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ABSTRACT 

This study attempts to explore a qualitative analysis of the effects of Soret on an unsteady magnetohydrodynamics free convection flow of a chemically 
reacting incompressible fluid past an infinite vertical plate embedded in a porous medium taking the source of heat and thermal radiation into account 
as well as viscous dissipation. The central equations are scrupulously converted into sets of coupled nonlinear partial differential equations for providing 
logical solutions. The method of Galerkin finite element is used considering appropriate boundary conditions for diverse physical metrics and then 
numerically analyzed employing MATLAB. A significant change in velocity, temperature, concentration profiles is observed for various values of 
Prandtl number, Grashof number, Eckert number, Soret number. It is noticed that the velocity profile enhances by enhancing the values of porous 
medium as well as it decreases when ‘M’ and Prandtl number increases. The temperature profile decreases as for the increasing vales of heat source 
parameter and also the concentration profile increases as Soret number increases.   
Keywords: Galerkin Method; Magnetohydrodynamics; Chemical Reaction; Viscous Dissipation; Heat Source; Soret Effect 

 

1. INTRODUCTION 

The natural physical process of convection flow has been gaining 
increasing research attention owing to its increased utilization in diverse 
physical, chemical and engineering applications. Natural convection is a 
physical process of transferring heat and mass among the fluids initiated 
by the variation in the concentration of both the temperature as well as 
the species resulting in the differences in density and encouraging the 
forces of buoyancy to operate on the fluids. The natural convection of 
the Nano fluids from a vertical accelerated plate in the presence of the 
radiation flux and magnetic field is observed in this study by Astuti et al. 

