑎𝑣𝑟,𝑖

= ∑
𝑖

𝑗=1
𝑗∆𝑗−1/𝜂𝑙𝑖𝑛𝑒,𝑗−1 ， n is the 

equivalent number of the fluid molecules across the adsorbed layer 

thickness, 𝜂𝑙𝑖𝑛𝑒,𝑗−1 and ∆𝑗−1 are respectively the local viscosity and 

the separation between the 𝑗𝑡ℎ  and (𝑗 − 1)𝑡ℎ  molecules across the 

adsorbed layer thickness, and 𝑗 and (𝑗 − 1) are respectively the order 

numbers of the molecules across the adsorbed layer thickness shown in 

Fig.1(b). 

 When no wall slippage occurs, equation (2) is valid just by putting 

𝑢ത = 0. When the adsorbed layer-tube wall interfacial slippage occurs, by 

using the limiting interfacial shear strength model, which interprets the 

interfacial slippage as the result of the interfacial shear stress exceeding 

the interfacial shear strength, equation (2) will be valid by putting the 

pressure gradient as: 
𝜕𝑝

𝜕𝑥
=

𝜏𝑠,𝑏−𝑤

𝑅0 − ℎ𝑏𝑓 + 𝐷(𝑛 − 1)
                                                                        (3) 

where 𝜏𝑠,𝑏−𝑤  is the adsorbed layer-tube wall interfacial shear strength. 

3.2.2 For the case of the adsorbed layer-fluid interfacial 

slippage 

For a hydrophilic cylindrical tube wall, the interfacial slippage may first 

occur on the adsorbed layer-fluid interfacial slippage, while it is absent 

on the adsorbed layer-tube wall interface. According to the multiscale 

approach developed by Zhang (2020b), which is based on the 

assumptions of the Newtonian rheological behavior within the 

continuum liquid and the laminar, isothermal and steady flow on the 

ensemble average, when this type of interfacial slippage occurs, the total 

mass flow rate through the tube is: 𝑞𝑚 = 𝑞𝑚,𝑏𝑓+𝑞𝑚,ℎ𝑓, where 𝑞𝑚,𝑏𝑓 is 

the mass flow rate of the adsorbed layer through the tube and calculated 

by the following equation: 

𝑞𝑚,𝑏𝑓 = 2𝜋𝜌𝑏𝑓,1
𝑒𝑓𝑓

𝑅𝑒,0 [
ℎ𝑏𝑓

3

2𝜂𝑏𝑓,1
𝑒𝑓𝑓

𝜏𝑠,𝑏−𝑓

𝑅0 − ℎ𝑏𝑓
(1 +

1

2𝜆𝑏𝑓,0

−
𝑞0 − 𝑞0

𝑛

𝑞0
𝑛−1 − 𝑞0

𝑛

∆𝑛−2

ℎ𝑏𝑓
)

𝜀

1 +
𝛥𝑥
𝐷

−
𝐹1ℎ𝑏𝑓

3

12𝜂𝑏𝑓,1
𝑒𝑓𝑓

𝜏𝑠,𝑏−𝑓

𝑅0 − ℎ𝑏𝑓
] 

 

(4) 

and 𝑞𝑚,ℎ𝑓 is the mass flow rate of the continuum fluid through the tube 

and calculated by the following equation: 

𝑞𝑚,ℎ𝑓 =  
𝜋𝜌(𝑅0 − ℎ𝑏𝑓)

3
𝜏𝑠,𝑏−𝑓

4𝜂

+ 𝜋𝜌(𝑅0 − ℎ𝑏𝑓)
2

[
∆𝑃𝑂𝑊

𝜋∆𝑙𝜏𝑠,𝑏−𝑓(𝑅0 − ℎ𝑏𝑓)
 

−
2𝐹2(𝑅0 − ℎ𝑏𝑓)𝜏𝑠,𝑏−𝑓𝜆𝑏𝑓,0

2

3𝜂𝑏𝑓,1
𝑒𝑓𝑓

−
4(𝑅0 − ℎ𝑏𝑓)𝜏𝑠,𝑏−𝑓𝜆𝑏𝑓,0

𝜂𝑏𝑓,1
𝑒𝑓𝑓

(1 +
𝛥𝑥
𝐷

)
 

⋅ (
1

2
+ 𝜆𝑏𝑓,0 −

(𝑞0 − 𝑞0
𝑛)∆𝑛−2

2(𝑞0
𝑛−1 − 𝑞0

𝑛)(𝑅0 − ℎ𝑏𝑓)
)] 

(5) 

Here, 𝜏𝑠,𝑏−𝑓 is the interfacial shear strength on the adsorbed layer- 

fluid interface, ∆𝑙 is the axial length of the tube, ∆𝑃𝑂𝑊 = 𝑃𝑂𝑊 −
𝑃𝑂𝑊𝑐𝑟, 𝑃𝑂𝑊 is the power loss on the tube with the axial length ∆𝑙, 
and 𝑃𝑂𝑊𝑐𝑟 is the critical power loss on the tube with the axial length 

∆𝑙 for initiating the interfacial slippage.  

3.2.3 Commenting remarks 

Various calculations from Eqs.(2), (4) and (5) gave physically reasonable 

results for different fluid-tube wall interactions, which were qualitatively 

agreeable with the experimental results (Zhang, 2020a,b). Nevertheless, 

equations (2), (4) and (5) need to be further validated by direction 

comparison with the experiments or the MDS results. These equations 

are presented here to show the substantial progress in calculating the 

multiscale mass transfer in micro/nano cylindrical tubes. 