(2019). Nature contains enormous quantities of such flows. This process 
of convection is studied in depth due to its extensive free applications in 
the environments of geophysical sciences and engineering. Room heating 
inside the buildings utilizing radiators could well illustrate the 
application of convection for transferring heat. Buoyancy or decrease in 
gravity Middleman (1998), Rubin et al.  (2001) is the prime factor 
causing these natural flows of convection due to the variation in 
temperature resulting in corresponding differences in fluid density, 
including liquids and gases. It has been identified that the flows induced 
by buoyancy in the fluid-saturated porous media have been extensively 
employed in a wide variety of applications of thermal engineering 
applications and domains such as geothermic system spring 
water pollution, exchangers of heat, thermal insulation, piling up of 
nuclear effluence, packed bed catalytic reactors, cooling of electronic 
devices, the security of energy systems, atmosphere and oceanic 
circulation.  
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     Several researchers are drawn towards the field of       
Magnetohydrodynamics due to its vast and varied applications in the 
realms of geophysical science and astrophysics. MHD is largely utilized 
in the advanced studies on the astronomical matter, solar and stellar 
structures, propagation of radio through the medium of ionosphere, etc. 
Several applications associated with oil extraction, recovery of heat, 
flow-through devices of filtration, and storage of thermal energy largely 
make use of the applications based on the progression   of convection 
through permeable media, besides MHD bearings and MHD pumps. The 
modern times witness an enhanced focus on this heat transfer process 
through convection due to its ever-enhancing prominence in diverse 
technological innovations and applications such as fiber and granular 
insulation, electronic system cooling, cool combustors, and porous 
material regenerative heat exchangers, geo-thermal reservoirs, and 
drying the porous solids. This feature of concurrent heat and mass 
transfer from entirely diverse geometrics embedded in porous media 
encompasses a range of engineering and geophysical 
science applications as have been mentioned. 
     Soundalgekar and Wavre (1977) have explored an unstable free 
convection flow of convection past an infinite vertical plate that contains 
continuous suction and shifting of mass. Agrawal H et al. (1984) furnish 
the influence that Hall currents could have on hydro-magnetic free 
convection with the transfer of mass in an extremely rotating fluid. Jang 
and Ni (1989) have analyzed transient-free convection with a transfer of 
mass from an equal vertical plate embedded in a medium that has an 
extremely permeable nature. Jha  (1991) studied the characteristics of the 
free convection of MHD and the subsequent flow of transfer of mass 
through a porus medium. Prabhakar Reddy (2020) has studied how the 
transfer of mass impacts the free convective flow on an unsteady MHD 
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containing incompressible viscous dissipative fluid past an infinite 
vertical porous plate. MHD flow of carreau nano fluid explores using 
CNT over a nonlinear elongated sheet is studied by Nagalakshmi et al.  
(2020). 
     The contribution of radiation becomes important for air in instances 
where the wall temperature ranges between the var6000 – 10,000K.  
Such instances occur when vehicles in space attempt reentry into the 
atmosphere. Korycki (2006) illustrates this radioactive heat transfer as a 
vital and fundamental phenomenon that exists in all sensible engineering 
processes as can be found in radiation within the buildings, foundry 
engineering, and set processes, die formation, chemical engineering, and 
diverse composite structures applied in manufacturing. 
     Thermal radiation has become an integral and potential component in 
the field of fluid dynamics emerging as one of the premium branches in 
engineering sciences with its prominent aspect of fusing diverse 
scenarios in mechanical, chemical, aerospace, environmental, stellar 
energy and hazards engineering. Bhaskara Reddy and Bathaiah (1981) & 
(1982) have analyzed the MHD free streamline flow of convection of an 
incompressible elastic fluid. Further, they have studied the combined and 
strained flow of convection through two parallel porous walls. 
Elabashbeshy (1997) has studied the transfer of mass and heat on a 
vertical plate along with magnetic flux. Samad, Karim, and Muhammad 
(2010) have made numerical computations to estimate the influence of 
the thermal radiation on steady MHD free convection flow considering 
the diffusion approximation of Rosseland. Loganathan and Arasu 
(2010) have analyzed the results of the deposition of thermophoresis on 
non-Darcy MHD combined convective transfer of mass and heat past a 
porous wedge while suction or injection is present. 
     This paper attempts to examine, the effects of transfer of mass and 
heat of free convection flow- considering the viscous dissipation of a 
fluid past an infinite vertical porous plate embedded in a permeable 
medium when a homogeneous magnetic field is present. Partial 
differential equations of coupled non-linear systems govern the 
principles of the problem with inbuilt complexities to obtain precise 
solutions. Hence, the method of Galerkin finite element, with its 
computational cost efficiency, has been employed for obtaining the 
solutions. The consequent changes and comportment of diverse aspects 
such as the concentration velocity, temperature, Sherwood and Nusselt 
numbers have been comprehensively focused for observing the possible 
changes in the governing framework and metrics. 
     Crepeau and Clarksean (1997) have considered the 
classical drawback in instances of natural convection flow from an equal 
vertical plate along with the term of supplementary heat generation 
within the equation of energy. They found out that there must be 
exponential decay in internal heat generation with the classical variable 
of similarity for finding a real similar solution.  Reddy and Rao (2011) 
examined the Soret effect on unstable MHD free convection transfer flow 
of mass and heat past an infinite vertical permeable plate in conjunction 
with the Hall current, heat source, and consequent thermal radiation. Pal 
and Talukdar (2012) have detailed the impact that the thermal radiation 
and the chemical reaction of first-order could have on unstable MHD 
convective transfer flow of mass and heat along with the Soret effect of 
a viscous fluid past a semi-infinite vertical flat plate when heat source 
and oscillatory suction are present. 
      Chemical reaction processes are both uniform and heterogeneous 
depending on the location of their occurrences such as an interface or 
single section volume. Gehart et al. (1971) have studied how foreign 
mass can impact the free flow of convection beyond a semi-infinite 
vertical plate.  The far-off mass existing either in water or in the air can 
cause significant chemical process. In general, the reaction rate of 
chemical processes corresponds to the concentration levels of the 
species. For example, convection associated with the internal generation 
of heat has a pivotal role to play in the framework of the method of 
complete heat transfer i.e., the acquisition of metal waste from the 
utilized fuel and the processes of thermal combustion activity. 

     Alim et al. (2008) have investigated the impact of viscous dissipation 
over natural flow of convection along a sphere having heat loss of 
radiation, while Salina et al. (2010) have examined the effect of viscous 
dissipation over natural convection flow of convection along a sphere 
with the generation of heat. Alam et al. (2007) have examined the impact 
of viscous dissipation on MHD natural convection flow on a sphere 
besides heat generation.  
      This paper attempts to examine, the effects of transfer of mass and 
heat of free convection flow- considering the viscous dissipation of a 
fluid past an infinite vertical porous plate embedded in a permeable 
medium when a homogeneous magnetic field is present. Partial 
differential equations of coupled non-linear systems govern the 
principles of the problem with inbuilt complexities to obtain precise 
solutions. Hence, the method of Galerkin finite element, with its 
computational cost efficiency, has been employed for obtaining the 
solutions. The consequent changes and comportment of diverse aspects 
such as the concentration velocity, temperature, Sherwood and Nusselt 
numbers have been comprehensively focused for observing the possible 
changes in the governing framework and metrics. 
 
                       2. MATHEMATICAL ANALYSIS 
Our purpose in this paper is to study the unstable spontaneous flow of 
convection considering the viscous dissipation of a fluid which has the 
properties of electric conduction and hydro-magnetic radiation, past on 
infinite heated vertical plate which has been embedded in a porous 
medium. Fig. 1 represents the physical model including the coordinate 

system. The 'x - axis is considered here for alongside the vertical plate, 

while 'y  - axis for normal to the plate. At the point of  

 
 
                          Fig.1   Schematic Diagram 

time 0t , the temperatures of 'T and '
T have been steadily maintained 

for the plate as well as the  fluid respectively and presumed to be 
identical. Similarly, it has been assumed that concentration levels of  

pertaining to the  species, '
wC  at the plate and '

C  all through the fluid, 

to be identical. The  plate’s temperature  at time 0t , which has been 

hitherto maintained as constant, now is altered resulting in the flow of 
convection currents very near to the plate. Consequently, the supply of 

mass to the plate is at a constant rate, while the functions of time 't  and 
'y   in this scenario, become the flow variables.  

      We now consider flow of an incompressible fluid making the 
following assumptions. 
i) All the fluid properties except the density in the buoyancy force term 

are constant. 
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ii) A homogenous magnetic field with an intensity of 0H   is executed 

diagonally to the plate.  
iii)The magnetic field which has been thus induced is ignored since the 
flow’s magnetic Reynolds number is taken to be very inconsequential. 

iv) 0

E  the electric field is zero. 

 v) The Boussinesq approximation is applied. 
vi) The Hall effect of magnetohydrodynamics and magnetic dissipation 
(Joule heating of the fluid) are neglected. 
vii) Tw ’>T∞ 

viii) The heat source Q  is of the type )( ''
0 TTQQ  

 . 

ix) The concentration of the diffusing species in the binary mixture is 
assumed to be very small in comparison with the other chemical species 
Dufour effect is negligible. 
x) The chemical reaction is considered to be homogeneous and of first 
order.  
xi) Also, no applied or polarized voltages are assumed to exist, so that 

the effect of polarization of fluid is negligible. 
With the foregoing assumptions and under the usual boundary layer 
approximations, unsteady flow is governed by the following partial 
differential equations 
Continuity Equation: 
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Concentration Equation:                                                                  
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The boundary conditions for the fields of velocity, temperature, and 
concentration respectively are as follows: 
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     Where 'u is the velocity along the 'x - axis,  'v is the kinematic 
coefficient of viscosity, g is the acceleration due to gravity,  is the 

coefficient of volume expansion for the heat transfer,   is the volume 

coefficient of expansion with species concentration, 'T is the fluid 

temperature, '
T  is the fluid temperature at infinity, '

wT and '
wC  are the 

wall dimensional temperature and concentration respectively. 'C is the 

species concentration, '
C  is the species concentration at infinity, MD

is the chemical molecular diffusivity, 1k is the mean absorption 

coefficient, 'K is the constant permeability of the medium,  is the 

coefficient of viscosity, pC is the specific heat at constant pressure, 

is the density of fluid, '
rK - the chemical reaction parameter and t is the 

time. Equation (1) gives  000
'  vvv  

     Where 0v is the constant suction velocity with the negative sign 

implying it in the direction of the plate.  
Employing the method of Roseland approximation, the term for radiative 

heat flux is depicted by 
'
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where 428 /1067.5 KmW  is the Stefan- Boltzmann constant and

1k is the Roselan mean absorption coefficient. Here, it has been assumed 

that the variations in the temperature in the flow are insignificant enough 

that 
4'T could be expressed as the temperature’s linear function. This is 

achieved through the expansion of '
T a Taylor series and ignoring the 

terms of a greater order. Thus  
'''' 34

34

  TTTT                             (7) 

Then, by the application of (5) and (6) in equation (2), can be reduced as 
given below: 
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The non-dimensional quantities mentioned below are introduced, so that 
the governing equations and boundary condition can be rendered in 
dimensionless from: 
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In the context of (8), equations (1), (3), and (7) have been reduced to the 
non-dimension form as given hereunder: 
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And these corresponding boundary conditions are 
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                        3. NUMERICAL TECHNIQUE 

The technique of finite element has been employed for solving the issues 

of non-dimensional momentum as well as the equations of energy (10), 

(11) and (12) in addition to the imposed conditions of the boundary (13). 