3.3 For the nanoscale non-continuum flow 

In the cylindrical tube shown by Fig.1(c), the continuum fluid vanishes 

and the whole flow is non-continuum contributed by the fluid molecule 

dynamics; the interaction between the fluid molecules and the interaction 

between the fluid and tube wall molecules both should have important 

influences on the flow in the tube. Molecular dynamics simulation was 

widely used to theoretically study this nanochannel flow (Abraham 1978; 

Chauveteau, 1984; Horn et al., 1989; Jabbarzadeh et al., 1997; Sofos et 

al., 2013; Somers and Davis, 1992). It was found by MDS that both the 

local density and local viscosity of the fluid in this narrow tube are varied 

across the tube inner radius due to the fluid-tube wall interaction 

(Abraham 1978; Chauveteau, 1984; Horn et al., 1989; Jabbarzadeh et al., 

1997; Sofos et al., 2013; Somers and Davis, 1992). The flow in this tube 

can greatly deviate from the classical continuum hydrodynamic flow 

theory in the conditions of the strong or weak fluid-tube wall interactions 

(Calabrò et al., 2013; Myers, 2011; Sofos et al., 2015; Takaba et al., 

2007). Zhang (2015) showed that the Couette flow results in the mass 

flow rate through the nanotube equal to the continuum flow theory 

calculation, while the pressure driven Poiseuille flow component results 

in the magnitude of the mass flow rate through the nanotube significantly 

smaller than the classical Hagen-Poiseuille flow equation calculation 

owing to the significant non-continuum effect of the fluid in the 

conditions of the medium or strong fluid-tube wall interactions.  

Based on the assumption of the laminar, isothermal and steady flow 

on the ensemble average, by incorporating the wall slippage and the 

dynamic and non-continuum effects of the fluid, Zhang (2017) gave the 

following equation for calculating the mass flow rate through the tube in 

Fig.1(c):  

𝑞𝑚 = 𝜋𝜌𝑏𝑓,2
𝑒𝑓𝑓

(𝑅0)𝑢ത𝑅0
2 +

𝜋𝜌𝑏𝑓,2
𝑒𝑓𝑓

(𝑅0)𝑆(𝑅0)𝑅0
4

4𝜂𝑏𝑓,2
𝑒𝑓𝑓

(𝑅0)

𝜕𝑝

𝜕𝑥
  ,  

 for    𝑅0/ℎ𝑏𝑓 ≤ 1    (6) 

where 𝑢ത  is the wall slipping velocity, 𝜌𝑏𝑓,2
𝑒𝑓𝑓

 and 𝜂𝑏𝑓,2
𝑒𝑓𝑓

 are 

respectively the average density and the effective viscosity of the 

confined fluid across the tube radius, and S is the parameter describing 

the discontinuity and inhomogeneity effects i.e. the non-continuum 

effect of the confined fluid. For no wall slippage, put 𝑢ത = 0; for the wall 

slippage occurrence, put 𝜕𝑝/𝜕𝑥 = −𝜏𝑠,𝑏−𝑤/[𝐷(𝑛 − 1)], and the wall 

slipping velocity 𝑢ത  is determined by the power loss on the whole tube. 

By the same method, Zhang (2016) also derived the flow equation 

for the nanoscale non-continuum flow in the nano slit pore, which has 

been validated by comparison with a lot of MDS results. Recently, Jiang 

and Zhang (2021) presented the direct matching results between Zhang’s 

nanoscale non-continuum flow model and molecular dynamics 

simulation and showed very good quantitative agreements between these 

two approaches as shown in Figs.2(a) and (b). 
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(a) 

 
(b) 

 

Fig．2 Comparisons between Zhang’s non-continuum flow model 

(FFAM) and molecular dynamics simulation (MDS) in the flow velocity 

profiles across the channel height for the flow in the nano slit pore, 

channel height=2.898nm, 𝜒 is the factor of the interaction strength 

between the fluid and the pore wall (Jiang and Zhang, 2021). 

 

4. CONCLUSIONS 

Principally, there are three different flow regimes for the flow in a 

cylindrical tube, i.e. the continuum flow, the multiscale flow and the 

nanoscale non-continuum flow. Which flow regime prevails depends on 

the ratio 𝑅0/ℎ𝑏𝑓  where 𝑅0  is the tube inner radius and ℎ𝑏𝑓  is the 

thickness of the adsorbed layer on the tube wall. For 𝑅0/ℎ𝑏𝑓 ≥ 100, the 

effect of the adsorbed layer is negligible and the continuum flow theory 

is applicable; for 1 < 𝑅0/ℎ𝑏𝑓 < 100, the adsorbed layer effect should 

be considered, and the multiscale flow theory must be applied; for 

𝑅0/ℎ𝑏𝑓 ≤ 1, the continuum fluid vanishes and the whole flow is non-

continuum in the tube, and the nanoscale non-continuum flow theory 

must be used by incorporating the rheology evolution and the 

discontinuity and inhomogeneity effects of the fluid.  

By incorporating the wall slippage or the adsorbed layer-fluid 

interfacial slippage, the flow equations are presented respectively for the 

above mentioned three flow regimes. Most of them have been 

substantiated, except that the multiscale flow equations need further 

verification by direct comparison with experiments (though the 

calculations from these equations showed physically reasonable results 

qualitatively agreeing with experiments).  

The flow equations given in this paper have important implications 

for the modeling and calculation of the mass transfer in a cylindrical tube. 

They manifest that when we should use the corresponding flow equation 

for the flow in a cylindrical tube. These equations should have important 

application values in the studies of a lot of engineering problems such as 

blood vessel flows, micro/nano porous filtration membranes, flow 

through cell membranes and super purification. 
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