In the context of the differential equations, the Galerkin expression (10) 
becomes 
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Let us assume the linear piece-wise approximation solution to be  
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Where prime and dot represent differentiation w.r.to ‘y’ and ‘t’ 
respectively.  On simplification, we derive  
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For obtaining the differential equation at the knot ix , we have written the 

element equations for the two elements ii yyy 1  and 1 ii yyy . 

Assembling these two, we get 
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The row equation of the knot ''i , is represented as  
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 On the application of the method of Crank-Nicholson to the above 
equation, we derive 
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                When a similar procedure is applied to equation (10), we obtain  
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When a similar procedure is applied to equation (11), we obtain 
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Here, 
2h

k
r  , while k , h are the sizes of mesh in the direction along y 

and time-direction, with indices I and J referring to space and time 
respectively. The mesh system consists of h=0.1 and k=0.001. In the 
equations (11), (12) and (13) considering i=1 in (1) and employing the 
boundary conditions (10), we obtain the subsequent system equations:

iii BXA  for ni )1(1  where iA  ‘s are matrices of order n and ii BX ,

‘s are column matrices with  n  components. Thomas algorithm employed 
to acquire the relevant solutions with regard to the system of equations 
considered above for the aspects of velocity, temperature, and 
concentration. Besides the numerical solutions can be acquired for the

 considered system of equations by running the same on MATLAB. 
MATLAB has been employed with reduced values of ‘h’ and ‘k’ to 
establish the convergence and stability pertaining to the the method of 
Galerkin finite element, where considerable variations in the values of u, 
T and C have not been perceived. Consequently, it can be established that 
the method of Galerkin finite element is stable and convergent. 
Study of grid independence: 
To analyze grid independency/dependency it is better to test the solution 
for several mesh sizes and get a range at which there is no variation in 
the solution. The mathematical estimation of velocity for specific inputs 
of mesh(grid) size at time t= 0.2, are shown in the above Table 1. From 
this table, we observed that, variation of velocity is closer for various 
mesh size at time t=0.2. Hence, we conclude that, the computational 
results are stable and converge.   
Table 1: 
The numerical values of u for variation of mesh (Grid) sizes (when 
Pr=0.71, K=0.5, M=2, Ec=0.1, Sc=0.22, Gm=3, Gr=3, Kr=1.0, R=2, 
S=2, Sr=2). 
 

 
 

y 

 
u 

Size of Mesh 
k=0.001, 

h=0.1 

Size of 
Mesh 

k = 0.0005, 
h=0.05 

Size of Mesh 
k = 0.00025, 

h=0.025 

0 0 0 0 

0.5 0.364470 0.364025 0.363979 

1 0.280719 0.280738 0.280831 

1.5 0.155177 0.155504 0.155662 

2 0.074048 0.074378 0.074514 

2.5 0.031897 0.032127 0.032218 

3 0.012464 0.012601 0.012653 

3.5 0.004401 0.004473 0.004499 

4 0.001398 0.001431 0.001443 

4.5 0.000398 0.000411 0.000416 
5 0.000101 0.000105 0.000107 
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                    4. RESULT AND DISCUSSION 
 
 This current study addresses the issues pertaining to an unsteady free 
convection flow of mass transfer considering the viscous dissipation 
of a fluid past an infinite vertical permeable plate. Innumerable  
numerical computations have been applied for the velocity and the non 
-dimensional, temperature, and concentration 'C', for various parameter 
indicated below:                             

    
 
Fig. 2 Profile of Velocity for diverse values of Pr when K=0.5, M=2, 
Ec=0.1, Sc=0.22, Gm=3, Gr=3, Kr=1.0, R=2. 
 
It can be perceived from Fig. 2, that the profile of velocity decreases 
corresponding to the increase in Prandtl number Pr. This study makes a 
comparative analysis with the available previous studies without the 
source of heat and the Soret effect for establishing the accuracy and 
validity of the output numerical results. The profiles of velocity for 
diverse values of Pr have been studied in comparison with the available 
solutions proposed by Anil Kumar et al. (2018) and found to largely 
concur. It is further perceived that the profile of velocity decreases 
corresponding to the increase in Pr. This could be consequent to the fact 
that fluids having greater Pr contain higher levels of viscosities causing 
a reduction in velocities. Fig. 3 illustrates that the profile of velocity 
decreases corresponding to the increase in Prandtl number Pr. It is further 
perceived that the profile of velocity decreases corresponding to the 
increase in Pr. This could be consequent to the fact that fluids having 
greater Pr contain higher levels of viscosities causing a reduction in 
velocities. 

  
 
Fig. 3 Profile of Velocity for diverse values of Pr when K=0.5, M=2, 
Ec=0.1, Sc=0.22, Gm=3, Gr=3, Kr=1.0, R=2, S=2, Sr=2. 

 
Fig. 4 Profile of Velocity for diverse values of Gm when Pr=0.71, M=2, 
Ec=0.1, Sc=0.22, Gr=3, R=2, K=0.5, Kr=1.0, S=2, Sr=2. 
 
It is evident from Fig. 4 that the velocity increases corresponding to the 
increase in Grashof number Gm. The ratio between the viscous and 
buoyancy forces operating on a fluid is approximated through Modified 
Grashof number, where any increase of Gm results in a corresponding 
increase in the forces of buoyancy besides a corresponding decrease in 
the viscous forces. In instances of decrease of viscosity, the fluid's 
internal resistance decreases leading to an automatic increase in the fluid 
velocity. The ratio between the forces of viscosity and buoyancy 
operating on a fluid is approximated through Grashof number Gr. Here, 
any increase of Gr results in a corresponding increase in the forces of 
buoyancy besides a corresponding decrease in the viscous forces as 
depicted in Fig. 5. In instances of decrease of viscosity, the fluid’s 
internal resistance decreases leading to an automatic increase in the fluid 
velocity. Fig. 6 illustrates the profile of velocity for diverse values of the 
parameter for porosity K. In the characterization of the properties of 
transport of mass and heat in a porous medium, the very factor of 
permeability stands as a prominent parameter. It is evident that there is 
an increase in K in proportion to the increase in the velocity, as the 
increased permeability of the medium indicates decreased resistance 
owing to the presence of the porous matrix within the medium  
 
 

  
 
Fig. 5 Profile of Velocity for diverse values of Gr when Pr=0.71, M=2, 
Ec=0.1, Sc=0.22, Gm=3, R=2, K=0.5, Kr=1.0, S=2, Sr=2. 
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Fig. 6 Profile of Velocity for various values of K when Pr=0.71, M=2, 
Ec=0.1, Sc=0.22, Gm=3, R=2, Gr=3, Kr=1.0, S=2, Sr=2.   . 
 
Fig. 7 illustrates the differences in the profile of velocity in conjunction 
with the Magnetic field parameter M. It is evident that increasing the 
Magnetic field results in a corresponding increase in the magnetic 
strength and the mass of the fluid particle causing the corresponding 
decrease in velocity. Consequent to the impact of the transverse magnetic 
field on a fluid that conducts electrically, there is a considerable increase 
in a resistive sort of force known as Lorentz force, which almost acts as 
a drag force. Any increase in the value of M leads to a corresponding 
force of resistance. Fig. 7. has been plotted in such a way as to illustrate 
the differences in the profile of velocity corresponding to M. It is evident 
that any increase in M results in a proportionate increase in the magnetic 
strength while slowing down the fluid motion. Fig. 8 illustrates the 
profile of temperature for diverse values of Eckert number Ec. The Ec 
represents the interrelationship of the flow’s kinetic energy and enthalpy. 
This represents the energy transformation from kinetic to internal in 
terms of work done against the stress of the viscous fluid. This energy 
manifests in the form of heat during dissipation. Consequently, the 
dissipative heat triggers an increase in temperature. 

   
Fig. 7 Profile of Velocity for diverse values of M when K=0.5, Pr=0.71, 
Ec=0.1, Sc=0.22, Gm=3, R=2, Gr=3, Kr=1.0, S=2, Sr=2. 
 

 
 
Fig. 8 Profile of Temperature for various values of Ec when K=0.5, 
M=2, Pr=0.71, Sc=0.22, Gm=3, R=2, Gr=3, Kr=1.0, S=2, Sr=2. 
 
Fig. 9 depicts the profile of temperature for diverse values of the 
parameter of Radiation R. Any increase in R increases the viscosity of 
the fluid, finally resulting in the decrease both in the temperature and the 
thickness of the thermal boundary layer. The results as depicted in Fig. 
10 illustrate an increase in the value of the Prandtl number Pr causing a 
corresponding decrease in the field of temperature. Besides, any rise in 
Pr causes a corresponding decrease both in the temperature and the 
thickness of the thermal boundary layer.  Fig. 11 illustrates the rise in the 
value of the Heat Source Parameter S correspondingly decreasing the 
boundary layer as can be expected. This is because the absorption of heat 
automatically reduces the force of buoyancy which in turn slows down 
the rate of the flow. Fig. 12 reflects the profile of concentration for 
diverse values of Schmidt number Sc. The Sc approximates the ratio 
between the mass diffusivity and kinematic viscosity. Any increase in Sc 
results in a corresponding increase in the viscous forces. The Sc 
represents the interrelationship and ratio between the momentum and 
mass diffusivity. The rise in Sc reduces the concentration 
correspondingly causing the effect of concentration buoyancy, thereby 
reducing the fluid velocity considerable. 
 

 
 
Fig. 9 Profile of Temperature for diverse values of R when K=0.5, M=2, 
Ec=0.1, Sc=0.22, Gm=3, Pr=0.71, Gr=3, Kr=1.0, S=2, Sr=2. 
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Fig. 10 Profile of Temperature for diverse values of Pr when K=0.5, 
M=2, Ec=0.1, Sc=0.22, Gm=3, Gr=3, Kr=1.0, R=2, S=2, Sr=2. 
 
Fig. 13 illustrates the effect of Soret Number Sr on diverse profiles of 
concentration. This graph considers Sr values as Sr = 2,4,6,8. It is evident 
from the graph that any increase in the values of Sr causes a 
corresponding increase in the concentration profiles uniformly at every 
point in the field of flow. This phenomenon occurs because the diffusive 
species having greater Sr values tend to enhance the profile of 
concentration. Hence, conclusions can be drawn that the Sr values 
considerably influence the concentration distributions. Fig. 14 depicts the 
influence of the parameter of chemical reaction Kr on the profiles of 
concentration. It is obvious that an increase in Kr results in the reduction 
of concentration. Fig. 15 illustrates the Skin-friction in the context of 
time‘t’ for diverse parameter values. Any increase in M causes a 
corresponding increase in the .  The corresponding increase in the 
along with M can be attributed to the increased Lorentz force, which 
brings in supplementary momentum within the boundary layer. In 
contrast, an increase in K, Gm and Gr leads to a corresponding reduction 
in the . The extent of   for Pr = 0.71 is low in comparison to that of 
Pr = 7. 

 

 
Fig. 11 Profile of Temperature for diverse values of S when K=0.5, 
M=2, Ec=0.1, Sc=0.22, Gm=3, Pr=0.71, Gr=3, Kr=1.0, Sr=2 

 

 
 

Fig. 12 Profile of Concentration for diverse values of Sc when K=0.5, 

M=2, Ec=0.1, Pr=0.71 Gm=3, R=2, Gr=3, Kr=1.0, S=2, Sr=2. 

 
Fig. 16 illustrates a perceivable increase in the concentration transfer rate 
corresponding to the rising values of Sc, and Kr, whereas the same is 
found to decrease when the Sr value is increased. Fig. 17 illustrates the 
Nusselt number Nu along with the time 't' for different values of metrics 
such as Pr, R, Ec, and S. Nu for Pr=7 (in this case for water) is found to 
be greater than the number for Pr=0.71. This is because the lower Pr 
values are equivalent to correspondingly enhancing the thermal 
conductivities. Consequently, the heat can more swiftly diffuse further 
away from the plate than with higher Pr values. The same applies to S 
also. Hence, an increased heat transfer rate can be perceived. It can also 
be perceived that there is a considerable fall in the heat transfer rate 
corresponding to the rise in R and Ec. 
 
 

  
 
 
Fig. 13 Profile of Concentration for diverse values of Sr, when K=0.5, 
M=2, Ec=0.1, Pr=0.71 Gm=3, R=2, Gr=3, Sc=0.22, S= 2. 
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Fig. 14 Profile of Concentration for diverse values of Kr when K=0.5, 
M=2, Ec=0.1, Pr=0.71 Gm=3, R=2, Gr=3, Sc=0.22, S=2, Sr=2. 
    

Fig. 15 Profile of Skin Friction for diverse values of M, K, Gr, and Gm. 

 

Fig. 16 Profile of the Sherwood number for diverse values of Sc, Kr, and 
Sr. 
            .  

  
 
Fig. 17 Profile of the Nusselt number for diverse values of Pr, R, S, and 
Ec. 
 
                                           5. CONCLUSIONS 
 
In this study, an attempt has been made to analyze numerically the impact 
of viscous dissipation of thermal radiation on the diffusion flow of mass 
and heat of MHD past an infinite vertical plate which has been embedded 
in a permeable medium containing variable conditions of the surface. The 
method of Galerkin finite element is employed for solving the equations 
which governs the flow. The following are some of the interesting 
outcome factors of the study about the physical aspects of concentration, 
temperature, and the velocity of the flow:    

 Velocity increases corresponding to the enhancement in the Gr 
and Gm numbers.  

 Velocity decreases corresponding to the enhancement   in the 
magnetic parameter M and the permeable nature of the porous 
medium K. 

 An increase in Sc and time t causes a decrease in the velocity.  
  
 The temperature rises corresponding to the rise in Ec as well as 

time t, but reduces with the rise in the parameter of radiation 
R. 

 An increase in Sc causes a corresponding decrease in the level 
of concentration.  

 Greater Sr values tend to enhance the level of concentration.  

 A rise in M causes an increase in the Skin-friction .  
 Increased K, Gm, and Gr cause a corresponding decrease in the

 . 
 A rise in the values of Sc correspondingly increases the 

Sherwood number Sh.  

 Increasing M causes a corresponding increase in the . 
 Increasing the values of K, Gm and Gr causes a corresponding 

decrease in the . 
 Enhanced values of Sc cause a corresponding rise in the Sh.  
 Enhanced values of Sr cause a corresponding decrease in the 

Sh. 
 Rise in the values of Pr and S result in a corresponding increase 

in Nu.  
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NOMENCLATURE: 

 '
C     Concentration of the fluid far away  from the plate )( 3mKg   

'
wC      Concentration of the plate )( 3mKg  

y         Dimensionless displacement )( m  

'
T       Fluid temperature away from the plate )( K  

Gm     Grashof number for mass transfer       
Gr      Grashof number for heat transfer  

u        Non-dimensional fluid velocity )( 1sm  

Sh      The local Sherwood number   
'u       Velocity component in 

'x  - direction )( 1sm    

g        Acceleration of gravity, 9.81 )( 2sm  

'x        Coordinate axis along the plate )( m  

Re      Reynolds number      

D       Solute mass diffusivity )( 2sm     

Nu     The local Nusselt number     
        Skin Friction 

0B      Uniform magnetic field (Tesla)   

0H     Magnetic Induction   

       The constant density )( 3mKg      

      Volumetric coefficient of thermal expansion )( 1K  

'y      Co-ordinate axis normal to the plate )( m  

Ec     Eckert number 
'C      Fluid Concentration )( 3mKg  

'
wT     Fluid temperature at the wall )( K  

  'T    Fluid temperature )( K  

M     Magnetic parameter 
Pr     Prandtl number 

rq     Radiative heat transfer coefficient Sc     Schmidt number 

 pC    Specific heat at constant Pressure )( 1KKgJ   

       Kinematic viscosity )( 12 sm   

0      Magnetic Permeability ).( 2AN  

C        Species concentration  )( 3mKg  

 Greek Symbols:   

K     Thermal conductivity of the fluid  )( 11  KWm  

         Non dimensional fluid temperature  )( K       

      Volumetric Coefficient of thermal expansion with          

            concentration )( 3 Kgm  

        Electric conductivity of the fluid    )( 1ms      

  Superscripts: 

‘     Dimensionless Properties 

Subscripts: 
      Free stream conditions 
p      Plate 
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